
Precondition Control and the Progression Algorithm

Alfredo Gabaldon
Department of Computer Science

University of Toronto
alfredo@cs.toronto.edu

Abstract

We consider the problem of planning with declarative
search control in the framework of the situation cal-
culus. In particular, we are concerned with forward-
chaining planning with search control expressed by lin-
ear temporal logic formulas in the style of Bacchus &
Kabanza’s TLPlan system. We introduce a procedure
for extracting conditions which can then be evaluated on
plan prefixes for enforcing search control. These condi-
tions are situation calculus formulas whose entailment
can be checked by regression and can be used as further
preconditions of actions in nonMarkovian action theo-
ries and in some cases in classical Markovian theories
through a transformation procedure. We show that these
conditions eliminate exactly the same plan prefixes as
the Progression algorithm of the TLPlan system.

Introduction
Due to the high computational complexity of the classical
planning problem, many strategies have been proposed to
make the problem more tractable. Some of these strate-
gies consist in taking advantage of the availability of knowl-
edge about the structure of a particular domain. Prominent
work in this direction includes: Hierarchical Task Network
(HTN) planning systems (Sacerdoti 1974; Wilkins 1988;
Erol, Hendler, & Nau 1996), which use procedural knowl-
edge; SAT-solver based planning systems such as SATPlan
(Kautz & Selman 1998), which use declarative constraints;
and the forward-chaining planning systems TLPlan (Bac-
chus & Kabanza 2000) and TALPlanner (Kvarnstr¨om & Do-
herty 2000) which are based on Bacchus & Kabanza’s pro-
posal to provide the planning system with search control in
the form of linear temporal logic formulas. These formulas
can be seen as additional properties that a plan must have
and give the system some degree of direction in its search
for a plan. These properties may be in terms of any state the
domain would go through if the plan were executed, and so
linear temporal logic is a natural choice for expressing them.

In the tire world, for example, in searching for a plan
to change a flat tire, one could use a piece of search con-
trol saying: “tools are not put away until they are no longer

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

needed.” During planning, such advice can be used to elim-
inate sequences of actions that will lead to dead-ends or to
suboptimal plans. This effectively reduces the search space
for the planning system and hence there is a computational
advantage which has indeed been verified empirically in ex-
periments and in the AIPS planning competitions. Planners
using search control have shown several orders of magni-
tude superior performance in multiple planning domains. In
many of these domains, problems of size formerly beyond
the capabilities of any planning system have been solved us-
ing control.

The TLPlan and TALPlanner systems use search control
through a temporal formulaprogression algorithm. This al-
gorithm takes a state and a temporal logic formula, and com-
putes a new formula. When the planner picks a new candi-
date action to append it to the current sequence, it computes
the state that results from executing this action and then calls
the progression procedure. This then checks that the new
state satisfies the current formula, and returns a new formula
that is to be checked next.

With the purpose of further computational improvement,
it has been suggested that some forms of control knowl-
edge are better incorporated as further preconditions of ac-
tions (Bacchus & Ady 1999; Kvarnstr¨om & Doherty 2000;
Rintanen 2000; Kvarnstr¨om 2002; Gabaldon 2003). Prelim-
inary experiments (Bacchus & Ady 1999; Kvarnstr¨om 2002)
indicate that control as preconditions does indeed lead to a
speed up. However, a systematic procedure for deriving pre-
condition control from general temporal logic formulas has
not been developed so far. One of our goals in this paper is
to move toward filling this gap.

Using the situation calculus (McCarthy 1963) as our for-
mal framework, specifically Reiter’s situation calculus ac-
tion theories (Reiter 1991; 2001), we look at planning with
search control of the form used by the TLPlan and TALPlan-
ner systems. First, we define a set of constraints that are
obtained from a search control formula and which can be
used as precondition control. These constraints may refer
to any past situation in addition to the current one, so we
use a recent extension of Reiter’s action theories in which
theMarkov propertyis not assumed (Gabaldon 2002). We
then adapt the progression algorithm to our logical frame-
work and show that the aforementioned constraints and the
progression algorithm eliminate exactly the same plan pre-

fixes. Finally, we discuss how by applying the compilation
technique presented in (Gabaldon 2003), we can take a non-
Markovian action theory with precondition control and ob-
tain a Markovian one that has the search control “compiled”
into it. Put together, given a linear temporal logic formula,
this is a procedure for obtaining precondition control from
it that is equivalent to applying the control through the pro-
gression algorithm.

Basic Action Theories
We axiomatize planning domains in the situation calculus.
This sorted second-order language has three basic compo-
nents: actions, situations, and fluents. A distinguished set
of function symbols is used to form actions: terms such as
open(x). Situations are terms that denote sequences of ac-
tions and represent possible “histories” of the domain. The
initial situation is denoted by the constantS0 and other his-
tories are constructed by means of thedo function which
maps an action and a situation into a situation. The term
do(open(box), do(unlock(box), S0)) is an example. Flu-
ents denote properties of the domain that change as a result
of executing actions. They can be functional or relational
and they all have a situation as an argument in the last po-
sition. A real valued functionvelocity(x, s) and a relation
locked(x, s) are examples of fluents. We only use relational
fluents in this paper.

A basic action theory(Pirri & Reiter 1999; Reiter 2001)
in this language includes four domain independent axioms
which axiomatize situations and the situation predecessor re-
lation@. Since in our framework situations are sequences of
actions, that a situations′ precedes a situations, i.e.,s′ @ s,
means that the sequences′ is a prefix of sequences.

The domain dependent axioms in a basic action theory are
the following:

1. For each action functionA(~x), anaction precondition ax-
iom of the form:

Poss(A(~x), s) ≡ ΠA(~x, s).

2. For each fluentF (~x, s), a successor state axiomof the
form:

F (~x, do(a, s)) ≡ ΦF (~x, a, s).

3. Unique names axioms for actions. For instance:
open(x) 6= pickup(x).

4. Axioms describing the initial situation of the world: a fi-
nite set of sentences whose only situation term may be the
constantS0.

Action theories as defined in (Pirri & Reiter 1999; Re-
iter 2001) are Markovian: the preconditions of an action
and its effects depend only on the situation where the action
is to be performed. This property is realized in an action
theory through the requirement that formulasΠA(~x, s) and
ΦF (~x, a, s) not mention relation@ nor any situation term
other than variables.

A nonMarkovian action theory (Gabaldon 2002) allows,
under certain restrictions, that these formulas refer to past

situations, and to situations in a bounded future, with respect
to the current situations.

For example, a nonMarkovian precondition axiom for a
computer system log-on action that allows only two attempts
could be:

Poss(log on(usr, pwd), s) ≡
verified(usr, pwd, s) ∧ ¬(∃s1, s2){s2 @ s1 v s ∧
denied(usr, s1) ∧ denied(usr, s2)∧
(∀s3)(s2 @ s3 @ s) ⊃ ¬loggedOn(usr, s3)}.

Before we proceed, a word on notation: while lower case
letter arguments in predicate and function symbols denote
variables, for examplea for actions,s for situations,x for
objects; we will useα to denote arbitrary but explicit action
terms such asmove(x, y), andσ for situation terms such as
do(move(x, y), s). All symbols may have sub/superscripts.
Variables that appear free are universally quantified unless
stated otherwise.

Logical specification of the planning task
Perhaps the earliest formal specification of the planning
problem is due to Green (1969) and was postulated in the
situation calculus. Given a background axiomatization of
the planning domain, which in our case would be an ac-
tion theoryD, and a formulaG(s) representing the goal as a
property that must hold in the final situations, the planning
problem is specified as the problem of proving the following
entailment:

D |= (∃s).executable(s) ∧ G(s)

where

executable(s) def= (∀a, s′).do(a, s′) v s ⊃ Poss(a, s′).

Put in words, planning is defined as the problem of prov-
ing the existence of a plans that is executable, i.e., the pre-
conditions of each action are satisfied when it is executed,
and such that the goal holds at the end.

We are concerned with planning using search control, so
let us start with a specification of this problem based on
Green’s. As we mention in the introduction, the type of
search control we are interested in using consists in prop-
erties of sequences. Of course the goal can be considered a
special kind of sequence property that happens to refer only
to the final situations. In general, the search control is a
property that refers to any situation lying between an initial
situations and a finals′. Denote this bySC(s, s′).

Now, even ifs is a plan in the sense thatG(s) holds, it
is not necessarily the case thatSC(S0, s) hold. If a plan is
found following the search control, what we have instead of
SC(S0, s) is that for a situations′ equal to or succeedings,
SC(S0, s

′) holds.

Formally, we will use the following specification of plan-
ning with a classical goal1G(s) and a search control formula
SC(s′, s):

1Temporally extended goals (Bacchus & Kabanza 1998) are
similar to the control formulasSC(s′, s) and can be incorporated
in a straight forward manner.

D |= (∃s).executable(s) ∧G(s) ∧
(∃s′){s v s′ ∧ SC(S0, s

′)}. (1)

Control Expressions
Let us introduce the syntax of the expressions we will use for
search control. These expressions will basically be obtained
from situation calculus formulas by removing the situation
arguments from atoms and by adding linear temporal logic
operator notation.

Given a situation calculus formula that does not men-
tion relation@ nor equality between situations, asituation-
suppressed expressionis obtained by removing the situation
argument from all fluent andPoss atoms in the situation
calculus formula.

For a situation suppressed expressionφ, we will useφ[σ]
to denote the situation calculus formula obtained by plac-
ing σ as the situation argument in all the fluent andPoss
atoms inφ. For instance, ifφ is (∃x).on(x,A) ∧ clear(x),
where on and clear are fluents, thenφ[do(a, s)] stands
for (∃x).on(x,A, do(a, s)) ∧ clear(x, do(a, s)). Further-
more, for a situation-suppressed expressionφ, φ[s′, s] de-
notesφ[s′].

For temporal expressions, we will borrow the temporal
logic symbols◦ (next), U (until), 2 (always), and3 (some-
time). We will use them with situation suppressed expres-
sions to form control expressions.

Definition 1 Thecontrol expressionsare the smallest set of
expressions such that

1. a situation suppressed expression is a control expression;

2. if φ andψ are control expressions, then so are◦φ, φU ψ,
2φ, 3φ, φ ∧ ψ, φ ∨ ψ, ¬φ, (∃v)φ, (∀v)φ.

As in the case of situation suppressed expressions, for a
control expressionφ, φ[s′, s] is an abbreviation for a situa-
tion calculus formula. Intuitively, byφ[s′, s] we mean that
the temporal expressionφ holds over the sequences which
starts ats′. For instance2p[s′, s] intuitively means thatp is
true in every situation betweens′ ands, inclusive.

Obviously, these control expressions are not meant to cap-
ture the semantics of temporal modalities, since the seman-
tics of the temporal logic operators is defined in terms of
sequences (of worlds) that are infinite. We introduce these
expressions for two reasons: 1) they are a convenient nota-
tion for writing this type of search control and 2) it facili-
tates an analysis of the relationship between our description
of planning with search control in the situation calculus and
planning with search control through the progression algo-
rithm.

The precise definition of the abbreviations for the tempo-
ral expressions is the following:2

2We use the following abbreviations throughout:

(∃s1 : s′ v s1 v s)W
def
= (∃s1){s′ v s1 ∧ s1 v s ∧ W}

and
(∀s1 : s′ v s1 v s)W

def
= (∀s1){[s′ v s1 ∧ s1 v s] ⊃ W}.

◦φ[s′, s] def= (∃a).do(a, s′) v s ∧ φ[do(a, s′), s]

φU ψ[s′, s] def= (∃s1 : s′ v s1 v s){ψ[s1, s]∧
(∀s2 : s′ v s2 @ s1)φ[s2, s]}

3φ[s′, s] def= (∃s1 : s′ v s1 v s)φ[s1, s]

2φ[s′, s] def= (∀s1 : s′ v s1 v s)φ[s1, s]

Just as the temporal logic connectives2 and3 can be
defined in terms ofU, a similar relationship holds in the
case of the above expressions:

3φ[s′, s] ≡ TrueU φ[s′, s]

and

2φ[s′, s] ≡ ¬3¬φ[s′, s].

Forward-chaining planning with search
control

Forward-chaining planning systems build plans by incre-
mentally adding actions to an initially empty sequence.
These systems use the search control knowledge to eliminate
some of the partial sequences that, according to the control
knowledge, cannot be extended into a full plan or will result
in a plan which is of lower quality in some sense.

In terms of the situation calculus, suppose that a new ac-
tion α is added to a sequenceσ′. If the resulting sequence
σ = do(α, σ′) satisfies the goal, i.e.,D |= G(σ), then we
are done. Otherwise,σ can be extended into a full plan iff

D |= (∃s).σ @ s ∧G(s) ∧
(∃s′).s v s′ ∧ SC(S0, s

′).

Thus the new sequenceσ must satisfy the following:

D |= (∃s′).σ @ s′ ∧ SC(S0, s
′). (2)

The problem of verifying this condition onσ is a prob-
lem no different to the general planning problem itself. This
rules out checking the existence of a situations′ as specified
in (2).

So we compromise and weaken the requirement. All the
control checking will be done on the partial plan prefixσ
instead of on a future situations′ as in (2). That is, we will
only check whetherσ satisfies some properties that are nec-
essarily true when condition (2) holds. We define such prop-
erties for the temporal modalities introduced in the previous
section.

Plan Prefix Control Conditions
Let us consider the formula for the temporal expression with
U. Suppose that the search control is dictated by the expres-
sionφU ψ.

The instance of condition (2) for this control expression,
on a prefixσ is the following:

(∃s′).σ @ s′∧
(∃s1 : S0 v s1 v s′){ψ[s1, s′]∧

(∀s2 : S0 v s2 @ s1)φ[s2, s′]}
From this, we can derive two cases based on whethers1

is a situation succeeding or precedingσ:

(∃s′)σ @ s′ ∧ (∃s1 : σ @ s1 v s′){ψ[s1, s′]∧
(∀s2 : S0 v s2 @ s1)φ[s2, s′]} (3)

(∃s′)σ @ s′ ∧ (∃s1 : S0 v s1 v σ){ψ[s1, s′]∧
(∀s2 : S0 v s2 @ s1)φ[s2, s′]} (4)

In the case of the sentence (3),s1 is a successor situation
to σ, puttingψ beyond reach. So we give up checkingψ.
Furthermore, for subformula(∀s2 : S0 v s2 @ s1)φ[s2, s′],
we can only check situations betweenS0 andσ; and each
timeφ can be checked “up to”σ only. So with respect to (3)
we will require a prefixσ to satisfy the following condition:

(∀s2 : S0 v s2 v σ)φ′[s2, σ]

In the case of sentence (4) the only limitation is that both
φ andψ can be checked only up toσ. The condition derived
is this:

(∃s′)σ @ s′∧
(∃s1 : S0 v s1 v σ){ψ′[s1, σ]∧

(∀s2 : S0 v s2 @ s1)φ′[s2, σ]}
We have replacedψ andφ with ψ′ andφ′. The reason

is thatψ andφ may themselves be temporal expressions. If
this is the case, they cannot be verified beyondσ either and
so similar conditions as the above two need to be derived for
them. In other words, this process must continue recursively
on the subformulas of the search control.

The necessary condition we have derived forφU ψ is the
disjunction of the conditions obtained from each case:

(∀s2 : S0 v s2 v σ)φ′[s2, σ] ∨
(∃s1 : S0 v s1 v σ){ψ′[s1, σ] ∧

(∀s2 : S0 v s2 @ s1)φ′[s2, σ]}.

In the following definition, we give the condition obtained
for each form of search control expression.

Definition 2 Letφ be a search control expression. The pre-
fix control condition induced byφ on a sequences′ that
starts ats, denoted bypscc(φ, s, s′), is defined as follows:

1. if φ is a situation suppressed expression, i.e., a search
control expression that does not mention any of the tem-
poral operators, then
pscc(φ, s, s′) = φ[s];

2. pscc(◦φ, s, s′) =
(∀a)[do(a, s) v s′ ⊃ pscc(φ, do(a, s), s′)];

3. pscc(3φ, s, s′) = True;
4. pscc(2φ, s, s′) = (∀s1 : s v s1 v s′)pscc(φ, s1, s′);
5. pscc(φU ψ, s, s′) =

(∀s2 : s v s2 v s′)pscc(φ, s2, s′) ∨
(∃s1 : s v s1 v s′){pscc(ψ, s1, s′) ∧

(∀s2 : s v s2 @ s1)pscc(φ, s2, s′)};
6. pscc(φ ∧ ψ, s, s′) = pscc(φ, s, s′) ∧ pscc(ψ, s, s′);
pscc(φ ∨ ψ, s′, s) = pscc(φ, s′, s) ∨ pscc(ψ, s′, s);
pscc(¬φ, s, s′) = ¬pscc(φ, s, s′);
pscc((∃v)φ, s, s′) = (∃v)pscc(φ, s, s′);
pscc((∀v)φ, s, s′) = (∀v)pscc(φ, s, s′).

Example 1 In the briefcase domain, objects can be put in
or taken out of a briefcase, and the briefcase can be moved
to different locations. When the briefcase is moved to a dif-
ferent location, all objects inside it move to that location as
expected. In this domain,at(x, l, s) andinBcase(x, s) are
some of the fluents.at(x, l, s) means that objectx is at loca-
tion l in situations while inBcase(x, s) means that object
x is in the briefcase in situations. A constantBc represents
the briefcase.

One of the search control formulas given in (Bacchus &
Kabanza 2000) for the briefcase domain is this:

(∀x, loc) 2{at(Bc, loc) ∧ goal(at(x, loc)) ⊃
[at(Bc, loc) U ¬inBcase(x)]}

Intuitively, it says that the briefcase must remain in a lo-
cation until all objects that need to stay in this location ac-
cording to the goals are taken out of the briefcase.

Denote this control expression byφ. Let us find the con-
dition pscc(φ, S0, s) (We skip some of the simpler steps).

pscc(φ, S0, s) =
(∀x, loc)(∀s1 : S0 v s1 v s)pscc(φ1, s1, s).

where

φ1 = at(Bc, loc) ∧ goal(at(x, loc)) ⊃
at(Bc, loc) U ¬inBcase(x).

Then,

pscc(φ1, s1, s) =
pscc(at(Bc, loc) ∧ goal(at(x, loc)), s1, s) ⊃

pscc(at(Bc, loc) U ¬inBcase(x), s1, s),

pscc(at(Bc, loc) U ¬inBcase(x), s1, s) =
(∀s3 : s1 v s3 v s)pscc(at(Bc, loc), s3, s) ∨
(∃s2 : s1 v s2 v s){pscc(¬inBcase(x), s2, s) ∧

(∀s3 : s1 v s3 @ s2)pscc(at(Bc, loc), s3, s)},

pscc(at(Bc, loc) ∧ goal(at(x, loc)), s1, s) =
at(Bc, loc, s1) ∧ goal(at(x, loc)),

pscc(¬inBcase(x), s2, s) = ¬inBcase(x, s2),

pscc(at(Bc, loc), s3, s) = at(Bc, loc, s3).

The final condition obtained fromφ is this:

(∀x, loc)(∀s1 : S0 v s1 v s).
at(Bc, loc, s1) ∧ goal(at(x, loc)) ⊃

{(∀s3 : s1 v s3 v s)at(Bc, loc, s3) ∨
(∃s2 : s1 v s2 v s)[¬inBcase(x, s2) ∧

(∀s3 : s1 v s3 @ s2)at(Bc, loc, s3)]}.

The following theorem confirms the soundness of the plan
prefix conditions in Definition 2 with respect to the original
search control expression.

Theorem 1 Let D be a basic action theory andφ be a
search control expression. Then,

D |= (∀s). (∃s′){s v s′ ∧ φ[S0, s
′]} ⊃ pscc(φ, S0, s).

The prefix conditions are certainly not sufficient condi-
tions. It may be impossible to extend a plan prefix that sat-
isfies them into a sequence that satisfies the original control
expression. In the next section, we look at the relationship
between the above approach to enforcing control and the use
of control through the progression algorithm, and show that
the conditions eliminate the same prefixes progression does.

Progression
Bacchus & Kabanza’s progression algorithm takes as input
a linear temporal formulaτ and a worldw, and computes
a temporal formulaτ ′. Intuitively, τ ′ is the formula that
needs to be checked in the successor world ofw. The same
algorithm can be used to compute the progression of a search
control formula but with respect to a situations instead of a
world.

We will define an operatorPr(φ, s) for computing the
progression of an expressionφ in a situations. The control
operandφ is a hybrid expression: it may have both situ-
ation suppressed expressions and situation calculus formu-
las as subexpressions. We will refer to this type of expres-
sions ash-expressions. The output ofPr(φ, s) is also an
h-expression.

Definition 3 Let φ be an h-expression. The progression of
φ in s, Pr(φ, s), is defined as follows:

1. if φ is an atomic situation suppressed expression, then
Pr(φ, s) = φ[s];

2. if φ is a situation calculus atom, thenPr(φ, s) = φ;

3. Pr(◦φ, s) = φ;

4. Pr(φ U ψ, s) = Pr(ψ, s) ∨ (Pr(φ, s) ∧ φ U ψ);
5. Pr(3φ, s) = Pr(φ, s) ∨ 3φ;

6. Pr(2φ, s) = Pr(φ, s) ∧ 2φ;

7. Pr(φ ∧ ψ, s) = Pr(φ, s) ∧ Pr(ψ, s);
8. Pr(φ ∨ ψ, s) = Pr(φ, s) ∨ Pr(ψ, s);
9. Pr(¬φ, s) = ¬Pr(φ, s);

10. Pr((∀v)φ, s) = (∀v)Pr(φ, s);
11. Pr((∃v)φ, s) = (∃v)Pr(φ, s).

The progression algorithm as defined in (Bacchus & Ka-
banza 2000) transforms universal and existential quantifica-
tion into a conjunction and a disjunction, respectively. Since
such a transformation does not produce an equivalent for-
mula, the algorithm requires the use of “bounded quantifica-
tion” instead of normal logical quantification. For the pur-
pose of analyzing the relationship between our plan prefix
conditions and the progression algorithm, the restriction of
bounded quantification is unnecessary. Progression of quan-
tified formulas can be handled in the simple manner shown
above.

The Bacchus-Kabanza progression algorithm computes a
temporal condition the next world must satisfy. Similarly,
the operatorPr(φ, s) computes the control condition that is
to be checked in the next situation. In terms of sequences of
actions, it computes the condition that needs to be checked
on one-action sequence. For our analysis, we need to define
an operator that computes the condition for a sequence of
any length. This can be defined by recursion:

Definition 4 The progression of a control expressionφ
through a sequencedo(~α, s), denoted byPr∗(φ, do(~α, s)),
is defined as follows:

Pr∗(φ, s) = Pr(φ, s)
Pr∗(φ, do(α, σ)) = Pr(Pr∗(φ, σ), do(α, σ)).

For example, for the control2 ◦ Q, whereQ is a fluent,
and a sequencedo([A1, A2, A3], S0) we have:

Pr∗(2 ◦Q, do([A1, A2, A3], S0)) =
Q(do(A1, S0)) ∧
Q(do([A1, A2], S0)) ∧
Q(do([A1, A2, A3], S0)) ∧
Q ∧ 2 ◦Q

As the above example shows, the result of progression
through a sequence may contain subexpressions that are not
situation calculus formulas. These expressions are parts of
the control that must hold in future situations, but say noth-
ing about the current plan prefix. Thus, when checking the
control on a prefix, we will ignore them by assuming they
are satisfied: for an h-expressionφ, let ‖φ‖ denote the sit-
uation calculus formula obtained fromφ by replacing every
control subexpression withTrue.

The following theorem tells us that the prefix control con-
ditions from Definition 2 are exactly what the progression
algorithm checks on partial plans.

Theorem 2 Letdo(~α, s) be a situation term,s be a situation
variable orS0, andφ be a search control expression. Then,

D |= (∀).{‖Pr∗(φ, do(~α, s))‖ ≡ pscc(φ, s, do(~α, s))}.
Proof: (sketch)We begin with a lemma thatPr∗ distributes
over the propositional connectives and over quantifiers:

Lemma 1 For all φ, ψ, σ′, σ,

1. Pr∗(φ ∧ ψ, σ′, σ) = Pr∗(φ, σ′, σ) ∧ Pr∗(φ, σ′, σ);
2. Pr∗(φ ∨ ψ, σ′, σ) = Pr∗(φ, σ′, σ) ∨ Pr∗(φ, σ′, σ);

3. Pr∗(¬φ, σ′, σ) = ¬Pr∗(φ, σ′, σ);
4. Pr∗((∃x)φ, σ′, σ) = (∃x)Pr∗(φ, σ′, σ);
5. Pr∗((∀x)φ, σ′, σ) = (∀x)Pr∗(φ, σ′, σ).

The proof of this lemma is straight forward from the defi-
nitions ofPr andPr∗.

The following equivalent but less elegant recursive ver-
sion ofPr∗ allows a simpler proof and so we will use it:

Pr′(φ, s, s) = Pr(φ, s)
Pr′(φ, s, do(~αk , s)) = Pr′(Pr(φ, s), do(α1, s), do(~αk, s)).

Furthermore, we prove a slightly stronger theorem: let
~α be a sequence of action termsα1, . . . , αk, do(~α, s) be a
situation term, andφ be an h-expression. We prove: For
every prefixσ = do([α1, . . . , αi], s) of do(~α, s)

D |= (∀).‖Pr′(φ, σ, do(~α, s))‖ ≡ pscc(φ, σ, do(~α, s)).

The proof is by induction on the structure ofφ and the
difference between the length ofdo(~α, s) andσ.

Assume the theorem on h-expressionsφ andψ. Let us
prove the theorem for the expressionφU ψ.

For the base case, we have that

Pr′(φ U ψ, s, s) = Pr(φ U ψ, s)
= Pr(ψ, s) ∨ (Pr(φ, s) ∧ φU ψ).

Hence,

‖Pr′(φ U ψ, s, s)‖ =
‖Pr(ψ, s)‖ ∨ (‖Pr(φ, s)‖ ∧ ‖φU ψ‖)
= ‖Pr(ψ, s)‖ ∨ (‖Pr(φ, s)‖ ∧ True)
≡ ‖Pr(ψ, s)‖ ∨ ‖Pr(φ, s)‖.

On the other hand we have:

pscc(φU ψ, s, s) =
(∀s2 : s v s2 v s)pscc(φ, s2, s) ∨
(∃s1 : s v s1 v s){pscc(ψ, s1, s) ∧

(∀s2 : s v s2 @ s1)pscc(φ, s2, s)}
≡
pscc(φ, s, s) ∨ pscc(ψ, s, s).

The theorem follows from this and the induction assump-
tion onφ, ψ.

Now, consider a prefixσ′ of σ = do([α1, . . . , αk], s) such
that the length,l, of σ′ is strictly less thank. That is,σ′
consists of the firstl action terms inσ.

We have:

Pr′(φ U ψ, σ′, σ)
= Pr′(Pr(φ U ψ, σ′), do(αl+1, σ

′), σ)
= Pr′(Pr(ψ, σ′) ∨ (Pr(φ, σ′) ∧ φU ψ), do(αl+1, σ

′), σ)
= Pr′(Pr(ψ, σ′), do(αl+1, σ

′), σ) ∨
Pr′(Pr(φ, σ′), do(αl+1, σ

′), σ) ∧
Pr′(φU ψ, do(αl+1, σ

′), σ).

Thus, by definition ofPr′, we have that

Pr′(φ U ψ, σ′, σ) =
Pr′(ψ, σ′, σ) ∨
Pr′(φ, σ′, σ) ∧ Pr′(φU ψ, do(αl+1, σ

′), σ).
(5)

On the other hand we have that

pscc(φU ψ, σ′, σ) =
(∀s2 : σ′ v s2 v σ)pscc(φ, s2, σ) ∨
(∃s1 : σ′ v s1 v σ){pscc(ψ, s1, σ) ∧

(∀s2 : σ′ v s2 @ s1)pscc(φ, s2, σ)}
≡
pscc(φ, σ′, σ) ∧
(∀s2 : do(αl+1, σ

′) v s2 v σ)pscc(φ, s2, σ)
∨
pscc(ψ, σ′, σ) ∧
(∀s2 : σ′ v s2 @ σ′)pscc(φ, s2, σ)
∨
(∃s1 : do(αl+1, σ

′) v s1 v σ){pscc(ψ, s1, σ) ∧
(∀s2 : do(αl+1, σ

′) v s2 @ s1)pscc(φ, s2, σ) ∧
pscc(φ, σ′, σ)}

≡
pscc(φ, σ′, σ) ∧
(∀s2 : do(αl+1, σ

′) v s2 v σ)pscc(φ, s2, σ)
∨
pscc(ψ, σ′, σ)
∨
pscc(φ, σ′, σ) ∧
(∃s1 : do(αl+1, σ

′) v s1 v σ){pscc(ψ, s1, σ) ∧
(∀s2 : do(αl+1, σ

′) v s2 @ s1)pscc(φ, s2, σ)}

≡
pscc(ψ, σ′, σ) ∨
{pscc(φ, σ′, σ) ∧

(∀s2 : do(αl+1, σ
′) v s2 v σ)pscc(φ, s2, σ) ∨

(∃s1 : do(αl+1, σ
′) v s1 v σ){pscc(ψ, s1, σ) ∧

(∀s2 : do(αl+1, σ
′) v s2 @ s1)pscc(φ, s2, σ)}}

≡
pscc(ψ, σ′, σ) ∨
(pscc(φ, σ′, σ) ∧ pscc(φU ψ, do(αl+1, σ

′), σ))

The theorem then follows from this, (5), and the induction
assumptions.

The proof of the theorem for other forms of control ex-
pressions is similar. 2

Control Conditions in the Action Theory
The plan prefix conditions denoted bypscc(φ, s′, s) are sit-
uation calculusbounded formulas, a class of formulas that
can be used as action preconditions in nonMarkovian action
theories (Gabaldon 2002), and in some cases they can be
compiled into preconditions, as shown in (Gabaldon 2003),
of the classical Markovian form.

Control into nonMarkovian Theories
The simplest way to incorporate the plan prefix conditions
into an action theory is by allowing nonMarkovian axioms.
In this case we can simply addpscc(φ, S0, s) as an addi-
tional precondition to every action precondition axiom as
follows:

Poss(A(~x), s) ≡
ΠA(~x, s) ∧ pscc(φ, S0, do(A(~x), s)). (6)

Intuitively, we are treating actions that violate the control
conditions as if they were impossible. Since a planner only
adds to the current sequence actions that are possible, ac-
tions that violate the control are thus never added to a plan
prefix.

In this setting, determining whether an action is exe-
cutable in a given situation amounts to solving aprojection
problem. Following (Reiter 1991; 2001), we solve such a
problem in the situation calculus by applyingregression. In
previous work (Gabaldon 2002) we generalized Reiter’s re-
gression operator,R, so that it can be applied on formulas
such as our control conditions above. In other words, we
extended the class of regressable formulas defined by Reiter
with formulas that, under some restrictions, mention@ and
quantify over situations. This allows us to solve projection
problems with respect to nonMarkovian action theories.

At first thought it may seem counterintuitive to use regres-
sion with forward-chaining planning. But forward-chaining
planning is used for generating candidate sequences of ac-
tions, i.e., plan prefixes, while regression is used for solving
projection problems once we have a candidate sequence in
hand. In other words, forward-chaining is used for generat-
ing a sequence and regression for the independent problem
of testing properties against it.

Control into Markovian Theories by Compiling
The other alternative for incorporating the control condi-
tions, which seems to be computationally advantageous, is
to apply the transformation operatorM from (Gabaldon
2003) to the theory obtained as described in the previous
subsection and “Markovianize” it. This is achieved by re-
placing each action precondition axiom (6) with the follow-
ing:

Poss(A(~x), s) ≡ ΠA(~x, s)∧M[pscc(φ, S0, do(A(~x), s))].

The transformation operatorM is roughly defined as fol-
lows:

• SupposeW is a formula whose only variable of sort situ-
ation iss, thenM[W] = Rs[W].
Here,Rs[W] is the result of applying regression steps un-
til all situation terms are reduced to variables, that is, un-
til all termsdo(~α, s) have been regressed down tos.

• SupposeW is a formula of the form

(∃s1 : S0 v s1 v do(~α, s))W ′

whereW ′ is bounded bys1. Intuitively, if a formula is
bounded bys, then all variables of sort situation that ap-
pear in it are restricted to range over predecessors of situ-
ation terms of the formdo(~α, s), i.e., over past situations
relative to the current situations or relative to a future
situationdo(~α, s).
Then,

M[W] = M[PW (~x, do(~α, s))]

where~x are all the free non-situation variables in the orig-
inal formulaW . PW is a new fluent that is added to the
theory. It has the following successor state axiom:

PW (~x, do(a, s)) ≡ M[W ′|s1
do(a,s)] ∨ PW (~x, s).

Here,W |sσ denotes the formula obtained fromW by re-
placing the variables everywhere inW with the termσ.
The new fluentPW is initially set to false:¬PW (~x, S0).

• SupposeW is a formula of the form:

(∃s1 : S0 v s1 v do(~α, s)){W1 ∧
(∀s2 : s1 @ s2 @ do(~α, s))W2}

whereW1,W2 are bounded bys1, s2 respectively. Then,

M[W] = M[PW (~x, do(~α, s))]

where~x are all the free non-situation variables inW and
PW is a new fluent with successor state axiom:

PW (~x, do(a, s)) ≡
M[W1|s1

do(a,s)] ∨ {M[W2|s2
s] ∧ PW (~x, s)}

and initially false:¬PW (~x, S0).
• The remaining cases are simply:

M[¬W] = ¬M[W],
M[W1 ∧W2] = M[W1] ∧M[W2],
M[(∃v)W] = (∃v)M[W].

One advantage is that the resulting axioms only refer to the
current situations. Another advantage of applying the trans-
formation is that when this is done, the control precondition
in each axiom becomes specific to its action type3 A(~x),
due to the fact thatdo(A(~x), s)) is an argument ofpscc.
Since the transformation works in part by applying regres-
sion steps, the result is simpler, action type specific control
conditions. The following example illustrates this.

Example 2 Consider the following briefcase domain con-
trol expression

at(Bc, L) U ¬inBcase(A) (7)

saying that the briefcaseBcmust stay at the locationL until
the objectA is taken out of it (say because one of the goals
is that objectA be at locationL).

3There can be an infinite number of actioninstanceseven if
there is a finite number of actiontypes, i.e., action functions, in the
language.

Suppose that this domain includes the action
move(x, loc), for moving an objectx to a location
loc, which is possible whenever the target locationloc is
different than the current location of the objectx. Thus
we would have the following precondition axiom for this
action:

Poss(move(x, loc), s) ≡
(∃cloc).at(x, cloc, s) ∧ cloc 6= loc.

For the sake of simplicity, let us assume that this is the
only action that affects theat, so the dynamics of this fluent
are captured by the following successor state axiom which
states that an object is at a locationloc iff it has just been
move there or it was already there and it has not just been
moved anywhere:

at(x, loc, do(a, s)) ≡ a = move(x, loc) ∨
at(x, loc, s) ∧ ¬(∃l)a = move(x, l).

We will also need the successor state axiom of the fluent
inBc(x, s) which means that objectx is inside the briefcase
in situations:

inBc(x, do(a, s)) ≡ a = putIntoBc(x) ∨
inBc(x, s) ∧ a 6= takeOutofBc(x).

The prefix condition obtained from the control expres-
sion (7) is the following:

pscc((7), S0, do(move(x, loc), s)) =
(∀s2: S0 v s2 v do(move(x, loc), s))at(Bc, L, s2) ∨
(∃s1: S0 v s1 v do(move(x, loc), s))
[¬inBcase(A, s1) ∧ (∀s2: S0 v s2 @ s1)at(Bc, L, s2)].

Let us apply transformationM to this formula. Consider
the first disjunct, put in the equivalent form:

¬(∃s2: S0 v s2 v do(move(x, loc), s))¬at(Bc, L, s2)
From this, the transformation results in

M[¬P1(do(move(x, loc), s))] =
Rs[¬P1(do(move(x, loc), s))].

The new fluentP1 has the following successor state axiom:

P1(do(a, s)) ≡
M[¬at(Bc, L, do(a, s)) ∨ P1(s)
≡ Rs[¬at(Bc, L, do(a, s)) ∨ P1(s)
≡ a 6= move(Bc, L)∧
[¬at(Bc, L, s) ∨ (∃l)a = move(Bc, l)] ∨ P1(s).

HenceRs[¬P1(do(move(x, loc), s))] is equal to:

¬{move(x, loc) 6= move(Bc, L) ∧
[¬at(Bc, L, s) ∨ (∃l)move(x, loc) = move(Bc, l)] ∨
P1(s)}
≡
x = Bc ∧ loc = L ∧ ¬P1(s).

From the second disjunct, we obtain a similar
M[P2(do(move(x, loc), s))] and a new fluentP2 with the
following successor state axiom:

P2(do(a, s)) ≡
Rs[¬inBc(A, do(a, s))] ∧
M[(∀s2: S0 v s2 @ do(a, s))at(Bc, L, s2)] ∨
P2(s)
=
Rs[¬inBc(A, do(a, s))] ∧M[¬P1(do(a, s))] ∨ P2(s)
≡
a 6= putIntoBc(A) ∧
[¬inBc(A, s) ∨ a = takeOutofBc(A)]∧
{a = move(Bc, L) ∨

at(Bc, L, s) ∧ ¬(∃l)a = move(Bc, l)} ∧ ¬P1(s) ∨
P2(s).

And so we have thatM[P2(do(move(x, loc), s))] is equal
toRs[¬P2(do(move(x, loc), s))], which in turn is equal to:

move(x, loc) 6= putIntoBc(A) ∧
[¬inBc(A, s) ∨move(x, loc) = takeOutofBc(A)] ∧
{move(x, loc) = move(Bc, L) ∨ at(Bc, L, s) ∧

¬(∃l)move(x, loc) = move(Bc, l)} ∧
¬P1(s) ∨
P2(s)
≡
¬inBc(A, s) ∧ x = Bc ∧ loc = L ∧ ¬P1(s) ∨
P2(s).

We thus obtain, by applying the transformation, the com-
piled prefix condition:

x = Bc ∧ loc = L ∧ ¬P1(s) ∨
¬inBc(A, s) ∧ x = Bc ∧ loc = L ∧ ¬P1(s) ∨ P2(s)
≡
x = Bc ∧ loc = L ∧ ¬P1(s) ∨ P2(s).

Applying the transformationM yields the following pre-
condition axiom formove(x, loc):

Poss(move(x, loc), s) ≡
(∃cloc).at(x, cloc, s) ∧ cloc 6= loc ∧
x = Bc ∧ loc = L ∧ ¬P1(s) ∨ P2(s).

Related Work
As we have mentioned above, the approach to planning with
search control we have considered in this paper was intro-
duced by (Bacchus & Kabanza 2000). The TALPlanner sys-
tem of (Kvarnstr¨om & Doherty 2000) follows Bacchus &
Kabanza’s approach: it utilizes search control knowledge
expressed first-order linear temporal logic and Bacchus&
Kabanza’s progression algorithm. It also provides the al-
ternative to express the control knowledge in the system’s
underlying logical language TAL. The TALPlanner system
has been extended to incorporate some forms of prefix con-
dition extraction that is similar to what we have considered
here. (Kvarnstr¨om 2002) shows how to extract prefix condi-
tions from some types of search control formulas in the TAL
language The class of control formulas he considers corre-
sponds to formulas of the form2φ whereφ is a formula
that mentions no temporal operator other than◦ (next), and
this cannot be nested. In this paper we show how to obtain

prefix conditions from general temporal logic formulas for
nonMarkovian basic action theories. Some of these condi-
tions can be compiled to produce a Markovian theory. The
conditions we obtain from the aforementioned2φ formulas
are indeed among those that can be compiled, but the class
is larger. Example 2 shows an example with a formula using
the operatorU (until). Example 1 shows a formula of the
form 2[P ⊃ (Q U R)], whereP,Q,R are non-temporal.
This is a very useful form of control formula that also yields
compilable prefix conditions in our framework. On the other
hand the TALPlanner system utilizes several other formula
optimization techniques that we have not considered. We are
currently working on generalizing the transformation opera-
tor so that it can be used to compile all control expressions
φ of Definition 1.

Reiter (2001) also discusses the use of domain dependent
control knowledge with several simple planners written in
the high level, situation calculus based language Golog. Re-
iter encodes control knowledge in the definition of a predi-
catebadSituation(s). Reiter’s programs are also forward-
chaining planners and intuitively work as follows: an ac-
tion a is chosen, then it is executed by the program (thereby
checking that the action’s preconditions hold) and then the
test ¬badSituation? is executed. This test amounts to
checking if¬badSituation(do(a, s)) holds, wheres is the
current plan prefix. The planner proceeds recursively un-
til a situation that satisfies the goal is found or a bound is
reached. By using thebadSituation predicate instead of
using the search control as further preconditions, Reiter em-
phasizes that control constraints are not executability condi-
tions although both have the effect of eliminating sequences
of actions. We could easily adapt our approach and use
our plan prefix conditions to define bad situations instead
of adding them as further preconditions. As presented in his
book, Reiter’s predicatebadSituation must be defined by
an axiom:

badSituation(s) ≡W

whereW is a formula whose only situation variable iss.
The predecessor relation@ on situations cannot appear inW
nor any situation variable other thans. However, using the
approach we have presented above, we could take a control
expressionφ and definebadSituation as follows:

badSituation(s) ≡ ¬M[pscc(φ, S0, s)].

That is, a situation is bad if it falsifies the prefix control
conditions. We can then run Reiter’s Golog planning pro-
grams without modification.

Also using the situation calculus as a formal framework,
Lin has considered search control knowledge in planning. In
(Lin 1997), he considers control knowledge in the form of
a subgoal ordering: given a conjunctive goalg1& . . .&gk,
the control knowledge is expressed in the form of prece-
dence relation statements of the formgi ≺ gj saying that
any plan that achievesG, achieves the goalgi first and later
achievesgj while having maintainedgi. Lin shows how sub-
goal ordering knowledge can be derived from the goal and

the background theory in the situation calculus and how it
can be employed in planning algorithms. In (Lin 1998), he
formalizes control knowledge that is in the form of a partial
order on actions, in order to provide a situation calculus se-
mantics to the Prolog cut operator. Our work is in the spirit
of Lin’s, of “the situation calculus as a general framework
for representing and reasoning about control and strategic
information in problem solving.”

Conclusion
We have considered the problem of planning with declar-
ative search control of the form used in Bacchus & Ka-
banza’s TLPlan system, using the situation calculus as a for-
mal framework. We start with Green’s specification of the
planning problem and modify it by adding search control to
the problem. In the modified specification, search control
is viewed as a property of a sequence that possibly extends
a plan. Then, using this specification as a guide, we derive
some conditions that must be satisfied by every plan prefix.
These conditions are situation calculus formulas of a form
on which regression can be used. We then show that these
conditions correspond exactly to the temporal progression
algorithm used in TLPlan, i.e., a prefix is eliminated through
these conditions iff the progression algorithm eliminates it.
Finally, we show how the control conditions can be directly
incorporated into the precondition axioms of a nonMarko-
vian action theory or, through a transformation, into a classic
Markovian one.

Acknowledgments I am very thankful to Fahiem Bacchus
and Yves Lesp´erance for useful discussions on the subject of
this paper. Also my thanks to the reviewers for their useful
comments.

References
Bacchus, F., and Ady, M. 1999. Precondition control.
Available athttp://cs.toronto.edu/∼fbacchus/on-line.html.

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals.Annals of Mathematics and Artificial
Intelligence22:5–27.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Artificial
Intelligence116:123–191.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning.Annals of
Mathematics and Artificial Intelligence18:69–93.

Gabaldon, A. 2002. Non-markovian control in the situation
calculus. InProceedings of the 18th National Conference
on Artificial Intelligence (AAAI’02), 519–524.

Gabaldon, A. 2003. Compiling control knowledge into
preconditions for planning in the situation calculus. InPro-
ceedings of the 18th International Joint Conference on Ar-
tificial Intelligence (IJCAI’03).

Green, C. 1969. Theorem proving by resolution as a ba-
sis for question-answering systems. In Meltzer, B., and
Michie, D., eds.,Machine Intelligence 4. New York: Amer-
ican Elsevier. 183–205.

Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Proceedings of the Fourth International Confer-
ence on Artificial Intelligence Planning Systems (AIPS’98),
181–189.
Kvarnström, J., and Doherty, P. 2000. TALplanner: A
temporal logic based forward chaining planner.Annals of
Mathematics and Artificial Intelligence30:119–169.
Kvarnström, J. 2002. Applying domain analysis techniques
for domain-dependent control in TALPlanner. InProcs. of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS’02), 369–378.
Lin, F. 1997. An ordering of subgoals for planning.Annals
of Mathematics and Artificial Intelligence. (Special issue in
honor of Professor Michael Gelfond)31(1–3):59–83.
Lin, F. 1998. Applications of the situation calculus to for-
malizing control and strategic information: the Prolog cut
operator.Artificial Intelligence103(1–2):273–294.
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted in Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410–417.
Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the Situation Calculus.Journal of the ACM
46(3):325–364.
Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed.,Artificial In-
telligence and Mathematical Theory of Computation. Aca-
demic Press. 359–380.
Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed.,Procs. of the 14th
European Conference on Artificial Intelligence (ECAI’00),
526–530. Amsterdam: IOS Press.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces.Artificial Intelligence5:115–135.
Wilkins, D. E. 1988. Practical Planning: Extending the
classic AI planning paradigm. San Mateo, CA: Morgan
Kaufmann.

