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Abstract

Phase transitions in the solubility of problem instances are
known in many types of computational problems relevant
for artificial intelligence, most notably for the satisfiability
problem of the classical propositional logic. However, phase
transitions in classical planning have received far less atten-
tion. Bylander has investigated phase transitions theoretically
as well as experimentally by using simplified planning algo-
rithms, and shown that most of the soluble problems can be
solved by a näıve hill-climbing algorithm. Because of the
simplicity of his algorithms he did not investigate hard prob-
lems on the phase transition region. In this paper, we address
exactly this problem.
We introduce two new models of problem instances, one
eliminating the most trivially insoluble instances from Bylan-
der’s model, and the other restricting the class of problem in-
stances further. Then we perform experiments on the behav-
ior of different types of planning algorithms on hard problems
from the phase transition region, showing that a planner based
on general-purpose satisfiability algorithms outperforms two
planners based on heuristic local search.

Introduction
The existence of phase transitions in many types of problems
in artificial intelligence is well-known since the papers by
Huberman and Hogg[1987] and Cheeseman, Kanefsky and
Taylor [1991]. A detailed investigation of phase transitions
in the satisfiability problem of the classical propositional
logic was carried out by Mitchell, Selman and Levesque
[1996]. Their space of problem instances (for a fixed num-
ber of propositional variables) consists of all sets of 3-literal
clauses. In this space certain phase transition phenomena
have been found both empirically and analytically: as the
ratio of number of clauses and number of propositions ap-
proaches 4.2 from below, the probability that the formula is
satisfiable increases. Similarly, when the ratio approaches
4.3 from above, the probability that the formula is satisfi-
able decreases. At about ratio 4.27 the probability is 0.5, far
below 4.27 the probability is 1, and far above it is 0.

The phase transition from 1 to 0 at 4.27 coincides with
the difficulty of testing the satisfiability of the formula: all
known algorithms take exponential time in the size of the
formulas when they have clauses to propositions ratio 4.27,
and on many good algorithms the runtimes decrease sharply

when going in either direction from 4.27. This is theeasy-
hard-easypattern at the phase transition region.

Similar phase transitions and easy-hard-easy patterns
have been discovered in many difficult computational prob-
lems, including classical planning. Bylander[1996] carries
out an investigation on phase transitions in classical plan-
ning. He shows that in his model of sampling the space
of problem instances, increasing the number of operators
changes the problem instances from almost certainly not-
having-a-plan to almost certainly having-a-plan.

Bylander further shows that almost all of the problem in-
stances that are not too close to the phase transition region
can be solved very efficiently with very simple planning al-
gorithms. Inexistence of plans can in easy cases be tested
with an algorithm that tests for a simple syntactic property
of the problem instances. Similarly, plans for problem in-
stances with a high number of operators can be found by a
simple one-shot hill-climbing algorithm that does not do any
search. But, unlike in the present work, Bylander does not
carry out an empirical investigation of the actual computa-
tional difficulty of more realistic planning algorithms in the
phase transition region: his algorithms, which he shows to
be very effective outside the phase transition region, do not
solve problems in the phase transition region.

Phase transitions in classical planning are closely related
to the properties of random graphs[Bollobás, 1985]. The
classical planning problem is the s-t-reachability problem in
the transition graph encoded by the problem instance. As
shown for random graphs, as the probability of edges be-
tween nodes increases, at certain probability a giant com-
ponent, a set of nodes with a path between any two nodes,
emerges, consisting of most of the nodes in the graph. This
corresponds to having a set of operators with which there is
a plan from almost any initial state to almost any goal state.

Along with similarities to random graphs, there are also
important differences. The first difference is that unlike in
most work on random graphs, the transition graphs in plan-
ning are directed. Second, the succinct representation of
the transition graph induces a neighborhood structure not
present in random graphs: for example, if the number of
state variables changed by any operator is bounded byn,
there are never any edges from a state to another state that
differs in more thann state variables. Therefore results
about random graphs are not directly applicable to analyz-



ing properties of succinctly represented planning problems.
In this paper we complement Bylander’s pioneering work

on phase transitions in planning. Bylander’s analysis fo-
cused exclusively on easy problem instances outside the
phase transition region. We empirically investigate difficult
problem instances inside the phase transition region. We
also propose an improvement to Bylander’s method for sam-
pling the space of problem instances, well as propose a new
model with the requirement that every state variable occurs
the same number of time in an operator effect.

Random Sampling of Problem Instances
In this section we discuss the model of randomly sampled
problem instances proposed by Bylander[1996], which we
will call Model B, and two refinements of this model, called
Model C and Model A. Each model is parameterized by
parameters characterizing the size of problem instances in
terms of the numbern of state variables and the number
m of operators, as well as properties of the operators, like
the numbers of literals in the precondition and numbert of
literals in the effect. Further, there are parameters for the
description of the goal states.

Every combination of parameters represents a finite class
of problem instances. Even though these classes are finite,
the number of instances in them are astronomic for even rel-
atively small parameter values, and the way they are inves-
tigated is by randomly taking samples from them, testing
their computational properties, and then drawing more gen-
eral conclusions about the members of the class in general.

Our interest in these classes of problem instances is to try
to conclude something about theircomputational difficulty
on the basis of the parameter values describing them. For ex-
ample, our experiments suggest that the computational dif-
ficulty of the problem instances in Model A – for all the
planners experimented with – peaks when the ratio between
the numberm of operators and the numbern of state vari-
ables is about 2 (assuming certain fixed values for the rest of
the parameters.)

This approach allows us to generate an unbounded num-
ber of problem instances, most of which are difficult, and
these instances can be used in experimenting with differ-
ent kinds of planning algorithms, and concluding something
about the properties of these algorithms with respect tomost
of the instances having certain properties.

Next we define the models of problem instances, and after
that continue by presenting the results of experiments per-
formed with different types of planning algorithms.

Model B (Bylander)
Bylander [1996] proposes two models for sampling the
space of problem instances of deterministic planning, the
variable model, in which the number of preconditions and
effects vary, and thefixed model, with a constant number of
preconditions and effects. These models are analogous to
the constant probability model and the fixed clause length
model for propositional satisfiability[Selman, Mitchell, &
Levesque, 1996]. In this paper we consider the fixed model
only. As shown by Bylander[1994], deterministic planning

with STRIPS operators having two preconditions and two
effects is PSPACE-complete, just like the general planning
problem, but the cases with 2 preconditions and 1 effect as
well as 1 precondition and 2 effects are easier. More than
2 preconditions or effects can be reduced to the case with 2
preconditions and 2 effects, and therefore both the fixed and
the variable model cover all the problem instances in propo-
sitional planning.

Definition 1 (Model B) Letn, m, s, g andg′ be positive in-
tegers such thats ≤ n, t ≤ n andg′ ≤ g ≤ n. The class
CB

n,m,s,t,g,g′ consists of all problem instances〈P,O, I, G〉
such that

1. P is a set ofn Boolean state variables,
2. O is a set ofm operators〈p, e〉, where

(a) p is a conjunction ofs literals, with at most one occur-
rence of any state variable,

(b) e is a conjunction oft literals, with at most one occur-
rence of any state variable,

3. I : P → {0, 1} is an initial state (an assignment of truth-
values to the state variables)

4. G : P → {0, 1} describes the goal states. It is a partial
assignment of truth-values to the state variables: of the
|P | state variablesg are assigned a value, andg′ of them
have a value differing from the value in the initial stateI.

In our experiments we consider the case withs = 3 pre-
conditions andt = 2 effects only. This appears to provide
more challenging problems than the class with only 2 pre-
conditions.1 Also, we only consider the goal state descrip-
tions that describe exactly one state, and the values of all
state variables in this state are different from their values in
the initial state. The classes of problem instances we con-
sider are henceCB

n,m,3,2,n,n for differentn andm.
Instead of usingn andm to characterize the number of

state variables and operators, we may usen andcn = m for
some real numberc > 0 instead. The use of the ratioc = m

n
is more convenient when talking about problem instances of
different sizes.

We hoped that Bylander’s model would yield a phase tran-
sition for a fixedc that is independent of the number of state
variablesn, but this turned out not to be the case. The prob-
lem is that on bigger problem instances and any fixedc, the
probability that at least one of the goal literals is not an ef-
fect of any operator goes to 1, and the probability of plan
existence simultaneously goes to 0.

This can be shown as follows. Essentially, we have to
choose2cn operator effects from2n literals, 2 effects for
each of thecn operators. All ways of choosing operator
effects correspond to all total functions from a2cn element
set to an2n element set. One or more of the goal literals are
not made true by any operator if the corresponding function

1Even though the case with 3 preconditions can be reduced to
the case with 2 preconditions, this type of reductions introduce de-
pendencies between state variables. As a result, there is no one to
one match between instances inCB

n,m,2,2,n,n andCB
n,m,3,2,n,n, and

also their computational properties differ.



is not a surjection. Asn increases, almost no function is
surjection. LetA andB be sets such thatm = |A| andn =
|B|. The number of surjections fromA to B is n!S(m,n),
whereS(m,n) is the number of partitions of anm element
set inton non-empty parts, that is, the Stirling number of the
second kind. We further get

n!S(m,n) =
n∑

k=0

(−1)k

(
n
k

)
(n− k)m.

What is the asymptotic proportion of surjections among all
functions? We divide the number of surjections by the total
number of functions fromA to B, that isnm, and get

n∑
k=0

(−1)k

(
n
k

) (
n− k

n

)m

.

As n approaches∞ (with m = cn), the limit of this ex-
pression for any constantc is 0. That is, as the sets increase
in size, an infinitesimally small fraction of all functions are
surjections.

This means that as the numbern of state variables in-
creases, there is no constantc so thatcn operators suffices
for keeping the probability of plan existence above 0, and an
increasing number of operators is needed to keep the proba-
bility of having at least one operator making each state vari-
able true high.

Even though the required ratio of operators to state vari-
ables increases only logarithmically (see[Bylander, 1996,
Theorem 2]), we would almost characterize this as aflaw
in Bylander’s model of sampling the space of problem in-
stances, especially because on bigger problem instances
with few operators this is the dominating reason for inex-
istence of plans. See[Gent & Walsh, 1998] for a discussion
of flaws in models for other computational problems.

Bylander intentionally includes these trivially insoluble
instances in his analysis: his algorithm for insolubility de-
tects exactly these instances, and no others.

Model C

We define a new model of random problem instances that
does not have the most trivially insoluble problem instances
Bylander’s[1996] model has. To eliminate the most trivially
insoluble instances we impose the further restriction that ev-
ery literal occurs as an effect of at least one operator.

Definition 2 (Model C) Letn, m, s, g andg′ be positive in-
tegers such thats ≤ n, t ≤ n andg′ ≤ g ≤ n. The class
CC

n,m,s,t,g,g′ consists of all problem instances〈P,O, I, G〉 ∈
CB

n,m,s,t,g,g′ in which for everyp ∈ P , bothp and¬p occur
in the effect of at least one operator inO.

This model eliminates all those problem instances that
were recognized as insoluble by the algorithm Bylander
[1996] used for plan inexistence tests. That some of the goal
literals do not occur in any operator is a rather uninteresting
reason for the inexistence of plans.

Model A
The way operators effects are chosen in Model B (the fixed
model of Bylander[1996]) has a close resemblance to the
fixed-clause-length model of sampling the space of 3CNF
formula proposed by Mitchell et al. [1996]: randomly
choose a fixed number of state variables and with proba-
bility 0.5 negate them. With propositional satisfiability this
does not lead to any problems, but as we saw earlier, for op-
erator effects it does. That a proposition does not occur in a
clause does not mean that the clause would be more difficult
to satisfy, but for a planning problem if a state variable does
not occur as an effect this immediately means that certain
(sub)goals are impossible to reach. Similarly, even when at
least one occurrence is guaranteed, as in our Model C, when
some of the state variables occur in the effects only a small
number of times, on bigger problem instances similar phe-
nomena often arise, like state variable A is made true only
by an operator with B in the precondition, and B is made true
only by an operator with A in the precondition. Because of
this we think that a more interesting subclass of instances do
not choose the effects independently like literals for clauses
are chosen in the fixed-clause-length model for propositional
satisfiability.

This leads to our Model A. The idea is that every state
variable occurs as an operator effect (approximately) the
same number of times, and the same number of times both
positively and negatively. As a result, our Model A does not
have some of the most trivially insoluble instances Model B
and Model C have.

Definition 3 (Model A) Letn, m, s, g andg′ be positive in-
tegers such thats ≤ n, t ≤ n andg′ ≤ g ≤ n. The class
CA

n,m,s,t,g,g′ consists of all problem instances〈P,O, I, G〉 ∈
CB

n,m,s,t,g,g′ in which for everyp ∈ P , bothp and¬p occur
in the effect of either

⌈
tm
2n

⌉
or

⌊
tm
2n

⌋
operators.

Experimental Analysis of the Phase Transition
with Complete Algorithms

In this section we experimentally analyze the location of the
insoluble-to-soluble phase transition under the models A and
C of randomly generated problem instances, and evaluate
different types of planning algorithms on hard problem in-
stances from the phase transition region.

The planners are the following. First, the constraint-based
planner we used does a translation to the propositional logic
and finds plans by a satisfiability algorithm[Rintanen, Hel-
janko, & Niemel̈a, 2004]. We refer to this planner as SP.
This is the satisfiability planning approach introduced by
Kautz and Selman[1996]. SP finds plans of guaranteed
minimal parallel length, because it sequentially tries every
possible parallel plan lengthn and shows the inexistence of
plans of that length before continuing with lengthn + 1.
The shortest parallel plan, having lengthn, does not nec-
essarily correspond to the shortest sequential plan, as there
might be a parallel plan of lengthn + 1 or higher consisting
of a smaller number of operators. The SAT solver we used
was Siege version 3[Ryan, 2003]. This solver is based on
sophisticated clause-learning like other recent efficient SAT



solvers, including zChaff. The runtimes we report are the
sums of solution times reported by Siege, and do not include
the time spent by our front-end that produces the formulae.

Second, from the recently popular family of planning
algorithms based on distance heuristics and local search
[Bonet & Geffner, 2001] we have the FF planner[Hoffmann
& Nebel, 2001].

Third, we have the LPG planner by Gerevini and Serina
[2002], which is based on similar ideas to satisfiability plan-
ning, namely the planning graph of the GraphPlan algorithm
[Blum & Furst, 1997], but uses local search and does not in-
crease plan length sequentially. LPG and FF were chosen
because of their good performance on the standard bench-
mark sets; they can be considered to represent the state of
the art with respect to these benchmark sets.

In the first part of our investigation, we produced a large
collection of soluble problem instances with 20 state vari-
ables and tested the runtime behavior of the three planners
on them. The plan inexistence tests were carried out by a
complete BDD-based planner that traverses the state space
breadth first and finds shortest existing plans or reports that
no plans exist. Runtime of this planner is proportional to the
number of reachable states, and it solved every problem in-
stance in about two minutes or less. The other planners do
not have a general effective test for plan inexistence.

In the second part of the investigation, described in the
next section, we produced bigger problem instances with 40
and 60 state variables. Because only one of the planners was
sufficiently efficient to solve a large fraction of bigger in-
stances, we restricted the investigation of these bigger prob-
lem instances to this planner. For these bigger problem in-
stances we could not perform complete solubility tests: the
runtimes of our BDD-based planner are too high when the
number of state variables becomes higher than 20.

For model A, we produced between 350 and 608 soluble
problem instances for each ratio of operators to state vari-
ables, and for model C between 89 and 784. For smaller
ratios this involved testing the solubility of up to 50000 (for
model A) and up to 20000 (for model C) problem instances
with the BDD-based planner with a complete solubility test.
Restrictions on available CPU resources prevented us from
finding still more soluble instances.

The diagrams in Figure 1 depict the empirically deter-
mined phase transition in planning with 20 state variables as
well as corresponding runtimes on the three planners. The
times are on a 3.6 GHz Intel Xeon processor with a 512 KB
internal cache.

The diagrams in Figure 2 depict the average plan lengths
on the three planners on problem instances with 20 state
variables. The diagram in Figure 3 depicts the plan length
(number of operators) and the number of time steps (parallel
length) in the parallel plans produced by the SP planner.

Discussion of the Results on 20 State Variables
In this section we discuss the solubility and runtime data
shown in the diagrams.

The Phase Transition The phase transition curve depicted
in Figure 1 matches the expectation of how problem in-
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Model C: Parallel plan lengths in the phase transition region

solubility
SP length
SP steps

parallelism ratio

Figure 3: Number of operators (length) and time steps (par-
allel length) in plans found by SP for problem instances with
20 state variables

stances turn from almost certainly insoluble to almost cer-
tainly soluble as the number of operators grows. The change
from insoluble to soluble in Model C is not very abrupt. Sig-
nificant numbers of soluble instances emerge at operators-
to-variables ratio 2 (earliest possible is 1 because a smaller
number of operators with only two effects makes it impossi-
ble to make all of the goal literals true), and almost certain
solubility is reached slowly, and even at ratio 9 solubility
is still only about 0.99 and still growing slowly. In Model
A, on the other hand, the transition is steeper, and solubility
with probability 1.0 is reached soon after ratio 6. We think
that this difference is due to the presence of state variables
occurring as an effect only very few times in Model C, which
is the difference to Model A.

The Easy-Hard-Easy Pattern and the Planner Runtimes
In Figure 1, there is a transition from hard to easy problem
instances as the ratioc of operators to state variables grows
beyond 3. That there is a transition from easy to hard in-
stances at the left end of the curves before ratio 3 is less
clear. Below ratio 2 there were no soluble instances, and
we do not have any data on runtimes on insolubility testing
because none of the planners has a general and effective in-
solubility test. Presumably, determining insolubility on most
instances with very few operators is computationally easy.

It seems that difficulty in Model A peaks at about
operators-to-variables ratio 2, and in Model C at about ra-
tio 2.5, at least for SP and when looking also at the data
on bigger instances in Figure 6. FF’s runtime curve does
not suggest the same, as the curves peak later respectively
at about ratios 2.7 and 3. However, the curves for the num-
ber of instances FF and LPG did not solve within the time
limit of 10 minutes (depicted in Figure 4) also suggest that
these ratios 2 for Model A and 2.5 for Model C are the most
difficult ones. Possibly for FF at slightly later ratios there
are several difficult instances that are solved within the time
limit but have a high runtime that contributes to the peak in
the runtime curve.
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Model C: Phase transition region and planner runtimes

solubility
FF

LPG
SP

Figure 1: The plan existence phase transition and the passage from hard to easy in planner runtimes on soluble problem instances
with 20 state variables. The averages do not include a number of problem instances that were not solved in 10 minutes.
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Model C: Plan lengths in the phase transition region

solubility
shortest

FF
LPG

SP

Figure 2: Average shortest plan lengths in the phase transition region for problem instances with 20 state variables, and the
average lengths of the plans found by the three planners.

A difference to satisfiability in the propositional logic is
that in both of the models the peak in difficulty doesnot
appear to be near the 50 per cent solubility point.

The SP runtimes are lower than the LPG and FF runtimes.
For model C there were few instances with a runtime over
one minute, and the highest runtime of any of the Model C
instances was 275 seconds. Model A appears to be more
difficult, with two instances exceeding the time limit of 10
minutes (runtimes 1460 seconds and 870 seconds) at ratio
2.1. Most problem instances are solved in a fraction of a
second, with medians between 0.05 and 0.20 seconds for all
ratios in both models A and C.

LPG solves many instances almost immediately, but a
high percentage of problems (about 10 between ratios 1.8
and 2.25 for Model A and between ratios 2.0 and 2.35 for
Model C) are not solved in ten minutes, and a smaller per-
centage until the end of the phase transition region (6.5 for
Model A and 8 for Model C). Because these are not included
in the curves, average LPG runtimes are higher than those

depicted in the figure. Also FF runtimes vary a lot. Most
instances are solved quickly, but many instances are solved
barely below the time bound of 600 seconds, and many in-
stances (5 for Model A and about 25 for Model C) are not
solved under 600 seconds and are not included in the aver-
ages. For Model A these are between ratios 2.5 and 3.75
and for Model C between 3 and 5. Figure 4 depicts the pro-
portion of soluble 20 variable instances in model A that re-
mained unsolved by LPG and FF in ten minutes. For FF we
also give the curve depicting the 10 minute success rate on
soluble instances with 40 variables. With 20 state variables
FF’s success rate is close to 100 per cent but with 40 state
variables it is 4.3 per cent on the hardest instances and still
only about 90 percent at the very easy ratio of 6.

The distribution of runtimes on the planners have what
is known as a heavy tail[Gomeset al., 2000], that is, the
runtimes do not concentrate around the average, and there is
a substantial number of instances with a runtime well above
the average. Even though LPG uses fast restarts – which was
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Model A: Success rates of FF and LPG

20 solubility
LPG 20

FF 20
FF 40

Figure 4: Percentage of soluble problem instances with 20
state variables FF and LPG solved in 10 minutes. For FF
and 40 state variables the curve depicts the proportion of the
number of instances solved by FF to the number of instances
solved by SP. The FF success rate on 40 state variables is
an upper bound because SP very likely missed some of the
soluble instances.

proposed by Gomez et al. as a technique for weakening the
heavy tail of runtime distributions on single instances – and
FF does not, FF fares better than LPG.

Using the average as a characterization of runtimes when
the distribution of runtimes has a heavy tail, as it has in our
case, is not always meaningful[Gomeset al., 2000], but we
still decided to use it instead of the median because most of
the 20 state variable instances are very easy to solve and the
median completely ignores the difficult instances that dis-
tinguish the planners on problem instances of this size. The
problem with heavy-tailed distributions is that there is a de-
pendency on sample size: in general, the more samples are
taken the higher will the average be because of an increased
likelihood of obtaining extremely difficult instances. To ob-
tain smooth runtime curves we should have tested a far more
higher number of problem instances.

Plan Lengths Plan lengths in Figure 2 follow an interest-
ing pattern. The lengths of shortest existing plans peak at
the left end of the curve, followed by a slow decline. One
would expect that the instances with short plans were those
with many operators because there is more choice for choos-
ing operators leading to short plans, and this is indeed the
case. As the number of operators is increased, the asymp-
totic length of shortest plans will be 0.5 times the number of
state variables, because there will be with a very high prob-
ability a sequence of operators that each make two of the
goal literals true and are applicable starting from the initial
state. Indeed, with the 20 state variable problems in Model
C, at ratio 9 the shortest plans on average contain only 12
operators or 0.6 times the number of state variables.

The plan lengths for the different planners, none of which
is guaranteed to produce the shortest plans, more or less fol-
low the pattern of shortest plans, with the exception that the

plan length does not peak at the left end but slightly later.
The constraint-based planner SP produces plans that are rel-
atively close to shortest ones (average lengths between 1.27
and 1.37 times the shortest on the difficult problems, and
about 1.40 times on the easiest in Model C). This is because
the guarantee that shortest parallel plans are found implies
that the number of operators in the plans cannot be very high.

FF’s plans are often about twice the optimal for the most
difficult problem instances, and LPG’s plans often three
times the optimal. LPG plan lengths in Model C appear to
peak at a higher operators-to-variables ratio than SP and FF.

The relations between the plan length and the number of
time steps in the plans produced by SP, depicted in Figure 3,
are what one would expect: with easier problems with more
operators there are many plans to choose from, with a high
number of plans with a small number of time points. In the
more constrained problems there is on average 2 operators
per time point, and this increases to almost 5 for the easiest
problems.

Experimental Analysis of the Phase Transition
on Higher Number of State Variables

Because the ability of FF and LPG to find plans on hard
problem instances declines quickly as the number of state
variables exceeds 20, the experiments with 40 and 60 state
variables were made with SP only. Because SP does not
have an insolubility test, we considered those problem in-
stances insoluble for which we had not found plans during
a 10 minute evaluation of formulae for plans lengths up to
a fixed upper bound length. So we may have missed plans
because of the timeout, or because we did not consider suffi-
ciently long plans. However, because our plan length upper
bound was substantially higher than the average lengths of
plans actually found, the plan length restriction would seem
to be the smaller source of missed soluble instances.

Phase transition for bigger problem instances is depicted
in Figure 5. The solubility test can fail in one direction: if
no plan was found, it could be because it was longer than
what we tried or we had to terminate the run because of high
runtime, and hence the actual solubility curve may be higher
than the one we were able to determine with SP.

Even taking into account the one-sided error in detecting
solubility, it is obvious that the phase transition region be-
comes narrower and the change from insoluble to soluble be-
comes steeper as the number of state variables increases. It
is clear especially from the curve for Model A that the prob-
ability 1 solubility is reached earlier on problem instances
with more state variables. The curves are also compatible
with the idea that SP is capable of solving a large fraction
of the bigger difficult soluble instances with 60 state vari-
ables, but to show that this is indeed the case we would need
efficient algorithms for determining insolubility.

Average runtimes of solved instances are given in Fig-
ure 6. The median runtimes of solved instances are given
in Figure 7. The heavy-tailed character of the distribution
of runtimes becomes clear in the runtime curves. On some
ratios the presence of a small number of very difficult in-
stances causes the curve to peak so that the average runtime
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Figure 5: Phase transition on problem instances with 20, 40 and 60 state variables, as determined by the SP planner. Any
problem instance that was not solved under 10 minutes or was shown not to have plans of a given maximum length was
considered insoluble.
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Figure 6: Average SP runtimes on problem instances with 20, 40 and 60 state variables

on 20 state variables appears on some ratios to be very close
or higher than that of 40 state variables, and similarly for
the curves for 40 and 60 state variables. The curves are not
smooth because we only solved a moderate number of in-
stances for each ratio (between 500 and 300, depending on
the ratio), and for the smaller ratios the number of soluble
instances is small.

The average plan lengths are depicted in Figure 8. The
lengths grow slightly faster than the increase in state vari-
ables.

Discussion of the Results
The standard experimental methodology in planning is the
use of problem scenarios resembling potential real-world ap-
plications, like simplified forms of transportation planning,
simple forms of scheduling, and simplified control prob-
lems resembling those showing up in autonomous robotics
and other similar areas. For details see[McDermott, 2000;
Fox & Long, 2003]. There does not appear to be an at-

tempt to identify inherently difficult problems and problem
instances. In fact, many of the standard benchmarks are
solvable in low polynomial time by simple problem-specific
algorithms, and hence are computationally rather easy to
solve. We believe that these properties of benchmarking
strongly affects what kind of algorithms are considered good
and bad.

Our empirical results on the computational behavior of
the algorithms complement those obtained from the standard
benchmarks. Planners based on heuristic local search have
been very popular in recent years, mainly because of their
success in solving the standard benchmark sets. Our results
suggest that heuristic local search might be far weaker on
difficult problems that differ from the standard benchmark
problems.

Why do the heuristic search planners fare worse than sat-
isfiability planning on the random problem instances from
the phase transition region, and why do they fare relatively
much better on the standard benchmarks?
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Figure 7: Median SP runtimes on problem instances with 20, 40 and 60 state variables
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Figure 8: SP plan lengths on problem instances with 20, 40 and 60 state variables

FF is based on heuristic local search in the state space.
The main reason for the recent popularity of heuristic lo-
cal search was the discovery that polynomial-time com-
putable domain-independent distance heuristics make some
of the standard benchmarks much easier to solve[Bonet &
Geffner, 2001]. Further improvements on these benchmarks
have been obtained by ad hoc techniques inspired by some of
the benchmarks themselves[Hoffmann & Nebel, 2001] but
these techniques do not seem to address difficulties showing
up in planning problems more generally. The weakest point
in this class of planners is that when the distance heuristics
fail to drive the search to a goal state quickly, there may be a
huge state space to search for, and this takes place by explic-
itly enumerating the states. This makes these planners scale
badly on difficult problems. What satisfiability planning has,
and heuristic planners traversing the state space do not, is
the ability to reason about the values of individual state vari-
ables at different time points. For this reasoning satisfiabil-
ity algorithms use effective general-purpose techniques, like
Boolean constraint propagation and clause learning. This
way the problem representation in the propositional logic

allows to make inferences about whole classes of plans and
states, which are represented by partial assignments of truth-
values to propositions[Rintanen, 1998]. For example, dur-
ing plan search it is often inferred that there exist no plans
with a state variable having certain value at a certain time
point. This is possible without having to explicitly enumer-
ate parts of the state space to test the reachability of all such
states from the initial state. Presumably, this kind of rea-
soning greatly helps in solving inherently difficult problems
with complicated operator interactions.

LPG’s problem representation shares some of the proper-
ties the representation of planning as a satisfiability problem
has, but LPG does not utilize the properties of the represen-
tation in the same extent general-purpose satisfiability algo-
rithms do. For example, LPG uses forms of constraint prop-
agation (no-op propagation[Gerevini & Serina, 2002]), but
only in a restricted way.

An important question about the implications of the re-
sults of the present paper to planning more generally is
how much similarities are there between difficult planning
problems arising from practical applications and the difficult



problems randomly sampled from the space of all problem
instances. Practically relevant difficult problems often have
surface structure quite different from the randomly sampled
problem instances, but many techniques developed for plan-
ning, like symmetry reduction[Rintanen, 2003], can be em-
ployed in eliminating this surface structure to yield a less
structured core of the problem instance. Similarly, many of
the techniques used in satisfiability algorithms, like Boolean
constraint propagation, attempt to get past the surface struc-
ture. What remains is a hard search problem without further
structural properties to take advantage of. These unstruc-
tured problems may be close to randomly generated problem
instances.

Notice that many algorithms specifically designed to
solve problems randomly sampled from the space of all
problem instances, like the survey propagation algorithm
[Mézard, Parisi, & Zecchina, 2002] and similar local search
algorithms for propositional satisfiability[Seitz & Orponen,
2003], are very weak in solving instances from practically
more interesting problem classes. Also, more conventional
satisfiability algorithms can be specialized for solving hard
random problem instances[Dubois & Dequen, 2001]. How-
ever, the SP planner[Rintanen, Heljanko, & Niemelä, 2004],
solves standard planning benchmarks with an efficiency that
is comparable to – and in some cases exceeds that of – plan-
ners developed this kinds of benchmark problems in mind.

Conclusions and Related Work
In addition to the study by Bylander[1996], one of the few
works directly related to phase transitions planning is by
Slaney and Thíebaux[1998]. They investigate relationships
between the difficulty of optimization and the correspond-
ing decision problems. As an example they use the trav-
eling salesman problem and blocks world planning, both of
which can be represented in the framework of classical plan-
ning. Our work concentrated on the problem of finding an
arbitrary plan. The corresponding optimization problem of
finding the shortest or cheapest plan and the decision prob-
lem of finding a plan of at most a given cost would be more
relevant from the perspective of many applications.

An important open problem is the analytic derivation of
tight upper and lower bounds for the phase transition re-
gion. As suggested by research on the propositional sat-
isfiability phase transition and our experiments, the phase
transition region becomes increasingly narrow as the num-
ber of state variables increases. Analogously to the SAT
phase transition, there is presumably an asymptotic phase
transition point, where problem instances turn almost instan-
taneously from insoluble to soluble as the number of oper-
ators is increased. The techniques that easily yield upper
bounds for the propositional satisfiability phase transition
are not directly applicable to planning. The plan existence
problem has a decidedly graph-theoretic character that sep-
arates it from the satisfiability problem of the propositional
logic. The upper bounds derived by Bylander are applicable
to Model C (whenn = g = g′), but the lower bounds are
not, and further, the bounds Bylander has derived are loose.

The experimental evaluation should be complemented by
an analysis of techniques for determining inexistence of

plans, a topic not properly addressed in planning research.
Some recently proposed approaches to the same problem
outside planning are based on satisfiability testing and would
appear to be the best candidates to try for planning as well
[McMillan, 2003; Mneimneh & Sakallah, 2003].
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