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Abstract

To learn to behave in highly complex domains, agents
must represent and learn compact models of the world
dynamics. In this paper, we present an algorithm for
learning probabilistic STRIPS-like planning operators
from examples. We demonstrate the effective learning
of rule-based operators for a wide range of traditional
planning domains.

Introduction
Imagine robots that live in the same world as we do. Such
robots must be able to predict the consequences of their ac-
tions both efficiently and accurately. Programming a robot
for advanced problem solving in a complicated environment
is an hard problem, for which engineering a direct solution
has proven difficult. Even the most sophisticated robot pro-
gramming paradigms (Brooks, 1991) are difficult to scale to
human-like robot behaviors.

If robots could learn to act in the world, then much of
the programming burden would be removed from the robot
engineer. Reinforcement learning has attempted to solve this
problem, but this approach often involves learning to achieve
particular goals, without gathering any general knowledge
of the world dynamics. As a result, the robots can learn
to do particular tasks but have trouble generalizing to new
ones. If, instead, robots could learn how their actions affect
the world, then they would be able to behave more robustly
in a wide range of situations. This type of learning allows
the robot to develop amodelthat represents the immediate
effects of its action in the world. Once this model is learned,
the robot could use it to behave robustly in a wide variety of
situations.

There are many different ways of representing action
models, but one representation, probabilistic relational rules,
stands out. These rules represent situations in which actions
will have a set of possible effects. Because they are proba-
bilistic they can model actions that have more than one ef-
fect and actions that might fail often. Because they are rules,
each situation can be considered independently. Rules can
be used individually without having to understand the whole
world. Because they are relational, they can generalize over
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the identities of the objects in the world. Overall, the rules
we will explore in this paper, encode a set of assumptions
about the world that, as we will see later, improve learning
in our example domains.

Once rules have been learned, acting with them is a well-
studied research problem. Probabilistic planning approaches
are directly applicable (Blum & Langford, 1999) and work
in this area has shown that compact representations, like
rules, are essential for scaling probabilistic planning to large
worlds (Boutilier, Dearden, & Goldszmidt, 2002).

Structured Worlds
When an agent is introduced into a foreign world, it must
find the best possible explanation for the world’s dynam-
ics within the space of possible models it can represent.
This space of models is defined by the agent’s representa-
tion language. The ideal language would be able to com-
pactly model every world the agent might encounter and no
others. Any extra modeling capacity is wasted and will com-
plicate learning since the agent will have to consider a larger
space of possible models, and be more likely to overfit its
experience. Choosing a good representation language pro-
vides a strongbias for any algorithm that will learn models
in that language. In this paper we explore learning a rule-
based language that makes the following assumptions about
the world:

• Frame Assumption: When an agent takes an action in
a world, anything not explicitly changed by that action
stays the same.

• Object Abstraction Assumption: The world is made up
of objects, and the effects of actions on these objects gen-
erally depend on their attributes rather than their identi-
ties.

• Action Outcomes Assumption:Each action can only af-
fect the world in a small number of distinct ways. Each
possible effect causes a set of changes to the world that
happen together as a singleoutcome.

The first two assumptions have been captured in al-
most all planning representations, such as STRIPS opera-
tors (Fikes & Nilsson, 1971) and more recent variants (Pen-
berthy & Weld, 1992). The third assumption has been made
by several probabilistic planning representations, including



probabilistic rules (Blum & Langford, 1999), equivalence-
classes (Draper, Hanks, & Weld, 1994), and the situation
calculus approach of Boutilier, Reiter, and Price (2001). The
first and third assumptions might seem too rigid for some
real problems: relaxing them is a topic for future work.

This paper is organized as follows. First, we describe how
we represent states and action dynamics. Then, we present a
rule-learning algorithm, and demonstrate its performance in
three different domains. Finally, we go on to discuss some
related work, conclusions, and future plans.

Representation
This section presents a formal definition of relational plan-
ning rules, as well as of the world descriptions that the rules
will manipulate. Both are built using a subset of standard
first-order logic that does not include functions, disjunctive
connectives, or existential quantification.

State Representation
An agent’s description of the world, also called thestate, is
represented syntactically as a conjunction of ground literals.
Semantically, this conjunction encodes all of the important
aspects of this world. The constants map to the objects in the
world. The literals encode the truth values of all the possible
properties of all of the objects and all of the relations that are
possible between the objects.

For example, imagine a simple blocks world. The objects
in this world include blocks, a table and a gripper. Blocks
can be on other blocks or on the table. A block that has
nothing on it is clear. The gripper can hold one block or be
empty. The state description

on(B1, B2), on(B2, TABLE),¬on(B2, B1),¬on(B1, TABLE),
inhand(NIL), clear(B1), block(B1), block(B2),¬clear(B2),
¬inhand(B1),¬inhand(B2),¬block(TABLE)

(1)

represents a blocks world where there are two blocks in a
single stack on the table. BlockB1 is on top of the stack,
while B2 is belowB1 and on theTABLE.

Action Representation
Rule sets model the action dynamics of the world. The rule
set we will explore in this section models how the simple
blocks world changes state as it is manipulated by a robot
arm. This arm can attempt to pick up blocks and put them
on other blocks or the table. However, the arm is faulty, so
its actions can succeed, fail to change the world, or fail by
knocking the block onto the table. Each of these possible
outcomes changes several aspects of the state. We begin the
section by presenting the rule set syntax. Then, the seman-
tics of rule sets is described procedurally.

Rule Set Syntax A rule set,R, is a set of rules. Eachr ∈
R is a four-tuple,(rA, rC , rO, rP ). The rule’saction, rA, is
a positive literal. Thecontext, rC , is a conjunction of literals.
Theoutcome set, rO, is a non-empty set of outcomes, where
eachoutcomeo ∈ rO is a conjunction of literals that defines
a deterministic mapping from previous states to successor
states,fo : S → S, as described shortly. Finally,rP is a

pickup(X, Y) : on(X, Y), clear(X), inhand(NIL), block(Y)

→


.7 :

inhand(X),¬clear(X),¬inhand(NIL),
¬on(X, Y), clear(Y)

.2 : on(X, TABLE),¬on(X, Y), clear(Y)

.1 : no change
pickup(X, TABLE) : on(X, TABLE), clear(X), inhand(NIL)

→

{
.66 :

inhand(X),¬clear(X),¬inhand(NIL),
¬on(X, TABLE)

.34 : no change
puton(X, Y) : clear(Y), inhand(X), block(Y)

→


.7 :

inhand(NIL),¬clear(Y),¬inhand(X),
on(X, Y), clear(X)

.2 :
on(X, TABLE), clear(X), inhand(NIL),
¬inhand(X)

.1 : no change
puton(X, TABLE) : inhand(X)

→

{
.8 :

on(X, TABLE), clear(X), inhand(NIL),
¬inhand(X)

.2 : no change

Figure 1: Four relational rules that model the action dynam-
ics of a simple blocks world.

discrete distribution over the set of outcomesrO. Rules may
contain variables; however, every variable appearing inrC

or rO must also appear inrA. Figure 1 shows a rule set with
four rules for the blocks world domain.

A rule set is a full model of a world’s action dynamics.
This model can be used to predict the effects of an action,a,
when it is performed in a specific state,s, as well as to deter-
mine the probability that a transition froms to s′ occurred
whena was executed. When using the rule set to do either,
we must firstselectthe rule which governs the change for
the state-action pair,(s, a): ther ∈ R thatcovers(s, a).
Rule Selection The rule that covers(s, a) is found by con-
sidering each candidater ∈ R in turn, and testing it using
a three-step process that ensures thatr’s action modelsa,
that r’s context is satisfied bys, and thatr is well-formed
givena. The first step attempts to unifyrA with a. A suc-
cessful unification returns anaction substitutionθ that maps
the variables inrA to the corresponding constants ina. This
substitution is then applied tor; because of our assumption
that all the variables inr are inrA, this application is guar-
anteed to ground all literals inr. The second step checks
whether the contextrC , when grounded usingθ, is a subset
of s. Finally, the third step tests the ground outcomes for
contradictions. A contradiction occurs when the grounding
produces an outcome containing both a literal and its nega-
tion.

As an example, imagine an agent wants to predict the
effects of executingpickup(B1, B2) in the world described
in Equation 1 given the model represented by the rule set
in Figure 1. The action unifies with the action of the first
rule, producing the substitutionθ = {X/B1, Y/B2}; fails
to unify with the second rule’s action, becauseB2 doesn’t
equal TABLE; and fails to unify with the remaining rules
since they have different action predicates. When we ap-



B1

B2
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pickup (B1,B2)

on (B1,B2)
on (B2,TABLE)
clear (B1)
inhand (NIL)

on (B1,TABLE)
clear (B2)

inhand (B1)

Figure 2: Two subsequent states of the blocks world with
two blocks. The pictured states are represented by the neigh-
boring lists of true propositions. Everything not listed is
false. The actionpickup(B1, B2) was performed successfully.

ply θ to the first rule, we can see that its outcomes con-
tain no contradictions; note, however, that if the action
a had beenpickup(B1, B1) then the first outcome would
have contained one. The context, meanwhile, becomes
{on(B1, B2), clear(B1), inhand(NIL), block(B2)}. Since this
set is a subset of the state description in Equation 1, the first
rule passes all three tests.

In general, the state-action pair(s, a) could be covered by
zero, one, or many rules. If there are zero rules, we can fall
back on the frame assumption. A rule set isproper if every
possible state is covered by at most one rule. All of the rule
sets in this paper are assumed to be proper.

Successor State Construction An agent can predict the
effects of executing actiona in states as follows. If nor ∈
R covers(s, a), then, because of the frame assumption, the
successor states′ is taken to be simplys. Given anr, an
outcomeo ∈ rO is selected by sampling fromrP and ground
usingθ. The next state,s′, is constructed by applyingfo(s),
which combineso with those literals ins that are not directly
contradicted byo.

Figure 2 shows an example where the first outcome from
the first rule in Figure 1 predicts that effects ofpickup(B1, B2)
to the state of Equation 1. The states are represented picto-
rially and annotated with only the true literals; all others are
assumed to be false. As the outcome predicts,inhand(B1)
andclear(B2) become true whileon(B1, B2), clear(B1), and
inhand(NIL) become false.

Likelihood Estimation The general probability distribu-
tion P (S′|S, A,R) is defined as follows. If no rule inR
covers(S, A), then this probability is1.0 iff s′ = s. Other-
wise, it is defined as

P (S′|S, A, r) =
∑
o∈rO

P (S′, o|S, A, r)

=
∑
o∈rO

P (S′|o, S, A, r)P (o|S, A, r) (2)

wherer is the covering rule,P (o|S, A, r) is rP (o), and
P (S′|o, S, A, r) is deterministic: it is1.0 iff fo(S) = S′.

We say that an outcomecoversan example(s, a, s′) if
fo(s) = s′. Now, the probability ofS′ is the sum of all the
outcomes inr that cover the transition fromS to S′. No-
tice that a specificS ando uniquely determineS′. This fact
guarantees that, as long asrP is a well-defined distribution,
so isP (S′|S, A, r).

Overlapping Outcomes Notice thatP (S′|S, A, r) is us-
ing the set of outcomes as a hidden variable. This intro-
duces the phenomenon ofoverlapping outcomes. Outcomes
overlap when, given a ruler that covers the initial state and
action(s, a), several of the outcomesrO could be used to
describe the transition to the successor states′. As an exam-
ple, consider a rule for painting blocks,

paint(X) : inhand(X), block(X)

→
{

.8 : painted(X), wet

.2 : no change

When this rule is used to model the transition caused by
the actionpaint(B1) in an initial state that containswet and
painted(B1), there is only one possible successor state: the
one where no change occurs, andpainted(B1) remains true.
Both the outcomes describe this one successor state, and so
we must sum their probabilities to recover that state’s total
probability.

Learning
In this section, we describe how a rule set defining the dis-
tribution P (S′|S, A,R) may be learned from a training set
D = D1 . . . D|D|. Every example(s, a, s′) ∈ D represents
a single action execution in the world, consisting of a previ-
ous states, an actiona, and a successor states′.

The algorithm involves three levels of greedy search: an
outermost level,LearnRules, which searches through the
space of rule sets; a middle level,InduceOutcomeswhich,
given a context and an action, constructs the best set of
outcomes; and an innermost level,LearnParameters, which
learns a distribution over a given set of outcomes. These
three levels are detailed in the next three sections.

Learning Rules
LearnRulesperforms a greedy search in the space of proper
rule sets. We define a rule set as proper with respect to a
data setD as a set of rulesR that includes exactly one rule
that is applicable to every exampleD ∈ D in which some
change occurs, and that does not includes any rules that are
applicable to no examples.

Scoring Rule Sets As it searches,LearnRulesmust judge
which rule sets are the most desirable. This is done with the
help of a scoring metric,S(R) =∑

(s,a,s′)∈D

log(P (s′|s, a,R))− α
∑
r∈R

PEN(r) (3)

which favors rule sets that assign high likelihood to the data
and penalizes rule sets that are overly complex. The com-
plexity of a rulePEN(r) is defined simply as|rC | + |rO|.
The first part of this term penalizes long contexts; the sec-
ond part penalizes for having too many outcomes. We have



chosen this penalty for its simplicity, and also because it
performed no worse than any other penalty term we tested
in informal experiments. The scaling parameterα is set to
0.5 in our experiments, but it could also be set using cross-
validation on a hold-out dataset or some other principled
technique.

Initializing the Search We initialize the search by creat-
ing the most specific rule set: one that contains, for every
unique(s, a) pair in the data, a rule withrC = s andrA = a.
Because the context contains the whole world state, this is
the only rule that could possibly cover the relevant examples,
and so this rule set is guaranteed to be proper.

Search Operators Given a starting point,LearnRulesre-
peatedly finds and applies the operator that will increase the
score of the current rule set the most. There are four types of
search operators available, based on the four basic syntactic
operations used for rule search in inductive logic program-
ming (Lavrǎc & Džeroski, 1994). Each operator selects a
rule r, removes it from the rule set, and creates one or more
new rules, which are then introduced back into the rule set in
a manner that ensures the rule set remains proper. How this
is done for each operator is described below. In each case,
the new rules are created by choosing anrC and anrA and
calling InduceOutcomesto completer.

There are two possible ways to generalize a rule: a lit-
eral can be removed from the context, or a constant can be
replaced with a variable. Given an old rule, the first gener-
alization operator simply shortens the context by one while
keeping the action the same; the second generalization op-
erator picks one of the constant arguments of the action, in-
vents a new variable to replace it, and substitutes that vari-
able for every instance of the original constant both in the
action and the context.1 Both operators then callInduceOut-
comesto complete the new rule, which is added to the set.
At this point, LearnRulesmust ensure that the rule set re-
mains proper. Generalization may increase the number of
examples covered by a rule, and so make some of the other
rules redundant. The new rule replaces these other rules,
removing them from the set. Since this removal can leave
some training examples with no rule, new, maximally spe-
cific rules are created to cover them.

There are also two ways to specialize a rule: a literal can
be added to the context, or a variable can be replaced with a
constant. The first specialization operator picks an atom that
is absent from the old rule’s context. It then constructs two
new enlarged contexts, one containing a positive instance of
this atom, and one containing a negative instance. A rule is
filled in for each of the contexts, with the action remaining
the same. The second specialization operator picks one of
the variable arguments of the action, and creates a new rule
for every possible constant by substituting the constant for
the variable in both the action and the body of the rule, and
calling InduceOutcomesas usual. In either case, the new

1During learning, we always introduce variables aggressively
wherever possible, based on the intuition that if it is important for
any of them to remain a constant, this should become apparent
through the other training examples.

rules are then introduced into the rule set, andLearnRules
must, again, ensure that it remains proper. This time the
only concern is that some of the new rules might cover no
training examples; such rules are left out of the rule set.

All these operators, just like the ILP operators that moti-
vated them (Lavrǎc & Džeroski, 1994), can be used to cre-
ate any possible rule set. There are also other advanced
rule set search operators, such as least general generaliza-
tion (Plotkin, 1970), which might be modified to create op-
erators that allowLearnRulesto search the planning rule set
space more efficiently.

LearnRules’s search strategy has one large drawback; the
set of rules which is learned is only guaranteed to be proper
on the training set and not on testing data. Solving this prob-
lem, possibly with approaches based on relational decision
trees (Blockeel & De Raedt, 1998), is an important area for
future work.

Inducing Outcomes
The effectiveness and efficiency of theLearnRulesalgo-
rithm are limited by those of theInduceOutcomessub-
procedure, which is called every time a new rule is con-
structed. Formally, the problem of inducing outcomes for
a ruler is the problem of finding a set of outcomesrO and
a corresponding set of parametersrP which maximize the
score, ∑

(s,a,s′)∈Dr

log(P (s′|s, a, r))− αPEN(r),

whereDr is the set of examples such thatr covers(s, a).
This score is simplyr’s contribution to the overall rule set
score of Equation 3.

In general, outcome induction is NP-hard (Zettlemoyer,
Pasula, & Kaelbling, 2003).InduceOutcomesuses greedy
search through a restricted subset of possible outcome sets:
those that areproperon the training examples, where an out-
come set is proper if every training example has at least one
outcome that covers it and every outcome covers at least one
training example. Two operators, described below, move
through this space until there are no more immediate moves
that improve the rule score. For each set of outcomes it con-
siders,InduceOutcomescallsLearnParametersto supply the
bestrP it can.

Initializing the Search The initial set of proper outcomes
is created by, for each example, writing down the set of
atoms that changed truth values as a result of the action, and
then creating an outcome to describe every set of changes
observed in this way.

As an example, consider the coins domain. Each coins
world containsn coins, which can be showing either heads
or tails. The actionflip-coupled, which has no context and
no arguments, flips all of the coins to heads half of the time
and otherwise flips them all to tails. A set of training data for
learning outcomes with two coins might look like part (a)
of Figure 3 whereh(C) stands forheads(C), t(C) stands
for ¬heads(C), ands → s′ is part of an(s, a, s′) example
wherea = flip-coupled. Given this data, the initial set of
outcomes has the four entries in part (b) of Figure 3.



D1 = t(c1), h(c2) → h(c1), h(c2)
D2 = h(c1), t(c2) → h(c1), h(c2)
D3 = h(c1), h(c2) → t(c1), t(c2)
D4 = h(c1), h(c2) → h(c1), h(c2)

(a)

O1 = {h(c1)}
O2 = {h(c2)}
O3 = {t(c1), t(c2)}
O4 = {no change}

(b)

Figure 3: (a) Possible training data for learning a set of out-
comes. (b) The initial set of outcomes that would be created
from the data in (a).

Search Operators InduceOutcomesuses two search op-
erators. The first is an add operator, which picks a pair of
non-contradictory outcomes in the set and adds in a new
outcome based on their conjunction. For example, it might
pick O1 andO2 and combine them, adding a new outcome
O5 = {h(c1), h(c2)} to the set. The second is a remove
operator that drops an outcome from the set. Outcomes can
only be dropped if they were overlapping with other out-
comes on every example they cover, otherwise the outcome
set would not remain proper. Sometimes,LearnParameters
will return zero probabilities for some of the outcomes. Such
outcomes are removed from the outcome set, since they con-
tribute nothing to the likelihood, and only add to the com-
plexity. This optimization greatly improves the efficiency of
the search.

In the outcomes of Figure 3,O4 can be immediately
dropped since it covers onlyD4, which is also covered by
bothO1 andO2. If we imagine thatO5 = {h(c1), h(c2)}
has been added with the add operator, thenO1 andO2 could
also be dropped sinceO5 coversD1, D2, andD3. This
would, in fact, lead to the optimal set of outcomes for the
training examples in Figure 3.

Our coins world example has no context and no action.
Handling contexts and actions with constant arguments is
easy, since they simply restrict the set of training examples
the outcomes have to cover. However, when a rule has vari-
ables among its action arguments,InduceOutcomesmust be
able to introduce those variables into the appropriate places
in the outcome set. This variable introduction is achieved by
applying the inverse of the action substitution to each exam-
ple’s set of changes while computing the initial set of out-
comes. So, for example, ifInduceOutcomeswere learning
outcomes for the actionflip(X) that flips a single coin, our
initial outcome set would be{O1 = {h(X)}, O2 = {t(X)},
O3 = {no change}} and search would progress as usual
from there.

Notice that an outcome is always equal to the union of the
set of literals that change in every training example it covers.
This fact ensures that every proper outcome can be made by
merging outcomes from the initial outcome set.InduceOut-
comescan, in theory, find any set of proper outcomes.

Learning Parameters
Given a ruler with a contextrC and a set of outcomesrO,
all that remains to be learned is the distribution over the
outcomes,rP . LearnParameterslearns the distribution that
maximizes the rule score: this will be the distribution that

maximizes the log likelihood of the examplesDr as given
by ∑

(s,a,s′)∈Dr

log(P (s′|s, a, r))

=
∑

(s,a,s′)∈Dr

log

 ∑
{o|D∈Do}

rP (o)

 (4)

whereDo is the set of examples covered by outcomeo.
When every example is covered by a unique outcome, the
problem of minimizingL is relatively simple. Using a La-
grange multiplier to enforce the constraint thatrP must sum
to 1.0, the partial derivative ofL with respect torP (o)
is then |Do|/rP (o) − λ, andλ = |D|, so thatrP (o) =
|Do|/|D|. The parameters can be estimated by calculating
the percentage of the examples that each outcome covers.

However, in general, the rule could have overlapping out-
comes. In this case, the partials would have sums overos
in the denominators and there is no obvious closed-form so-
lution; estimating the maximum likelihood parameters is a
nonlinear programming problem. Fortunately, it is an in-
stance of the well-studied problem of maximizing a convex
function over a probability simplex. Several gradient ascent
algorithms with guaranteed convergence can be found (Bert-
sekas, 1999).LearnParametersuses theconditional gra-
dient method, which works by, at each iteration, moving
along the axis with the maximal partial derivative. The step-
sizes are chosen using the Armijo rule (with the parameters
s = 1.0, β = 0.1, andσ = 0.01.) The search converges
when the improvement inL is very small, less than10−6. If
problems are found where this method converges too slowly,
one of the other methods could be tried.

Experiments
This section describes experiments that demonstrate that the
rule learning algorithm is robust. We first describe our test
domains and then we report the experiments we performed.

Domains
The experiments we performed involve learning rules for the
domains which are briefly described in the following sec-
tions. Please see the technical report by Zettlemoyer et al.
(2003) for a formal definition of these domains.

Coin Flipping In the coin flipping domain,n coins are
flipped using three atomic actions:flip-coupled, which, as
described previously, turns all of the coins to heads half of
the time and to tails the rest of the time;flip-a-coin, which
picks a random coin uniformly and then flips that coin; and
flip-independent, which flips each of the coins independently
of each other. Since the contexts of all these actions are
empty, every rule set contains only a single rule and the
whole problem reduces to outcome induction.

Slippery Gripper The slippery gripper domain, inspired
by the work of Draper et al. (1994), is a blocks world with a
simulated robotic arm, which can be used to move the blocks
around on a table, and a nozzle, which can be used to paint



the blocks. Painting a block might cause the gripper to be-
come wet, which makes it more likely that it will fail to ma-
nipulate the blocks successfully; fortunately, a wet gripper
can be dried.

Trucks and Drivers Trucks and drivers is a logistics do-
main, adapted from the 2002 AIPS international planning
competition (AIPS, 2002), with four types of constants.
There are trucks, drivers, locations, and objects. Trucks,
drivers and objects can all be at any of the locations. The
locations are connected with paths and links. Drivers can
board and exit trucks. They can drive trucks between loca-
tions that are linked. Drivers can also walk, without a truck,
between locations that are connected by paths. Finally, ob-
jects can be loaded and unloaded from trucks.

Most of the actions are simple rules which succeed or fail
to change the world. However, the walk action has an inter-
esting twist. When drivers try to walk from one location to
another, they succeed most of the time, but some of the time
they arrive at a randomly chosen location that is connected
by some path to their origin location.

Inducing Outcomes

Before we investigate learning full rule sets, we consider
how theInduceOutcomessub-procedure performs on some
canonical problems in the coin flipping domain. We do this
to evaluateInduceOutcomesin isolation, and demonstrate
its performance on overlapping outcomes. In order to do
so, a rule was created with an empty context and passed
to InduceOutcomes. Table 1 contrasts the number of out-
comes in the initial outcome set with the number eventually
learned byInduceOutcomes. These experiments used 300
randomly created training examples; this rather large train-
ing set gave the algorithm a chance of observing many of
the possible outcomes, and so ensured that the problem of
finding a smaller, optimal, proper outcome set was difficult.

Givenn coins, the optimal number of outcomes for each
action is well defined.flip-coupledrequires2 outcomes,flip-
a-coinrequires2n, andflip-independentrequires2n. In this
sense,flip-independentis an action that violates our basic
structural assumptions about the world,flip-a-coin is a diffi-
cult problem, andflip-coupledbehaves like the sort of action
we expect to see frequently. The table shows thatInduce-
Outcomescan learn the latter two cases, the ones it was de-
signed for, but that actions where a large number of indepen-
dent changes results in an exponential number of outcomes
are beyond its reach.

Learning Rule Sets

Now that we have seen thatInduceOutcomescan learn rules
that don’t require an exponential number of outcomes, let us
investigate howLearnRulesperforms.

The experiments perform two types of comparisons. The
first shows that propositional rules can be learned more ef-
fectively thanDynamic Bayesian Networks(DBNs), a well-
known propositional representation that has traditionally
been used to learn world dynamics. The second shows that
relational rules outperform propositional ones.

Number of Coins
2 3 4 5 6

flip-coupledinitial 7 15 29.5 50.75 69.75
flip-coupledfinal 2 2 2 2 2
flip-a-coin initial 5 7 9 11 13

flip-a-coinfinal 4 6.25 8 9.75 12
flip-independentinitial 9 25 47.5 - -

flip-independentfinal 5.5 11.25 20 - -

Table 1: The decrease in the number of outcomes found
while inducing outcomes in then-coins world. Results are
averaged over four runs of the algorithm. The blank entries
did not finish running in reasonable amounts of time.

These comparisons are performed for four actions. The
first two, paint and pickup, are from the slippery gripper do-
main while the second two, drive and walk, are from the
trucks and drivers domain. Each action presents different
challenges for learning.Paint is a simple action that has
overlapping outcomes.Pickupis a complex action that must
be represented by more than one planning rule.Drive is a
simple action that has four arguments. Finally,walk is a
complicated action uses the path connectivity of the world
in its noise model for lost pedestrians. The slippery gripper
actions were performed in a world with four blocks. The
trucks and driver actions were performed in a world with
two trucks, two drivers, two objects, and four locations.

All of the experiments use examples,(s, a, s′) ∈ D, gen-
erated by randomly constructing a states, randomly picking
the arguments of the actiona, and then executing the action
in the state to generates′. The distribution used to construct
s is biased to guarantee that, in approximately half of the
examples,a has a chance to change the state: that is, that a
hand-constructed rule applies tos.

Thus, the experiments in this paper ignore the problems
an agent would face if it had to generate data by exploring
the world.

After training on a set of training examplesD, the mod-
els are tested on a set of test examplesE by calculating the
averagevariational distancebetween the true modelP and
an estimatêP ,

V D(P, P̂ ) =
1
|E|

∑
E∈E

|P (E)− P̂ (E)|.

Variational distance is a suitable measure because it favors
similar distributions and is well-defined when a zero prob-
ability event is observed, which can happen when a rule is
learned from sparse data and doesn’t have as many outcomes
as it should.

Comparison to DBNs To compareLearnRulesto DBN
learning, we forbid variable abstraction, thereby forcing
the rule sets to remain propositional during learning. The
BN learning algorithm of Friedman and Goldszmidt (1998),
which uses decision trees to represent its conditional proba-
bility distributions, is compared to this restrictedLearnRules
algorithm in Figure 4.
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Figure 4: Variational distance as a function of the number of training examples for DBNs and propositional rules. The results
are averaged over ten trials of the experiment. The test set size was 300 examples.

Notice that the propositional rules consistently outper-
form DBNs. In the four blocks world DBN learning con-
sistently gets stuck in local optima and never learns a sat-
isfactory model. We ran other experiments in the simpler
two blocks world which showed DBN learning reasonable
(VD<.07) models in 7 out of 10 trials and generalizing bet-
ter than the rules in one trial.

The Advantages of Abstraction The second set of exper-
iments demonstrates that whenLearnRulesis able to use
variable abstraction, it outperforms the propositional ver-
sion. Figure 5 shows that the full version consistently out-
performs the restricted version.

Also, observe that the performance gap grows with the
number of arguments that the action has. This result should
not be particularly surprising. The abstracted representation
is significantly more compact. Since there are fewer rules,
each rule has more training examples and the abstracted rep-
resentation is significantly more robust in the presence of
data sparsity.

We also performed another set of experiments, showing
that relational models can be trained in blocks worlds with
a small number of blocks and tested in much larger worlds.
Figure 6 shows that there is no real increase in test error as
the size of the test world is increased. This is one of the

major attractions of a relational representation.

Discussion The experiments of this section should not be
surprising. Planning rules were designed to efficiently en-
code the dynamics of the worlds used in the experiments. If
they couldn’t outperform more general representations and
learning algorithms, there would be a serious problem.

However, these experiments are still an important valida-
tion thatLearnRulesis a robust algorithm that does leverage
the bias that it was designed for. Because no other algo-
rithms have been designed with this bias, it would be diffi-
cult to demonstrate anything else. Ultimately, the question
of whether this bias is useful will depend on its applicability
in real domains of interest.

Related Work
The problem of learning deterministic action models, which
is closely related to our work, is well-studied. There are
several systems which are, in one way or another, more ad-
vanced than ours. The LIVE system (Shen & Simon, 1989)
learns operators with quantified variables while incremen-
tally exploring the world. The EXPO system (Gil, 1993,
1994) also learns incrementally, and uses special heuristics
to design experiments to test the operators. However, both
of these system assume that the learned models are com-
pletely deterministic and would fail in the presence of noise.
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Figure 5: Variational distance as a function of the number of training examples for propositional and relational rules. The
results are averaged over ten trials of the experiment. The test set size was 400 examples.

The TRAIL system (Benson, 1996) limits its operators to a
slightly-extended version of Horn clauses so that it can ap-
ply ILP learning which is robust to noise. Moreover, TRAIL
models continuous actions and real-valued fluents, which al-
low it to represent the most complex models to date, includ-
ing knowledge used to pilot a realistic flight simulator.

Our search through the space of rule sets,LearnRules, is
a simple extension of these deterministic rule learning tech-
niques. However, ourInduceOutcomesandEstimateParams
algorithms are novel. No previous work has represented the
action effects using a set of alternative outcomes. This is
an important advance since deterministic operators cannot
model even the simplest probabilistic actions, such as flip-
ping a coin. Even in nearly-deterministic domains, actions
can have unlikely effects that are worth modeling explicitly.

Literature on learning probabilistic planning rules is rel-
atively sparse: we know of only one method for learning
operators of this type (Oates & Cohen, 1996). Their rules
are factored and can apply in parallel. However, their rep-
resentation is strictly propositional and it only allows each
rule to contain a single outcome.

Probabilistic world dynamics are commonly repre-
sented using graphical models, such as Bayesian net-
works (BNs) (Friedman & Goldszmidt, 1998), a propo-
sitional representation, and probabilistic relational models
(PRMs) (Getoor, 2001), a relational generalization. How-

ever, these representations do not make any assumptions tai-
lored towards representing action dynamics. In this paper,
we test the usefulness of such assumptions by comparing BN
learning to our propositional rule-learning algorithm. We
would like to have included an comparison to PRM learning
but were unable to because of various technical limitations
of that representation (Zettlemoyer et al., 2003).

Conclusions and Future Work
Our experiments show that biasing representations towards
the structure of the world they will represent significantly
improves learning. The natural next question is: how do we
bias robots so they can learn in the real world?

Planning operators exploit a general principle in modeling
agent-induced change in world dynamics: each action can
only have a few possible outcomes. In the simple examples
in this paper, this assertion was exactly true in the underlying
world. In real worlds, this assertion may not be exactly true,
but it can be a powerful approximation. If we are able to ab-
stract sets of resulting states into a single generic “outcome,”
then we can say, for example, that one outcome of trying to
put a block on top of a stack is that the whole stack falls
over. Although the details of how it falls over can be very
different from instance to instance, the import of its having
fallen over is essentially the same.
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Figure 6: Variational distance of a relational rule set trained in a world four-block world, as a function of the number of blocks
in the worlds on which it was tested. Results are given for three different training set sizes. The testing sets were the same size
as the training sets.

An additional goal in this work is that of operating in ex-
tremely complex domains. In such cases, it is important to
have a representation and a learning algorithm that can op-
erate incrementally, in the sense that it can represent, learn,
and exploit some regularities about the world without having
to capture all of the dynamics at once. This goal originally
contributed to the use of rule-based representations.

A crucial further step is the generalization of these meth-
ods to the partially observable case. Again, we cannot hope
to come up with a general efficient solution for the problem.
Instead, algorithms that leverage world structure should be
able to obtain good approximate models efficiently.
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