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Abstract

What can we infer about the beliefs, the goals and the in-
tended next actions of an agent by observing him acting? We
start from the same intuitive principle as in (Brafman & Ten-
nenholtz 1997), namely, that an agent normally follows some
optimal plan (with respect to some preference relation) and
chooses actions that are part of this plan. This principle al-
lows us to infer beliefs about the agent’s plausible next ac-
tions, about his goals and about his initial and current beliefs.
We give several possible definitions and study their respective
meanings, especially with respect to the assumptions about
the acting agent’s rationality.

Introduction
Understanding the mental state of an agent (his goals, his be-
liefs) and being able to predict his future actions is a crucial
issue in many situations, from cooperative problem solving
to man-machine interaction. In this article we start from a
similar perspective as in (Brafman & Tennenholtz 1997),
who interpret an agent’s actions by ascribing him a men-
tal state (beliefs and goals), using the decision-theoretic as-
sumption that agents follow optimal plans (in a given sense
to be defined); this mental state can then be used to predict
the actor’s next actions. We then depart from (Brafman &
Tennenholtz 1997), whose level of generality is very high,
and study mental state ascription and action prediction in
a much more specific case where agents are goal-seeking
(i.e., they have binary preferences) and their decision strat-
egy merely consists in choosing a nondominated plan in the
set of solution plans according to a given preference relation
over plans (this difference in the level of generality allows
us to focus on different problems).

To state things more precisely, we consider two rational
agents: the first one, called the observer (to make things
simpler, the observer will often be referred to as we, that
is, we put ourselves in the observer’s place), observes the
behaviour of the second one, called the actor, without in-
terfering with him. We assume furthermore, so as to avoid
considering strategic interactions, that the actor is indiffer-
ent to the observer (and vice versa), so his behaviour is not
influenced by the fact that he is observed. We can assume, to
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make these questions irrelevant, that the actor does not know
he is observed. Observing the actor performing a subplan
allows us to infer some plausible beliefs about his goals, in-
tended next actions, and beliefs (the latter in the case where
he may have an incomplete knowledge of the environment).

This paper studies several different ways of inferring such
beliefs, compares them and discusses their meaning. To
make the presentation simpler, we first consider the simpler
case where the actor has complete knowledge of the envi-
ronment; in this case, inference bears on goals and intended
actions (not on beliefs). Then we extend the framework to
the incomplete knowledge case, and conclude by pointing to
related work and further issues.

The complete knowledge case
Domains and contexts
In this part, the environment is completely known by the ac-
tor (and the observer is aware of that): he knows the state
of the world at each step and actions are deterministic. To
make things simple, the observer is also assumed to have
a complete knowledge of the environment (relaxing this as-
sumption would lead to interesting issues where the observer
learns some properties of the environment by observing the
agent, but this is left for further study). Therefore, two types
of information may be ignored or ill-known by the observer:

• the actor’s goals;

• his intended future actions, i.e., the continuation of his
plan.

We start by fixing the domain and its dynamics are fixed
(which are perfectly known by the actor and the observer).

Definition 1 (domains and plans)
• a domain D is composed of

– a finite set of states S;
– a finite set of actions ACT = {α1, . . . , αn}, contain-

ing the void action λACT ; their dynamics is described
by means of a transition function next : S × A → S,
where next(s, α) is the successor state of s when ac-
tion α has been performed (for the sake of simplicity,
we do not consider the case where actions can be in-
executable in some states). The dynamics of the void
action λACT is described by next(s, λACT ) = s for
all s.



• a plan π is a finite sequence (possibly empty) of actions,
that is, a member of ACT ∗:

π = 〈π(t) | 0 ≤ t ≤ T 〉

π; π′ denotes the concatenation of π and π′. λ is the
empty plan. The function next is extended in the usual
way to plans by next(s, (α; π)) = next(next(s, α), π).

• A plan πdone starts a plan π if and only if there exists
π′ ∈ ACT∗ such that π = πdone; π

′.
• Develop(πdone) = {π ∈ ACT ∗ | πdone starts π} is the

set of plans starting by πdone (called the developments of
πdone).

Definition 2 (contexts)

• Given a fixed domain D, a context over D is a triple

C = 〈s0, g, πdone〉

where s0 ∈ S is the initial state of the world, g ⊆ S is
the actor’s set of goal states, and πdone ∈ ACT ∗ is the
partial plan already performed by the actor.

• π ∈ ACT ∗ is a solution plan for C if and only if
next(s0, π) ∈ g. SolP lans(C) denotes the set of so-
lution plans for C.

Saying that the goal of the actor is g means that he wants
to reach whatever state of g (the goal is satisfied as soon as
this is realized) – the goal does not consist in reaching all
states of g in sequence.

For the sake of simplicity, we chose to define goals as a
crisp (all-or-nothing) notion. A more general model would
consist in considering an ordering relation or a utility func-
tion on states, rather than a simple partition between goal
states and non-goal states. However, as developed in the
following Section, noncrisp preference will bear on plans
(rather on states).

Preference between plans
Decision theory views action selection as a maximization
process: agents choose actions that are non-dominated with
respect to some preference relation. Accordingly, we as-
sume that solution plans are ordered by a preference rela-
tion.

Notice however that while the usual assumption in clas-
sical decision theory is that the preference relation underly-
ing the choices of a rational agent are not only transitive but
complete, we do not commit to the completeness assump-
tion here and thus allow for incomparabilities between plans.
There are two possible possible interpretations of incompa-
rability: the first one is a (partial) ignorance of the actor
about his true preferences, which may be explained by the
fact that his limited resources do not let him enough deliber-
ation time to decide which one of both plans he prefers; the
second interpretation is a (partial) ignorance of the observer
about the actor’s preferences. Both interpretations will be
discussed further in the Section “Relevance of an action in a
context”.

Definition 3 (preference relations) A preference relation
� is a reflexive and transitive relation (not necessarily com-
plete). By convention, π � π′ means that π is at least as

good as π′. � is the strict preference relation induced by �
: π � π′ if and only if π � π′ and not (π′ � π′). Given
a set of plans P , π ∈ P is non-dominated in P w.r.t. � if
and only if there is no π′ ∈ P such that π′ � π. Max�(P )
denotes the set of non-dominated plans in P w.r.t. � .

Given a goal g and a preference relation �, we define
a preferred plan as an non-dominated solution plan, that
is, π is preferred if and only if π is non-dominated in
SolP lans(C).

Since, for the sake of simplicity, goals have been defined
as an all-or-nothing notion, we assume that the actor prefers
any solution plan to any non-solution plan (if the actor’s
preferences were described more generally by a utility func-
tion over S, as in (Brafman & Tennenholtz 1997), ≥ would
have to be defined accordingly).

Among the many possible choice of preference relation,
we give a few (that are representative of broader classes).

• for all π, π′, π �b π′ is false (basic preference).

• for all π, π′, π �c π′ if and only if |π| ≤ |π′|;

• for all π, π′, π �o π′ if and only if ∀α ∈ ACT ,
occ(α, π) ≤ occ(α, π′), where occ(α, π) is the number
of occurrences of α in π ;

• for all π, π′, π �i π′ if and only if there is a function
σ : {1, . . . , |π|} → {1, . . . , |π′|}, strictly increasing (for
all i, σ(i + 1) > σ(i)) such that π(i) = π′(σ(i)).

Theferore:

• preferred plans w.r.t. �b are all solution plans; one in-
terpretation of �b is that we do not have any idea of the
actor’s preference between solution plans.

• preferred plans w.r.t. �c are shortest solution plans (this
preference relation can be generalized in a straightforward
way to plans of minimal cost, where a positive cost is as-
sociated with each action);

• preferred plans w.r.t. �i are those which do not con-
tain useless or redundant actions: indeed, π �i π′ iff
π′ contains all actions of π in the same order, plus at
least another action. �o is an intermediate between �i

and �c. For instance, π = 〈a, b, a, c〉 is preferred to
π′ = 〈b, a, c, b, b, a, c〉, while π = 〈a, b, a, c〉 and π′ =
〈a, a, b, b, c, c〉 are incomparable.

• preferred plans w.r.t. � 0 are those minimizing the num-
ber of action occurrences action by action.

Notice that �i and �o are generally not complete. One
easily checks that the following implications hold:

π �i π′ ⇒ π �o π′ ⇒ π �c π′

π �i π′ ⇒ π �o π′ ⇒ π �c π′

Other preference relations could be defined. In particular,
we may know some partial preferences between actions
(or action sequences) ceteris paribus: for instance, saying
that ceteris paribus, the actor prefers action a to action b
means that any two plans π and π′ such that π = π1; a; π2

and π′ = π1; b; π2 are such that π1 � π2. This resembles
the ceteris paribus interpretation of goals as in (Doyle
& Wellman 1991), with the noticeable difference that



Table 1: Synthesis of results for Example 1

R-relevance R-relevance U-relevance U-relevance
situation goal s0 πdone �c �i �c �i

1 G A λ D C, D, F D C, D, F
2 G A go to D G A, C, G G G
3 E A go to F A A, H none H
4 G A go to B A A none none
5 G A go to D; go to C D, E D, E none none

preference here bears on action sequences (in which the
order counts) and not on static goals. Notice that the �i

preference relation is actually a particular case of ceteris
paribus preference relation between plans induced by the
constraints λACT � a for each action a 6= λACT .

We now define two notions of non-dominated plans given
a context, which will be crucial for the rest of the article.

Definition 4 Let C be a context over a domain D.

relativized non-dominance
PrefR(C,�)

= Max�(SolP lans(C) ∩ Develop(πdone))

unrelativized non-dominance
PrefU (C,�)

= Max�(SolP lans(C)) ∩ Develop(πdone)

Therefore, relativized non-dominated plans for C (w.r.t.
� ) are non-dominated solution plans among the develop-
ments of πdone while unrelativized non-dominated plans are
non-dominated solution plans that start by πdone. Obvi-
ously, we have PrefU (C,�) ⊆ PrefR(C,�), that is, the
“unrelativized” notion filters out more plans than the “rela-
tivized” one.

Relevant actions in a context
Intuitively, an action is a plausible (or relevant) in a con-
text C w.r.t. a preference relation �, if there exists a non-
dominated solution plan starting by πdone and whose action
following πdone is α. When the actor’s set of goal states
is known, relevant actions can be identified with the actor’s
plausible next actions in the given context. Now, the two no-
tions of non-dominance induce two notions of relevance.

Definition 5 (relevance)
An action α is R-relevant (resp. U-relevant) in C w.r.t. �
if and only if there exists a solution plan π in PrefR(C,�)
(resp. in PrefU (C,�)) such that πdone; α starts π .
For any context C and any preference relation �, let
Rel

�
R(C) and Rel

�
U (C) be the set of R- (resp. U-) relevant

actions in C for �.

Since there are generally several (R- or U-) non-
dominated plans for a context, there may be several (R- or
U-) relevant actions for C w.r.t. � . There may also be no
(R- or U-) relevant action for C w.r.t. � , since there may be
no solution plan starting by πdone .

Before investigating the meaning of both definitions, let
us see how they work on an example.

Example 1 Consider the following non-oriented graph. We
assume that the actor wants to reach a single node of the
graph (the goal is therefore a singleton) and that he has
complete and accurate knowledge of the graph and of his
current position.

A

B

G

C

D

IF H

A

E

We consider several different situations. In all of them we
let S= {A, . . . , I} and A= { go to A, . . ., go to I}1.

Situation 1 g = {G} and πdone = λ
(the actor has not started to move from A).
• the unique shortest plan from A to G being ADG, only

the action go to D is (both U- and R-) relevant in this
context w.r.t. �c;

• going to C, to D, or to F are (both U- and R-) relevant
w.r.t. �i, because the solution plans ACEG, ADG
and AFHIG are all nondominated;

• any action is relevant w.r.t. �b, since after performing
any action, it is still possible to reach G. Notice that
if the graph were oriented and if there were an extra
node sink in the graph, accessible from A and such
that no other node than sink is accessible from sink,
then going to sink would not be relevant for �b.

Situation 2 g = {G} and πdone = go to D
In this context, go to G is both the only R-relevant and
the only U-relevant action w.r.t. �c. W.r.t. �i, going to G
is still the only U-relevant action, since among the three
�i-nondominated plans leading from A to G, only ADG
starts by going to D, and the next action in this plan is
going to G2. However, R-relevance gives three relevant
actions: G, but also C and even going back to A, since

1An alternative choice would consist in distinguishing two ac-
tions with the same destination but different origins. This would
lead to different results when �i or �o is used.

2Notice that, if instead of considering that the set of actions
is goto A, goto B, etc., we consider going to a same node from
two different nodes as two separate actions – i.e., that there is one
action for each edge of the graph (go from A to B, etc.), then there
would be a fourth nondominated plan leading from A to G, namely



ADAFHIG is undominated in the set of solution plans
starting by AD.

Situation 3 g = {E} and πdone = go to F .
W.r.t. �i, going to H is the only R-relevant action while
going to back to A is U-relevant as well (for similar rea-
sons as above). As for �c, the only U-relevant action is
going back to A, since once the actor is in F , the shortest
plan to reach E is AFACE; since this plan is dominated
(by ACE) in the set of all solution plans, there is no R-
relevant action in this context.

Situation 4 g = {G} and πdone = go to B.
The only G-relevant action w.r.t. �i or �c is going back
to A; there is no R-relevant action w.r.t. �i nor �c.

The results are synthesized in Table 1.

We now give intuitive explanations about how relevance
works; by default, the case chosen for illustration is situation
3, that is, g = {E} and πdone = go to F .

Let us start by the difference between �i and �c; even
if other preference relations could have been chosen, com-
paring these two “typical” preference relations is interesting
as such. Choosing �c means that the actor prefers shorter
plans and that he is rational enough to find them. There are
at least two interpretations for �i: it may mean that the actor
is perfectly rational but that he has no preference for shorter
plans; or it may mean that although he prefers shorter plans,
his limited rationality implies that he does not always find
them.

The latter interpretation would be even better modelled
with a sophisticated preference relation integrating plan
length (or cost) and inclusion, thus intermediate between �i

and �c. Here is one, where 0 < ρ < 1 is fixed.

π � π′ if and only if π �i π′ or |π|
|π′| ≤ ρ

Note that fixing ρ = 0 leads back to �i, whereas fixing
ρ = 1 leads back to �c. We do not pursue this here in this
paper.

There exists a third possible interpretation of �i: edges
have costs, the actor prefers plans of minimal cost, but we
do not know these costs – we only know that they are strictly
positive. This interpretation explains why we may consider
more plausible next actions with �i than with �c: since we
know less about the agent’s state of mind, more possibil-
ities must be considered as to his future behaviour. This
ignorance becomes maximal with �b; accordingly, any ac-
tion which does not make the goal unreachable is consid-
ered(both R- and U-) relevant with �b.

Let us now explain the difference between relativized
and unrelativized relevance. The assumption underlying R-
relevance is that the actor may deliberate during plan exe-
cution, which in some cases allows him to discover that his
previously intended plan was suboptimal, as when he first
goes to F : with �c, we believe that he will discover his mis-
take and then go back to A. On the contrary, U-relevance
assumes that the deliberation phase and the acting phase are
totally disjoint: once the actor has started to execute his plan,

ADCEG, and in this case going to C would be both R-relevant
and U-relevant for �i.

he sticks to it without questioning it. This difference ap-
pears clearly with �i: R-relevance allows for the actor to
go back to A, which is not suboptimal given that he has al-
ready moved to F , while U-relevance excludes A: the actor
initially chose AFHIGE as his intended plan (her intended
plan cannot be AFACE nor AFADGE, which are domi-
nated respectively by ACE and ADGE in the set of all so-
lution plans), and he will stick to it and go to H . Lastly, with
�c, no action is U-relevant because (a) we assumed that the
actor was rational enough to compute the best plan(s) and (b)
we realize that he does not follow any of these. This is even
clearer when the goal is G and πdone = go to B: w.r.t.
both �c and �i, we refuse to consider the subplan πdone,
because it does not start any optimal plan (we therefore give
up and conclude that the agent is not rational, and are not
willing to predict anything).

Relativized relevance shows a nonmonotonic behaviour,
in the sense that later actions may lead us to reconsider the
agent’s followed plan, as with �c when the goal is H : be-
fore the actor starts to move (πdone = λ), we expect him to
go to F because we believe his intended plan to be AFH ;
we revise this after observing him go to D and then to G,
and we now expect him to go to next to I . On the contrary,
unrelativized relevance is truly monotonic, because the set
of plans we consider to be possible intended plans shrinks
(until becoming eventually empty in some cases) as we ob-
serve more actions. Looking back to the example, it seems
that U-relevance gives results that are more intuitive, but its
drawback is that it may give empty sets of plausible actions
while R-relevance does give some intended answers. We
may thus think in using U-relevance except in this case, in
which we use R-relevance:

Rel
�
UR(C) =

{

Rel
�
U (C) if Rel

�
U (C) 6= ∅;

Rel
�
R(C) otherwise

The following properties help to better understand how
the notions work.

Proposition 1

1. for any C and any �, Rel
�
U (C) ⊆ Rel

�
R(C);

2. for any C and any �, Rel
�
R(C) = ∅ if and only if there

is no plan leading from next(s0, πdone) to g (notice that
this property does not hold for R-relevance);

3. if �1 and �2 are such that for any π, π′, π �2 π′ implies
π �1 π′, then for any C, Rel

�1

R (C) ⊆ Rel
�2

R (C) and
Rel

�1

U (C) ⊆ Rel
�2

U (C).

This may be summarized by the following inclusion
graph, when edges represent inclusion. Note that generally,
Rel

�1

R (C) and Rel
�2

U (C) are incomparable.

Rel
�1

R (C) → Rel
�2

R (C)
↑ ↑

Rel
�1

U (C) → Rel
�2

U (C)

Corollary 1 For any X ∈ {G, R} and any context C, we
have

Rel
�c

X (C) ⊆ Rel
�i

X (C) ⊆ Rel
�o

X (C) ⊆ Rel
�b

X (C)



Unsurprisingly, more plausible inferences are allowed
with �c than with �i and with �i than with �b: indeed,
the assumption that the actor always follows shortest plans
amounts to assuming that he has a perfect rationality (be-
cause he never fails finding these shortest plans). Choosing
one of the other preference relations amounts to assuming
that the actor has a limited rationality (more and more
limited as we tend towards �b). The extreme case would
be that of an irrational agent for whom all actions would be
considered as relevant, even those which prevent him for
reaching his goal. �i is particularly interesting: by elimi-
nating plans containing obvious redundancies or obviously
useless actions but not all suboptimal plans, we ascribe to
the actor a reasonably good, but limited rationality: he may
fail to find a shortest plan, but he is rational enough so as to
avoid performing a “nonsensical” plan. Therefore, choosing
a preference relation and a notion or relevance (relativized
or unrelativized) both involve implicit assumptions about
the rationality of the actor: perfect if we choose �c, more
limited with �o and with �i, and extremely limited with �b.

When we (the observer) know the goal of the actor, we
can reasonably identify the plausible next actions and the
relevant actions for C w.r.t. � ; thus, both notions of rele-
vance allow for plausible inferences (more cautious with the
unrelativized notion of relevance than with the relativized
one) about the actor’s intended actions. The next Section
investigates the case where the actor’s goal is only partially
known by the observer.

Inferring plausible goals
We assume now that the actor’s goal is ill-known (pos-
sibly totally unknown) by the observer. Let πdone =
〈πdone(0), πdone(now − 1), where now = |πdone|. The last
action of πdone, denoted by last(πdone), is πdone(now−1).
For any integer t ≤ now we note Restr(πdone, t) the plan
consisting of the t first actions of πdone, that is,

Restr(πdone, t) = 〈πdone(0), πdone(t − 1)〉

An objective context OC is a context in which, instead
of the goal, we have a set of possible goals Γ (that is, a set
of nonempty sets of states) expressing a partial knowledge
of the actor’s goal: OC = 〈s0, Γ, πdone〉. Objective con-
texts differ from (intentional) contexts as defined in the pre-
vious Section; the terminology “objective” is based on the
assumption the state and steps taken are visible to observers
but the goal is not. In this Section, to avoid any ambiguity,
we refer to contexts as defined in the previous Section, that
is, triples 〈s0, g, πdone〉 as intentional contexts.

In Example 1, if all the observer knows is that the actor
wants to reach a single node, then Γ is the set of all sin-
gletons. In practice, Γ may be compactly described by a
propositional formula.

If OC is an objective context and g ∈ Γ, then we define
the intentional context PC + g = 〈s0, g, πdone〉. The pre-
vious notions of relevance can be used to make plausible
inferences about the actor’s goal. A first definition consists
in saying that a set of states g is a plausible goal if and only if

any action performed until now is relevant for the intentional
context corresponding to s0, πdone and g.

Definition 6 g is a R-plausible (respectively U-plausible)
goal given an objective context OC = 〈s0, Γ, πdone〉 (w.r.t.
�) if and only if the following two conditions are satisfied:

1. g ∈ Γ;
2. for any t ∈ {0, . . . , now − 1}, the action πdone(t)

performed by the actor at time t is R-relevant
(respectively U-relevant) for the intentional context
〈s0, g, Restr(πdone, t)〉 (w.r.t. �).

Let GoalsR(OC,�) (resp. GoalsU (OC,�)) be the set of
R-plausible (respectively U-plausible) goals for OC w.r.t.
�.

Since the two notions of relevance are different, we may
expect that the definitions of R-plausible and U-plausible
goals are radically different. Somewhat unexpectedly how-
ever, even if the two notions of relevance differ, R-plausible
and U-plausible coincide when � is a complete preference
relation:

Proposition 2 If � is complete then GoalsR(OC,�) =
GoalsU (OC,�)).

In the general case, we only have

GoalsU (PC,�) ⊆ GoalsR(PC,�)

Moreover, if �2 ⊆�1 then GoalsU (OC,�1) =
GoalsR(OC,�2).

The following result gives an intuitive equivalent formu-
lation for U-plausible goals:

Proposition 3 g ∈ Γ is an U-plausible goal given OC
(w.r.t. �) if and only if there exists a plan π ∈
SolP lans(OC + g) ∩ Develop(πdone) such that there is
no plan π′ ∈ SolP lans(OC + g) verifying π′ > π.

Thus, g is U-plausible iff there is a non-dominated plan for
g starting by πdone. It may be the case that there exists
no R- or U-plausible goal for a given partial context (see
for instance Example 1 when the plan already performed
consists in going from A to D and then to C). This happens
in particular when the actor has a suboptimal behaviour
with respect to the chosen preference relation (i.e., when his
rationality is more limited then we expected).

These definitions are strong, since they do not consider
“nearly” optimal plans for g; but on the other hand, this
avoids introducing complications the technicities of which
we would like to avoid in this paper (and moreover, the
assumption that the rationality of the actor is limited is
already expressed by the choice of the preference relation).
We just sketch here the principle of the solution. Clearly,
the notion of plausible goal has to become a relative
notion, i.e., a relation “is at least plausible as a goal as
(given OC)” over 2S \ ∅. However, so as to derive such
a relation, a simple preference relation � on plans is not
enough: one has to consider a preference relation on pairs
(plan, goal) – (π, g) preferred to (π′, g′) meaning that π



Table 2: Synthesis of results for Example 2

R/U-plausible R-plausible U-plausible weakly R-plausible weakly R-plausible
πdone �c �i �i �c �i

A → D D, G, I D, E, F, G, H, I D, E, F, G, H, I D, G, I D, G, I
A → D → C none E none C, E C, E
A → B → A none none none anything except B anything except B

is more relevant with respect to reaching g than π′ with
respect to reaching g′. For instance, in the case where
preference between plans is measurable, i.e., there is a cost
function K : ACT ∗ → IR+ such that π � π′ if and only if
K(π) ≤ K(π′) (which the case with �c for K(π) = |π|),
then we may adopt the following definition: let π∗(g)
a solution plan for g preferred w.r.t. �, then we define
Q(π, g) = K(π)

K(π∗(g)) (with the convention 0
0 = 1 and for all

x > 0, x
0 = +∞); then, R(g, C) = min{Q(π, g) | π ∈

SolP lans(C) ∪ Develop(πdone)} and lastly: g is at least
a plausible goal as g′ (given C and w.r.t. �) if and only if
R(g, C) ≤ R(g′, C). This direction will not be explored
further in this paper.

We now introduce a third, weaker notion of plausible
goals, based only on the last action performed by the actor.

Definition 7 g is a weakly R-plausible goal given OC =
〈s0, Γ, πdone〉 (w.r.t. �) if and only if the following two con-
ditions are satisfied:

1. g ∈ Γ;
2. the last action last(πdone) = πdone(now − 1) performed

by the actor is R-relevant for 〈s0, g, Restr(πdone, now −
1)〉 (w.r.t. �).

Let GoalsWG(OC,�) be the set of wealy R-plausible goals
for PC w.r.t. �.

One might wonder why we did not introduce weak U-
plausible goals. The reason is simple: applying the latter
definition using U-relevance instead of R-relevance would
lead to a notion of weak U-plausible goals equivalent to the
(strong) notion of U-plausible goals (this is easy to check).

Example 2 Let us consider again the graph of Example 1.
Let Γ = { {A}, {B}, . . . , {I} } (all we know is that the
actor wants to reach a single node).
Situation 5 s0 = A and πdone = go to D.

For �c, the R-plausible (and U-plausible since �c is com-
plete) goals are {D}, {G} and {I}. These are also
the only weakly R-plausible goals. We also infer plausi-
ble next actions conditioned by the goal, using relevance
again: for instance, if the goal is {D} (resp. {I}) then
we expect the actor to stop (resp. to go to G). For �i,
three other goals are R- and U-plausible, namely {E},
{F} and {H}.

Situation 6 s0 = A and πdone = go to D; go to C.
There is no U-plausible goal for neither for �i nor for �c

(therefore, no R-plausible goal for �c either). {E} is R-
plausible for �i. {C} and {E} are weakly plausible for
�c and �i.

Situation 7 s0 = A and πdone = go to B; go to A.
There is no U-plausible nor any R-plausible goal for �c

and �i, while any goal except {B} is weakly plausible
for �c and �i. If we choose �c then three subsets of S
are (R/U)-plausible goals: {E}, {F}, {E, F}. We also
derive that if the goal is {E} or {E, F} then the actor
intends to stop, and that is the goal is {F} then he in-
tends to go to F . Now, if we choose �i then any subset of
{C, D, E, F, G} is a R-plausible goal.

The results are synthesized in Table 2.

Inference of (strong) R- and U-plausible goals is mono-
tonic: with each new action performed by the actor, the set
of his plausible goals gets no larger (until possibly becom-
ing empty). Thus, with �c: any goal is initially plausible,
after observing the actor going to D, the plausible goals are
{D}, {G}, {I}, and the set of plausible goals eventually be-
comes empty after further observing the actor go to D. On
the contrary, inference of weak R-plausible goals is nonmo-
motonic: when, still with �c, {D}, {G} and {I} (but not
{C} nor {E}) are weakly R-plausible after πdone = go to
D; when the actor is then seen to go to C, then {C} and
{E} become weakly R-plausible.

If � is complete, a property of (R/U)-plausible goal infer-
ence is that the set of plausible goals for a given context is
closed for set union:

Proposition 4 Let � be a complete preference relation (i.e.,
for any π, π′, either π � π′ or π′ � π) and g1 ⊆ S, g2 ⊆ S
two (R/U)-plausible goals for a given objective context OC
w.r.t. �. Then g1 ∪ g2 is a (R/U)- plausible goal for OC
w.r.t. �.

Therefore, if � is complete, the set of plausible goals for
a given context can be expressed as the set of all unions of
a set of elementary goals. This property does not hold if �
is not complete. Here is a counterexample: S = {a, b, c, d},
A = {α, β, γ}, and next is described on Table .

α β γ
a b d c
b b c d
c c c c
d d d d

Let �=�i, s0 = a, πdone = α. {c} is U-plausible, since
α; β ∈ Pref(�i, SolP lans({c})). {d} is U-plausible,
since α; γ ∈ Pref(�i, SolP lans({d})). But {c, d} is
not U-plausible, because Pref(�i, SolP lans({c, d})) =
{β, γ} and therefore contains no plan starting by α.



Another property that does not hold, even if � is com-
plete, is

g1 plausible and g2 ⊇ g1 ⇒ g2 plausible

A counterexample is given using S, A and next as just
above, �=�c, πdone = α: {b} is a R/U-plausible but not
{a, b}. Obviously, the property does not hold either if we
replace g2 ⊇ g1 by g2 ⊆ g1 in the latter expression.

The incomplete knowledge case
We no longer assume that the actor has complete knowledge
of the current state of the world; however, for the sake of
simplicity and without loss of generality (see (Brafman &
Tennenholtz 1997)), we still assume that actions are still de-
terministic. A context is now a triple C = 〈b0, g, πdone〉
where b0 is the initial belief state of the actor about the state
of the world. We define a belief state as a nonempty subset
of states: the set of belief states is B = 2S \{∅}. (Notice that
the rest of this Section could be rewritten so as to fit a quan-
titative view of incomplete knowledge, consisting typically
in defining belief states as probability distributions. We omit
it for keeping the exposition simple.)

For the sake of simplicity, we also assume that the actor’s
beliefs are accurate (that is, they can be incomplete but never
wrong.) In addition to physical actions meant to have effects
on the state of the world, the actor may also perform sensing
actions so as to gather more knowledge on the state of the
world, and he incorporates observations in his belief state by
belief expansion. More generally, if the actor’s beliefs were
not accurate, he would have to perform a belief revision step;
see (Brafman & Tennenholtz 1997) for a discussion.

To make the exposition simpler, we assume that (a) sens-
ing actions are “pure”, that is, they do not change the state
of the world, and (b) the only sensing actions considered are
binary tests: test(ϕ) returns the truth value of the propo-
sitional formula ϕ describing some property of the current
state of the world. Because of the feedback given by sensing
actions, plans are now conditional.

In the following, we let ACT = ACTP ∪ ACTS , where
ACTP (resp. ACTS) is the set of physical (resp. sensing)
actions available to the actor.

The set CondP lans(ACT ) of conditional plans for a set
of actions ACT is defined recursively by:

• λ is in CondP lans(ACT );

• for any action α ∈ ACTP , α is in CondP lans(ACT );

• for any π , π′ in CondP lans(ACT ), π; π′ is in
CondP lans(ACT );

• for any sensing action α = test(ϕ) and for all π , π′ in
CondP lans(ACT ), the plan α ; if ϕ then π else π′

] is in CondP lans(ACT ).

The plan πdone already performed by the actor is merely
the sequence of actions performed so far, plus the obser-
vation collected after each sensing action; we do not have
to consider the other branches leaving from nodes corre-
sponding to sensing actions, since the plan has already
been performed: πdone is therefore unconditional. π ∈
CondP lans(ACT ) is a solution plan (in the strong sense)

for C if and only if all possible executions of π lead to a
state of g. We now have to extend the notion of a plan start-
ing another plan. Let πdone be an unconditional plan and π
a conditional plan. We say that πdone starts π if and only if
at least one if these conditions is satisfied:

1. πdone = λ;

2. πdone = (α; π′), π = (α; π′′), and π′ starts π′′;

3. πdone = (test(ϕ); π′),
π = (test(ϕ); if ϕ then π1 else π2),
and π′ starts either π1 or π2.
Preference relations between plans are generalizations of

the preference relations given in the complete knowledge
case. �b does not have to be reformulated. �c can be gen-
eralized in (at least) two ways: by comparing the lengths of
their respective longest branches of the plans, or by compar-
ing their average length (assuming equiprobability of initial
states):

• π �mcb π′ if and only if the longest branch of π is no
longer than the longest branch of π′ .

• π �al π′ if and only if L(π) ≤ L(π′), where the average
length L(π) of a plan π is defined as follows3:

– L(λ) = 0;
– if α ∈ ACTP : L(α; π′) = 1 + l(π′);
– L(test(ϕ); if ϕ then π′ else π′′) = 1+ 1

2L(π′) +
1
2 .L(π′′).

As to �i it can be generalized into �ig, where π �ig π′ if
and only if one of the following five conditions is satisfied:

1. π = λ;

2. π = α; π1, π′ = α; π2, and π1 �ig π2;

3. π′ = α; π′′ and π �ig π′′;

4. π = (test(ϕ); if ϕ then π1 else π2)
and π′ ∈ {π1, π2};

5. π = (test(ϕ); if ϕ then π1 else π2),
π′ = (test(ϕ); if ϕ then π′

1 else π′
2),

where π1 �ig π′
1 and π2 �ig π′

2.

Notice that �lm and �lb are complete, but not �ig . TWe
have the following implications

π �ig π′ ⇒ π �al π′

π �ig π′ ⇒ π �lb π′

(but �al and �lb are generally incomparable). Furthermore,
the restriction of �al and �lb to unconditional plans is equal
to �c, while the restriction of �ig is �i.

We now have to show how we draw plausible inferences
on the actor’s initial beliefs, goals and/or next actions. The
principle is the same as in the complete knowledge case.
We give here only the definition based on U-relevance (ex-
pressed in a form similar as in Proposition 3): given πdone,
b0 a belief state and g ∈ Γ, (b0, g) is U-plausible for πdone

w.r.t. � if and only if there exists a �-undominated solution
plan for C = 〈b0, g, πdone〉 starting by πdone.

3This definition implicitly assumes that the test outcomes are
equiprobable, which may look somewhat arbitrary.



Example 3 Let x and y be two propositional
variables, S the set of interpretations on {x, y},
ACT = {test(y), test(x ∧ y), switch(x), switch(y)}
where switch(x) (resp. switch(x)) is an action switching
the truth value of x (resp. y). Goals are expressed by logical
formulas: saying that the goal is ϕ means that the goals
states are the interpretations satisfying ϕ (for instance, we
write g = x instead of g = Mod(x) = {(x, y), (x,¬y)}).
We let �=�ig.

1. πdone = switch(y), g = x, actor’s beliefs unknown.
The plausible initial belief states are b0 = ¬y and b0 =
(x ↔ ¬y). In both cases, the R- and U-plausible next
action is test(x ∧ y).

2. πdone = test(y); [obs(y)]; switch(x); goal and initial
belief state unknown.
There are five plausible initial belief states, each of which
associated wit a set of plausible goals as seen on the fol-
lowing table. Plausible next actions do not figure on the
table.

b0 possible values of g
x ¬x ∧ y
¬x x ∧ y

x ∨ ¬y ¬x;¬x ∧ ¬y;¬x ∧ y
¬x ∨ ¬y x; x ∧ ¬y; x ∧ y; x ↔ y
x ↔ y ¬x;¬x ∧ y;¬x ∧ ¬y

x ↔ ¬y x; x ∧ y; x ∧ ¬y

3. πdone = test(b), g = a, initial belief unknown. The plau-
sible initial belief states are a∨b, ¬a∨b, a∨¬b, ¬a∨¬b,
a ↔ b, a ↔ ¬b and > (tautology).

4. πdone = test(a ∧ b), g = a, initial belief unknown. The
plausible initial belief states are b, a ∨ b, ¬a ∨ b, a ∨ ¬b,
a ↔ b and > (tautology).

Related work
Action prediction
The most related approach is (Brafman & Tennenholtz
1997), from which we borrowed the intuitive principle for
drawing plausible inference. Our article could be consid-
ered as the study of a specific case of (Brafman & Tennen-
holtz 1997); being more specific allows us for discussing de-
tails that were irrelevant to (Brafman & Tennenholtz 1997)
because of it high level of generality. Note that, although
(Brafman & Tennenholtz 1997) does not explicitly discuss
the ascription of goals, they can do it easily in their frame-
work – see Section 2.3 of (Brafman & Tennenholtz 1997).
Thus, in our simpler framework in which we do not consider
utility functions over states, nor consider decisions strategies
from qualitative decision theory, we were able to focus on
the precise way of defining plausible goals, belief and next
actions, and study their meaning especially with respect to
our assumptions on the actor’s level of rationality.

Other approaches to action prediction can be found, such
as (Davison & Hirsh 1998; Gorniak & Poole 2000), but un-
like (Brafman & Tennenholtz 1997) and our approach, they
do not consist in ascribing a mental state to the agent. In

(Isozaki & Katsuno 1996), other agents’ beliefs are updated
when sequences of events are observed by the modelling
agent, given some initial assumptions about the ability of
others to observe events: agents are passive, just observe
events and do not perform actions so as to reach a goal; one
does not reason about the agent’s goals or intended actions.

Plan and goal recognition
Another related line of work is plan recognition (e.g. (Kautz
& Allen 1986) and many subsequent works). However, a
plan recognition problem contains an history of plans al-
ready evoked by the agent in various circumstances, or a
precomputed plan library; the problem then consists in de-
termining the plan followed by the agent from an initial ac-
tion sequence. Moreover, plan recognition rarely allows for
reasoning about the mental state of the agent (except (Pol-
lack 1990)). See (Brafman & Tennenholtz 1997) for a deep
discussion on this. Goal recognition (Hong 2001), unlike
plan recognition, does not require the data of a history or
a library of plans but works with an implicit description of
the available plans; but it still does not make use of mental
models.

Other works
Our preference relations (especially �i) are related to evalu-
ation criteria for plan quality in (Lin 1998); but the similarity
between both works ends here.

A long-term further research direction would consist in
relaxing the assumption of non-interaction between the
agents and extend the present framework to signalling and
cooperation, as suggested in (Levesque 2001).
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Appendix: proofs
Proof of Proposition 1:

1. let α ∈ Rel
�
U (C). By definition, this means that there is

a π ∈ Max�(SolP lans(C)) ∩ Develop(πdone) such
that πdone; α starts π. We have π ∈ SolP lans(C) ∩
Develop(πdone). If π were dominated in SolP lans(C)∩
Develop(πdone), there would exist a π′ such that π′ �
π and π′ ∈ SolP lans(C) ∩ Develop(πdone) ⊆
SolP lans(C), which would contradict the fact that π
is undominated in SolP lans(C). Therefore, we have
π ∈ Max�(SolP lans(C)∩Develop(πdone)), therefore
α ∈ Rel

�
R(C).

2. We have Rel
�
R(C) ⇔ Max�(SolP lans(C) ∩

Develop(πdone)) = ∅. (Notice that in the case
there is a π ∈ Max�(SolP lans(C) ∩ Develop(πdone))
such that π = πdone, then since λACT ∈ ACT then
π; λACT , which leads to the same final state as π, belongs
to Max�(SolP lans(C) ∩ Develop(πdone)) so that we
have λ ∈ Rel

�
R(C), and the latter is not empty.) Now,

Rel
�
R(C) = ∅

⇔ Max�(SolP lans(C) ∩ Develop(πdone)) = ∅
⇔ SolP lans(C) ∩ Develop(πdone) = ∅
⇔ no solution plan starts by πdone

⇔ there is no plan leading from next(s0, πdone) to g.

3. let �1 and �2 such that for any π, π′, π �2 π′ implies
π �1 π′. Then for any plan π and any set X of plans, we
have

π undominated for �1 in X
⇒ there is no π′ ∈ X such that π′ �1 π
⇒ there is no π′ ∈ X such that π′ �2 π

π undominated for �2 in X .
This entails Rel

�1

R (C) ⊆ Rel
�2

R (C) and Rel
�1

U (C) ⊆

Rel
�2

U (C).

�

Proof of Proposition 2: Assume that � is complete. The
inclusion GoalsU (OC,�) ⊆ GoalsR(OC,�) is a straight-
forward consequence of point 1 of Proposition1, so we have
to prove the inclusion GoalsR(OC,�) ⊆ GoalsU (OC,�),
that is, any R-plausible goal is U-plausible for OC. Assume
that g is not U-plausible. Let us distinguish two cases:

Case 1 there is no solution plan at all starting by πdone,
that is, SolP lans(OC + g) ∩ Develop(πdone) =
∅. In that case, last(πdone) cannot be R-relevant for
Restr(πdone, now − 1), therefore g is not R-plausible.

Case 2 there is a solution plan starting by πdone.
Since g is not U-plausible for OC, there is an
integer t < now such that πdone(t) is not U-
relevant for Restr(πdone, t). Let t∗ the smallest
integer satisfying the latter condition, that is, t∗ =
min{t | πdone(t)not U-relevant forRestr(πdone, t)}.
(We have 0 ≤ t∗ ≤ now − 1). Saying that πdone(t

∗) is
not U-relevant for Restr(πdone, t

∗) is equivalent to
SolP lans(〈s0, g, Restr(πdone, t

∗)〉)
∩Develop(Restr(πdone, t

∗)) = ∅
which means that

(1) any solution plan starting by
Restr(πdone, t

∗); πdone(t
∗) is dominated in

SolP lans(〈s0, g, Restr(πdone, t
∗)〉).

Notice that Restr(πdone, t
∗); πdone(t

∗) =
Restr(πdone, t

∗ + 1). Now, let π∗ ∈ Max(�
, SolP lans(〈s0, g, Restr(πdone, t

∗)〉)). The existence
of such a π∗ is guaranteed by the assumption that there
is a solution plan starting by πdone, therefore a fortiori
starting by Restr(πdone, t

∗). Now, (1) together with the
fact that ≥ is complete imply

(2) for each solution plan π starting by
Restr(πdone, t

∗); πdone(t
∗) we have π∗ � π.

Therefore, πdone(t
∗ + 1) is not R-relevant for

〈s0, g, Restr(πdone, t
∗)〉. This implies that g is not

R-plausible for OC.
�

Proof of Proposition 3:
⇒ Assume that g ∈ Γ is U-plausible given

OC = 〈s0, Γ, πdone〉; then the last action
last(πdone) = πdone(now − 1) is U-relevant
for 〈s0, g, Restr(πdone, now − 1)〉, which
means that there exists a plan π ∈ Max(�
, SolP lans(〈s0, g, Restr(πdone, now − 1)〉) starting by
Restr(πdone, now − 1); πdone(now − 1). Now, noticing
that Restr(πdone, now − 1); πdone(now − 1) = πdone,
we have found a plan π such that π ∈ Max(�
, SolP lans(〈s0, g, Restr(πdone, now − 1)〉), that is,
π ∈ Max(�, SolP lans(OC + g) ∩ Develop(πdone);
therefore there is no π′ ∈ SolP lans(OC + g) such that
π′ � π.

⇐ Let g ∈ Γ and assume there is a plan π ∈
SolP lans(OC + g) ∩Develop(πdone) such that there is
no plan π′ ∈ SolP lans(OC + g) verifying π′ � π. Then
for each t < now, π is an undominated solution plan start-
ing by Restr(πdone, t), hence, πdone(t) is U-relevant in
〈s0, g, Restr(πdone, t). Therefore, since moreover g ∈ Γ,
we have that g is U-plausible given OC.

�



Proof of Proposition 4: Assume � is complete (which
entails that R-plausible and U-plausible goals coincide,
due to Proposition 2). Let g1 and g2 be two (R/U)-
plausible goals. By definition there exist a plan π′

1
such that π1 = πdone; π

′
1 is nondominated w.r.t. � in

SolP lans(g1) and a plan π′
2 such that π2 = πdone; π

′
2

is nondominated w.r.t. � in SolP lans(g2). Assume
that g1 ∪ g2 is not a plausible goal (H): then there
exists no plan πdone; π

′ nondominated w.r.t. � in
SolP lans(g1∪g2). Let π3 ∈ Pref(�, SolP lans(g1∪g2));
since π1 ∈ SolP lans(g1) ⊆ SolP lans(g1 ∪ g2), (H) to-
gether with the fact that � is complete imply that
π3 � π1, and similarly π3 � π2. Now, since the en-
vironment is completely known, SolP lans(g1 ∪ g2) =
SolP lans(g1) ∪ SolP lans(g2). Therefore we have
π3 ∈ SolP lans(g1) or π3 ∈ SolP lans(g2). If
π3 ∈ SolP lans(g1) then π3 � π1 contradicts the hy-
pothesis that π1 is nondominated in SolP lans(g1) and
similarly, if π3 ∈ SolP lans(g2) then π3 � π2 contradicts
the hypothesis that π2 is nondominated in SolP lans(g2).
Therefore we have a contradiction. �


