Precondition Control and the Progression Algorithm

Alfredo Gabaldon
Department of Computer Science
University of Toronto
alfredo@cs.toronto.edu

Abstract

We consider the problem of planning with declarative
search control in the framework of the situation cal-
culus. In particular, we are concerned with forward-
chaining planning with search control expressed by lin-
ear temporal logic formulas in the style of Bacchus &
Kabanza's TLPlan system. We introduce a procedure
for extracting conditions which can then be evaluated on
plan prefixes for enforcing search control. These condi-
tions are situation calculus formulas whose entailment
can be checked by regression and can be used as further
preconditions of actions in nonMarkovian action theo-
ries and in some cases in classical Markovian theories
through a transformation procedure. We show that these
conditions eliminate exactly the same plan prefixes as
the Progression algorithm of the TLPlan system.

Introduction
Due to the high computational complexity of the classical

planning problem, many strategies have been proposed to

make the problem more tractable. Some of these strate-
gies consist in taking advantage of the availability of knowl-
edge about the structure of a particular domain. Prominent
work in this direction includes: Hierarchical Task Network
(HTN) planning systems (Sacerdoti 1974; Wilkins 1988;
Erol, Hendler, & Nau 1996), which use procedural knowl-

edge; SAT-solver based planning systems such as SATPlan

(Kautz & Selman 1998), which use declarative constraints;
and the forward-chaining planning systems TLPlan (Bac-
chus & Kabanza 2000) and TALPlanner (Kvarostr& Do-
herty 2000) which are based on Bacchus & Kabanza'’s pro-
posal to provide the planning system with search control in
the form of linear temporal logic formulas. These formulas

can be seen as additional properties that a plan must have

and give the system some degree of direction in its search
for a plan. These properties may be in terms of any state the
domain would go through if the plan were executed, and so
linear temporal logic is a natural choice for expressing them.
In the tire world, for example, in searching for a plan
to change a flat tire, one could use a piece of search con-
trol saying: “tools are not put away until they are no longer

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

needed.” During planning, such advice can be used to elim-
inate sequences of actions that will lead to dead-ends or to
suboptimal plans. This effectively reduces the search space
for the planning system and hence there is a computational
advantage which has indeed been verified empirically in ex-
periments and in the AIPS planning competitions. Planners
using search control have shown several orders of magni-
tude superior performance in multiple planning domains. In
many of these domains, problems of size formerly beyond
the capabilities of any planning system have been solved us-
ing control.

The TLPlan and TALPlanner systems use search control
through a temporal formularogression algorithmThis al-
gorithm takes a state and a temporal logic formula, and com-
putes a new formula. When the planner picks a new candi-
date action to append it to the current sequence, it computes
the state that results from executing this action and then calls
the progression procedure. This then checks that the new
state satisfies the current formula, and returns a new formula
that is to be checked next.

With the purpose of further computational improvement,
it has been suggested that some forms of control knowl-
edge are better incorporated as further preconditions of ac-
tions (Bacchus & Ady 1999; Kvarnstni & Doherty 2000;
Rintanen 2000; Kvarngtrm 2002; Gabaldon 2003). Prelim-
inary experiments (Bacchus & Ady 1999; Kvarmstr2002)
indicate that control as preconditions does indeed lead to a
speed up. However, a systematic procedure for deriving pre-
condition control from general temporal logic formulas has
not been developed so far. One of our goals in this paper is
to move toward filling this gap.

Using the situation calculus (McCarthy 1963) as our for-
mal framework, specifically Reiter’s situation calculus ac-
tion theories (Reiter 1991; 2001), we look at planning with
search control of the form used by the TLPlan and TALPlan-
ner systems. First, we define a set of constraints that are
obtained from a search control formula and which can be
used as precondition control. These constraints may refer
to any past situation in addition to the current one, so we
use a recent extension of Reiter’'s action theories in which
the Markov propertyis not assumed (Gabaldon 2002). We
then adapt the progression algorithm to our logical frame-
work and show that the aforementioned constraints and the
progression algorithm eliminate exactly the same plan pre-

fixes. Finally, we discuss how by applying the compilation situations, and to situations in a bounded future, with respect
technique presented in (Gabaldon 2003), we can take a non-to the current situatios.

Markovian action theory with precondition control and ob- For example, a nonMarkovian precondition axiom for a
tain a Markovian one that has the search control “compiled” computer system log-on action that allows only two attempts
into it. Put together, given a linear temporal logic formula, could be:

this is a procedure for obtaining precondition control from Poss(log_on(usr, pwd), s) =
it that is equivalent to applying the control through the pro- verified(usr, pwd S)’/\ ﬂ(ﬂ’sl 52){s2C s1 C s A
gression algorithm. denied(usr, s1) A denied(usr, sg)A

Basic Action Theories (Vs3)(s2 C 53 € 5) 5 ~loggedOn(usr, s3)}-
We axiomatize planning domains in the situation calculus. Before we proceed, a word on notation: while lower case
This sorted second-order language has three basic compo-letter arguments in predicate and function symbols denote
nents: actions, situations, and fluents. A distinguished set variables, for example for actions,s for situations,z for
of function symbols is used to form actions: terms such as objects; we will usex to denote arbitrary but explicit action
open(z). Situations are terms that denote sequences of ac- terms such aswove(x,y), ando for situation terms such as
tions and represent possible “histories” of the domain. The do(move(z,y), s). All symbols may have sub/superscripts.

initial situation is denoted by the consta$it and other his- Variables that appear free are universally quantified unless
tories are constructed by means of #e function which stated otherwise.

maps an action and a situation into a situation. The term

do(open(boz), do(unlock(box), Sp)) is an example. Flu- Logical specification of the planning task

ents denote properties of the domain that change as a resultperhaps the earliest formal specification of the planning
of executing actions._ They can be functional_or relational problem is due to Green (1969) and was postulated in the
and they all have a situation as an argument in the last po- sjtyation calculus. Given a background axiomatization of
sition. A real Valued fUnCUOmGlOCity(z, S) and a relat|0n the p|anning domain’ Wh|Ch in our case Wou'd be an ac-
locked(z, s) are examples of fluents. We only use relational - tion theoryD, and a formulaz(s) representing the goal as a
fluents in this paper. property that must hold in the final situatienthe planning

~ A basic action theoryPirri & Reiter 1999; Reiter 2001) problem is specified as the problem of proving the following
in this language includes four domain independent axioms entailment:

which axiomatize situations and the situation predecessor re-
lation . Since in our framework situations are sequences of D |= (3s).executable(s) A G(s)
actions, that a situatiost precedes a situation i.e.,s’ C s, where
means that the sequen€es a prefix of sequence dot
The domain dependent axioms in a basic action theory are ezecutable(s) = (Va, s').do(a,s') C s D Poss(a, s').

the following: Put in words, planning is defined as the problem of prov-

1. For each action functioA(Z), anaction precondition ax- ing the existence of a planthat is executable, i.e., the pre-
iom of the form: conditions of each action are satisfied when it is executed,
and such that the goal holds at the end.

Poss(A(Z =1TI4(Z, s). . . .
0s5(A(), 5) Al#9) We are concerned with planning using search control, so

2. For each fluenf(Z, s), a successor state axioof the let us start with a specification of this problem based on
form: Green’s. As we mention in the introduction, the type of
search control we are interested in using consists in prop-
F(Z,do(a,s)) = ®r(Z,a,s). erties of sequences. Of course the goal can be considered a

_ _ _ _ special kind of sequence property that happens to refer only
3. Unique names axioms for actions. For instance: to the final situatiors. In general, the search control is a
open(x) # pickup(x). property that refers to any situation lying between an initial

4. Axioms describing the initial situation of the world: a fi- Situations and afinals’. Denote this bySC(s, s").

nite set of sentences whose only situation term may be the | NOW, even ifs is a plan in the sense thé(s) holds, it
constants,. is not necessarily the case that'(Sy, s) hold. If a plan is

)))) o] found following the search control, what we have instead of
Action theories as defined in (Pirri & Reiter 1999; Re- 5¢(S,, s) is that for a situation’ equal to or succeeding

iter 2001) are Markovian: the preconditions of an action §¢/(s,, s') holds.

and its effects depend only on the situation where the action .) o

is to be performed. This property is realized in an action Formally, we will use the following specification of plan-

theory through the requirement that formulas (%, s) and ning vlvith aclassical goali(s) and a search control formula

®r(Z,a,s) not mention relatior— nor any situation term SC(s', 5):

other than varlable.) Temporally extended goals (Bacchus & Kabanza 1998) are
A nonMarkovian action theory (Gabaldon 2002) allows, similar to the control formulasC(s’, s) and can be incorporated

under certain restrictions, that these formulas refer to past in a straight forward manner.

D [(3s).executable(s) A G(s) A

(33/){5 Cs' A 50(5075/)} (1) def

odls’, s] = (Fa).do(a,s") C s A ¢[do(a, s'), 5]

Control Expressions

Let us introduce the syntax of the expressions we will use for

search control. These expressions will basically be obtained

from situation calculus formulas by removing the situation

arguments from atoms and by adding linear temporal logic

opgerator notation. g) P J Op[s',s] € (Is1 15 C 51 C 5)¢fsu, 5]
Given a situation calculus formula that does not men-

tion relationC nor equality between situationsséuation-

suppressed expressi@obtained by removing the situation Ogls’, s def (Vs1: 8" E 51 C 8)p[sa, 8]

argument from all fluent an@oss atoms in the situation

calculus formula.

o Uls, s] def (3s1: 8" C 51 C s){)[s1, s]A
(Vs2 : 8" C 59 C s1)@[s2,s]}

For a situation suppressed expressipwe will use¢|o] Just as the temporal logic connectivesand <& can be
to denote the situation calculus formula obtained by plac- defined in terms of U, a similar relationship holds in the
ing o as the situation argument in all the fluent aRdss case of the above expressions:
atoms ing. For instance, it is (3z).on(x, A) A clear(z),
where on and clear are fluents, thenpdo(a,s)] stands O@[s', s] = True U ¢[s, 5
for (3x).on(x, A, do(a, s)) A clear(z,do(a,s)). Further-
more, for a situation-suppressed expressiom[s’, s| de- and
notesg[s’].

. . O / = —|<>—\ / .
For temporal expressions, we will borrow the temporal ols's sl ols's sl

logic symbols (next), U (until), O (always), and> (some-

time). We will use them with situation suppressed expres- Forward-chaining planning with search

sions to form control expressions. control

Definition 1 Thecontrol expressiorare the smallest set of Forward-chaining planning systems build plans by incre-
expressions such that mentally adding actions to an initially empty sequence.

1. a situation suppressed expression is a control expression: These systems use the search control knowledge to eliminate

. . some of the partial sequences that, according to the control
2. it ands) are control expressions, then so aig, ¢ U ¢, knowledge, cannot be extended into a full plan or will result

O, ©b, ¢ AV, ¢V Y, =6, (Fv)d, (Y0)¢. in a plan which is of lower quality in some sense.

In terms of the situation calculus, suppose that a new ac-
n « is added to a sequeneé. If the resulting sequence

o = do(a, o’) satisfies the goal, i.eD = G(o), then we

are done. Otherwise, can be extended into a full plan iff

As in the case of situation suppressed expressions, for a ;o
control expressiom, ¢[s’, s] is an abbreviation for a situa-
tion calculus formula. Intuitively, by[s’, s] we mean that
the temporal expressiafi holds over the sequensewnhich
starts ats’. For instancélp[s’, s intuitively means thap is Dk (3s).0C s AG(s) A
true in every situation betweenands, inclusive. ' (3s').5 C s' A SC(So,).

Obviously, these control expressions are not meant to cap- - ’
ture the semantics of temporal modalities, since the seman-
tics of the temporal logic operators is defined in terms of
sequences (of worlds) that are infinite. We introduce these
expressions for two reasons: 1) they are a convenient nota- D= (3s').0 = s ASC(Sy, s"). 2
tion for writing this type of search control and 2) it facili- o) . .
tates an analysis of the relationship between our description ~ The problem of verifying this condition oa is a prob-
of planning with search control in the situation calculus and lem no differentto the general planning problem itself. This
planning with search control through the progression algo- fules out checking the existence of a situatibms specified

Thus the new sequeneemust satisfy the following:

rithm. in (2).

The precise definition of the abbreviations for the tempo- S0 we compromise and weaken the requirement. All the
ral expressions is the followirgy: control checking will be done on the partial plan prefix
—— _ o instead of on a future situatiori as in (2). That is, we will

We use the following abbreviations throughout: only check whethes satisfies some properties that are nec-

(3s1:8 Cs C)W L (Fs1){s' Cs1As1 CsAW} essarily true when condition (2) holds. We define such prop-

and erties for the temporal modalities introduced in the previous

(Vs1:8'Cs1 Cs)W Lof (Vs1){[s Cs1As1 Cs]DW} section.

Plan Prefix Control Conditions
Let us consider the formula for the temporal expression with

U. Suppose that the search control is dictated by the expres-3.

siong U 1.
The instance of condition (2) for this control expression,
on a prefixo is the following:

(3s").0 T s'A
(3s1: 80 T s1 C s"){¢[s1,8|A
(VSQ :SoC sy 51)¢[527sl]}

From this, we can derive two cases based on whether
is a situation succeeding or preceding

(3s)o T s A(Fs1: 0 C s1 C s){[s1,s]A

(Vs2: S C s2 T s1)p[s2,8]} @)

(3s")o T s A(3s1: S0 C s1 C o){[s1, S|A 4
(Vs2: S C s2 T s1)p[s2, 8]})
In the case of the sentence (8),is a successor situation
to o, putting beyond reach. So we give up checking
Furthermore, for subformul@/ss : So C so C s1)d[s2, s'],
we can only check situations betwe8pn ando; and each
time ¢ can be checked “up ta# only. So with respect to (3)
we will require a prefix to satisfy the following condition:

(Vs2 : So C s2 C 0)¢'[s2, 0]

In the case of sentence (4) the only limitation is that both
¢ andy can be checked only up ta The condition derived
is this:
(3s")o C §'A
(3s1: So E 51 C 0){¢)[s1, g]A
(VSQ :SoC s C 81)(;5/[82,0']}

We have replaced and ¢ with ¢’ and¢’. The reason
is thaty) and¢ may themselves be temporal expressions. If
this is the case, they cannot be verified beyeralther and

so similar conditions as the above two need to be derived for

N —

2. pscc(od, s, s
(Va)[do(a, s) E s" D psce(g, do(a, s), s)];
pscc(Cp, s, 8") = True;
psce(0e, s,8") = (Vs1: s C 51 C §')psec(o, s1,8');
pscc(p U p, s, ') =
(Vsg : s C so C s)psce(g, s2,8") V
(3s1: s C s1 C 8"){psce(, s1,8") A
(Vsg : s C 8o C s1)psce(o, s2,8")};

O N, s,8") = psce(p,s,s') N psce(), s, s');
¢) \/ w7 Sl) S) = pscc(d)? Sl) S) vpscc(u% Sl) S)’

pscc _'¢7 S, 8/) = ﬁpSCC(QS, S, S/);

psce((Fv)d, s, s') = (Fv)psce(g, s, 5');

psce((Yv), s, s') = (Yo)psce(g, s, 57).
Example 1 In the briefcase domain, objects can be put in
or taken out of a briefcase, and the briefcase can be moved
to different locations. When the briefcase is moved to a dif-
ferent location, all objects inside it move to that location as
expected. In this domaimg(x, !, s) andinBcase(z, s) are
some of the fluentsit(z, [, s) means that objeatis at loca-
tion [in situations while inBcase(x, s) means that object
x is in the briefcase in situatios A constantBc represents
the briefcase.

One of the search control formulas given in (Bacchus &
Kabanza 2000) for the briefcase domain is this:

(Vz,loc) O{at(Be,loc) A goal(at(z,loc)) D
[at(Bc,loc) U —~inBcase(z)]|}

Intuitively, it says that the briefcase must remain in a lo-
cation until all objects that need to stay in this location ac-
cording to the goals are taken out of the briefcase.

Denote this control expression ky Let us find the con-
dition pscc(¢, So, s) (We skip some of the simpler steps).

pSCC(¢, SO) S)
(Vz,loc)(Vsy : So C s1 C s)psce(er, 1, 8)-

4.
5.

. pscc
pscc

NN~

where

61 = at(Be, loc) A goal(at(x,loc)) D
1= at(Be,loc) U —inBcase(z).

them. In other words, this process must continue recursively Then,

on the subformulas of the search control.
The necessary condition we have derivedddd) is the
disjunction of the conditions obtained from each case:

(Vs2 : Sp C 82 C 0)¢'[s2,0] V
(3s1: 50 C s1 E o){¢)'[s1,0] A
(VSQ : S() C sy C 81)(1)’[82,0’]}.

In the following definition, we give the condition obtained
for each form of search control expression.

Definition 2 Let¢ be a search control expression. The pre-
fix control condition induced by on a sequence’ that
starts ats, denoted byscc(¢, s, s'), is defined as follows:

1. if ¢ is a situation suppressed expression, i.e., a search
control expression that does not mention any of the tem-
poral operators, then

psce(e, s, s') = ls];

psce(1, s1,)
psce(at(Be,loc) A goal(at(z,loc)), s1,8) D
psce(at(Be,loc) U —inBcase(x), s1, 5),

pscce(at(Be, loc) U —inBcase(x), s1,8) =
(Vs3 : 81 C s3 C s)psce(at(Be,loc), s3,8) V
(3s2 : 81 C 59 C s){pscc(—inBcase(x), s2,8) A
(Vsg : s1 C s3 C s2)psce(at(Be,loc), s3,5)},

psce(at(Be, loc) A goal(at(z,loc)), s1,s) =
at(Be,loc, s1) A goal(at(z,loc)),

pscc(—inBease(x), s2,8) = —inBcase(z, s2),

psce(at(Be,loc), ss, s) = at(Bc, loc, s3).

The final condition obtained from is this:

The progression algorithm as defined in (Bacchus & Ka-
banza 2000) transforms universal and existential quantifica-

(Va, loc)(Vsy : So E 51 C). tion into a conjunction and a disjunction, respectively. Since

at(Be, loc, §1) A goal(at(z, loc)) > such a transformation does not produce an equivalent for-

{(¥s3: 51 C SEE s)[at(Bc3 loc, s3) V mula, the algorithm requires the use of “bounded quantifica-
(352 : 51 £ 82 C s)[~inBease(z, s2) A tion” instead of normal logical quantification. For the pur-

(Vsg : 51 C 83 T s2)at(Be, loc, s3)]}- pose of analyzing the relationship between our plan prefix

conditions and the progression algorithm, the restriction of
The following theorem confirms the soundness of the plan bounded quantification is unnecessary. Progression of quan-
prefix conditions in Definition 2 with respect to the original tified formulas can be handled in the simple manner shown
search control expression. above.

The Bacchus-Kabanza progression algorithm computes a
temporal condition the next world must satisfy. Similarly,
the operatoPr(¢, s) computes the control condition that is

D= (Vs). (3){s T s’ A ¢[So, s']} D psce(¢, So, s). to be checked in the next situation. In terms of sequences of

actions, it computes the condition that needs to be checked

The prefix conditions are certainly not sufficient condi- on one-action sequence. For our analysis, we need to define
tions. It may be impossible to extend a plan prefix that sat- an operator that computes the condition for a sequence of
isfies them into a sequence that satisfies the original control any length. This can be defined by recursion:
expression. In the next section, we look at the relationship pefinition 4 The progression of a control expressiah
between the above approach to enforcmg control and the usethrough a sequencéo(d, s), denoted byPr* (¢, do(d, s)),
of control through the progression algorithm, and show that ;& jofined as follows:
the conditions eliminate the same prefixes progression does.

Prr(¢,s) = Pr(¢,s

Progression Pr*(¢,do(a,0)) = Pr(Pr*(¢,0),do(a, 0)).

Theorem 1 Let D be a basic action theory ang be a
search control expression. Then,

Bacchus & Kabanza'’s progression algorithm takes as input For example, for the contral o Q, where(is a fluent

a linear temporal formula and a worldw, and computes ; ' . '
. U and a sequene®([A;, Az, A we have:

a temporal formula’. Intuitively, 7 is the formula that q ([A1, 42, 4s], 5)

needs to be checked in the successor world.oThe same Pr*(00Q,do([A1, As, A3] So)) =
algorithm can be used to compute the progression of a search Q(do(A1, So
control formula but with respect to a situatiernstead of a Q(do([Ax, Ag] SO))
world. (O([Al,Ag, Ag] So)) A
We will define an operatoPr (¢, s) for computing the QANO0Q
progression of an expressigrnn a situations. The control
operandg is a hybrid expression: it may have both situ- As the above example shows, the result of progression

ation suppressed expressions and situation calculus formu-through a sequence may contain subexpressions that are not
las as subexpressions. We will refer to this type of expres- sjtuation calculus formulas. These expressions are parts of
sions ash-expressions The output ofPr(¢, s) is also an the control that must hold in future situations, but say noth-
h-expression. ing about the current plan prefix. Thus, when checking the
control on a prefix, we will ignore them by assuming they
are satisfied: for an h-expressignlet || ¢|| denote the sit-
uation calculus formula obtained frognby replacing every

1. if ¢ is an atomic situation suppressed expression, then control subexpression withrue.

Definition 3 Let ¢ be an h-expression. The progression of
¢ins, Pr(¢,s), is defined as follows:

Pr(¢,s) = ¢ls]; The following theorem tells us that the prefix control con-
2. if ¢ is a situation calculus atom, thePr (¢, s) = ¢; ditions from Definition 2 are exactly what the progression
3. Pr(og,s) = ¢; algorithm checks on partial plans.
4. Pr(p U, s) = Pr(y,s) V (Pr(¢,s) Ao U); Theorem 2 Letdo(d, s) be a situation terny be a situation
5. Pr(Go, s) = Pr(é,s) Vv Ob: variable orSy, and¢ be a search control expression. Then,
6. Pr(0¢,s) = Pr(¢,s) A Og; D E (V) A||Pr*(¢,do(a, s))|| = psce(d, s,do(d, s))}.
7. Pr(¢ A, s) = Pr(¢,s) A Pr(y,s); Proof: (sketch) We begin with a lemma thd®r* distributes
8. Pr(¢Vp,s) = Pr(p,s)V Pr(i,s); over the propositional connectives and over quantifiers:
9. Pr(=¢,s) = ~Pr(¢,s); Lemma 1 For all ¢,,¢’, 0,
10. Pr((v0)¢, s) = (v0)Pr(g, s); 1. Pri(¢ A, o',0) = Pr'(6,0",0) A Pr*(¢,0",0);
11. Pr((3v)e, s) = (Jv)Pr(s, s). 2. Pre(¢pV,o',0) = Pr(¢,o’,0) V Pr*(¢,0',0);

3. Pr*(=¢,0’,0) = =Pr*(¢,0',0);
4. Pr*((3x)¢,0',0) = (3x)Pr*(¢,0',0);
5. Pr*((Vz)¢,0’,0) = (Vz)Pr*(¢,d’,0).

The proof of this lemma is straight forward from the defi-
nitions of Pr and Pr*.

The following equivalent but less elegant recursive ver-
sion of Pr* allows a simpler proof and so we will use it:

Pr,(¢’ S’ s) = Pr(d)? 8)
Pr'(¢,s,do(0, s)) = Pr'(Pr(¢, s),do(a1, s),do(@k, 5)).

Furthermore, we prove a slightly stronger theorem: let
a be a sequence of action terms, . . ., ax, do(d, s) be a
situation term, and be an h-expression. We prove: For
every prefixo = do([a1, . ..,], s) of do(d, s)

D & (V).||Pr'(¢,0,do(a, s))|| = pscc(o, o, do(a, s)).

The proof is by induction on the structure ¢fand the
difference between the length @6(&, s) ando.

Assume the theorem on h-expressignand). Let us
prove the theorem for the expressioiU .

For the base case, we have that

Pr'(pU,s,s) =Pr(pUq,s)
= Pr(¢,s) V (Pr(¢,s) Ao U).
Hence,
[Pr'(¢ U, s,s)|| =
|Pr(w, s)|| V ([[Pr(s, s)|| A ll¢ U ||

[1Pr(, 8)|| Vv (| Pr(¢, s)|| A True)
1Pr(@, s) |V [[Pr(o, s)]-

On the other hand we have:

pscc(p U, s,5) =
(Vsg : s C s2 C s)psce(, s2,8) V
(3s1: s C s1 C s){psce(t, s1,5) A
(Vsg : s C 82 C s1)psce(o, s2,5)}

;scc(qb, s, 8) V psce(, s, s).

The theorem follows from this and the induction assump-
tion ong, v.

Now, consider a prefis’ of o = do([a1, . . ., ax], s) such
that the length/, of ¢’ is strictly less thark. That is, o’
consists of the firstaction terms irv.

We have:

Pri(¢ U, o', 0)
= Pr'(Pr(¢ Uw,d’'), do(agq1,0"),0)
= Pr'(Pr(y,0")V (Pr(¢,0") Ao U), do(aiy1,0'),0)
= Pr'(Pr(v,0’), do(aiy1,0'),0) V
PT,(Pr(¢a0/)v do(alJrlaa/)aa) A
Pr'(¢ U, do(ayq1,0'),0).

Thus, by definition ofPr’/, we have that

Pri(¢ Uy, o' 0) =
Pr'(¢,0',0)V
Pr'(¢,0',0) A Pr'(¢ U ¢, do(ci+1,0"),0).

®)

On the other hand we have that

psce(¢ U ip,o',0) =
(Vsg : 0’ C s9 C o)psce(e, s2,0) V
(3s1: 0’ C s1 C o){psce(v, s1,0) A
(Vsg : 0’ C s C s1)psce(e, s2,0)}

psce(d, o', a) A

(Vs : do(ay41,0") C s2 C o)psce(d, s2,0)

V

pSCC(d)v U/a U) A

(Vsa : 0/ C s T o)psce(d, s2,0)

V

(3s1 : do(ayq1,0") E s1 C o){pscc(y), s1,0) A
(Vsg : do(aqq1,0") C sg T s1)psce(p, s2,0) A

psce(¢,0',0)}

ce(p,0',0) A
s2 : do(aqt1,0") E s2 C o)psce(p, s2,0)

=3

(¢;UI70)

<3<
Q
Q

psce(¢,a’,0) A
(3s1 : do(ay41,0") E 81 C o){pscc(, s1,0) A
(Vsg : do(ayy1,0") E s9 T s1)psce(p, s2,0)}

psce(y, o', 0) V
{psceld, o', 0) A
(Vsg : do(ayq1,0") E s2 C o)psce(p, s2,0) V
(3s1 : do(ayq1,0") C s1 C o){pscc(y), s1,0) A
(Vsg : do(aqq1,0") C sg T s1)pscc(p, s2,0)}}

psce(ty,o',0) v
(pSCC(¢, OJ7 U) A pSCC((b U w7 dO(OéH_l, OJ)7 U))

The theorem then follows from this, (5), and the induction
assumptions.

The proof of the theorem for other forms of control ex-
pressions is similar. O

Control Conditions in the Action Theory

The plan prefix conditions denoted pycc(¢, s, s) are sit-
uation calculudounded formulgsa class of formulas that
can be used as action preconditions in nonMarkovian action
theories (Gabaldon 2002), and in some cases they can be
compiled into preconditions, as shown in (Gabaldon 2003),
of the classical Markovian form.

Control into nonMarkovian Theories

The simplest way to incorporate the plan prefix conditions
into an action theory is by allowing nonMarkovian axioms.
In this case we can simply adgcc(¢, So, s) as an addi-
tional precondition to every action precondition axiom as
follows:

Poss(A(T), s) = ©6)
114 (&, s) A psce(p, So, do(A(Z), s)).

Intuitively, we are treating actions that violate the control
conditions as if they were impossible. Since a planner only
adds to the current sequence actions that are possible, ac-
tions that violate the control are thus never added to a plan
prefix.

In this setting, determining whether an action is exe-
cutable in a given situation amounts to solvingrajection
problem Following (Reiter 1991; 2001), we solve such a
problem in the situation calculus by applyiregression In
previous work (Gabaldon 2002) we generalized Reiter’s re-
gression operatofy, so that it can be applied on formulas
such as our control conditions above. In other words, we
extended the class of regressable formulas defined by Reiter
with formulas that, under some restrictions, mentoand
guantify over situations. This allows us to solve projection
problems with respect to nonMarkovian action theories.

At first thought it may seem counterintuitive to use regres-
sion with forward-chaining planning. But forward-chaining
planning is used for generating candidate sequences of ac-
tions, i.e., plan prefixes, while regression is used for solving
projection problems once we have a candidate sequence in
hand. In other words, forward-chaining is used for generat-
ing a sequence and regression for the independent problem

whereW’ is bounded bys;. Intuitively, if a formula is
bounded bys, then all variables of sort situation that ap-
pear in it are restricted to range over predecessors of situ-
ation terms of the forndo(d, s), i.e., over past situations
relative to the current situation or relative to a future
situationdo(&, s).

Then,

MIW] = M[Pw (Z,do(d, s))]

whereZ are all the free non-situation variables in the orig-
inal formulaW. Py is a new fluent that is added to the
theory. It has the following successor state axiom:

Py (Z,do(a, s)) = M[W'[5, 1V P (Z,s).

Here, W2 denotes the formula obtained froii by re-
placing the variable everywhere il¥ with the termo.

The new fluentPyy is initially set to false:—Py (&, So).

e SupposdV is a formula of the form:

(3s1: So E s1 C do(d, 8)){W71 A
(Vsg @ s1 C s2 C do(d,s))Wa}

whereW;, W5 are bounded by, , s, respectively. Then,
MIW] = M[Pw (T, do(d, s))]

wherex are all the free non-situation variableslin and
Py is a new fluent with successor state axiom:

Py (Z,do(a, s)) = .
MWL o] VAMIWR[2] A P (Z,5)}

and initially false:— Py (%, So).

of testing properties against it. e The remaining cases are simply:

Control into Markovian Theories by Compiling

The other alternative for incorporating the control condi-
tions, which seems to be computationally advantageous, is

M[=W] = - M[W],
MWy A Wa] = M[W1] A M[Ws,
M[Bv)W] = (Fv)M[W].

to apply the transformation operatdrl from (Gabaldon One advantage is that the resulting axioms only refer to the
2003) to the theory obtained as described in the previous current situatiors. Another advantage of applying the trans-
subsection and “Markovianize” it. This is achieved by re- formation is that when this is done, the control precondition
placing each action precondition axiom (6) with the follow- in each axiom becomes specific to its action fypH),

ing: due to the fact thatlo(A(Z), s)) is an argument opscc.
Since the transformation works in part by applying regres-
Poss(A(T), s) = ILa(Z, s) A M(psce(, So, do(A(T), 5))]. sion steps, the result is simpler, action type specific control
conditions. The following example illustrates this.
The transformation operatdvt is roughly defined as fol- Example 2 Consider the following briefcase domain con-
lows: trol expression

e Supposél is a formula whose only variable of sort situ-
ation iss, then M[W] = R*[W].

at(Be, L) U —inBcase(A) @)

Here, R*[W]is the result of applying regression steps un- saying that the briefcas@c must stay at the locatioh until

til all termsdo(&, s) have been regressed downsto is that object be at locatiorY.).

e SupposéV is a formula of the form

3There can be an infinite number of actiorstanceseven if

there is a finite number of actidgpes i.e., action functions, in the
(Fs1 : Sp C 81 C do(a, s))W’ language.

Suppose that this domain includes the action

move(x,loc), for moving an objectz to a location Py(do(a, 5)) =
loc, which is possible whenever the target location is R [~inBe(A do(zz)] A
different than the current location of the object Thus M((Vsa: So c so c do(a, s))at(Be, L, s3)] V
we would have the following precondition axiom for this Py(s) = ’ T
action: _
Poss(move(zx,loc), s) = Re[—inBc(A, do(a, s))] A M[-Pi(do(a,s))] V Pa(s)

(3cloc).at(z, cloc, s) A cloc # loc. =
a # putIntoBc(A) A

For the sake of simplicity, let us assume that this is the [-inBc(A4, s) V a = takeOutof Bc(A)|A
only action that affects thet, so the dynamics of this fluent {a = move(Be¢,L) vV
are captured by the following successor state axiom which at(Be, L, s) A =(3)a = move(Bce, 1)} A—=Py(s) V
states that an object is at a locatibn iff it has just been Py(s).
move there or it was already there and it has not just been

moved anywhere: And so we have thaM [P (do(move(z,loc), s))] is equal

to R? [Pz (do(move(z, loc), s))], which in turn is equal to:
at(x,loc,do(a, s)) = a = move(z,loc) V

at(z,loc, s) A =(3)a = move(x,1). move(a, loc) # putIntoBe(A) A
[-inBc(A, s) V move(x, loc) = takeOutof Be(A)] A
{move(x,loc) = move(Be, L) V at(Bc, L, s) A

We will also need the successor state axiom of the fluent (Imove(x, loc) = move(Be. 1)} A

inBc(z, s) which means that objeatis inside the briefcase

in situations: ;j{g()s)V
inBc(zx,do(a, s)) = a = putIntoBe(x) V =
inBe(z, s) A a # takeOutof Be(x). —inBc(A,s) Nx = Be ANloc =L A=Py(s) V
The prefix condition obtained from the control expres- Falo).
sion (7) is the following: We thus obtain, by applying the transformation, the com-
psce((7), So, do(move(z, loc), s)) = piled prefix condition:
(Vs2: So C s2 C do(move(z, loc), s))at(Be, L, s3) V z=BeAloc=LA—Pi(s)V
(3s1: So & 1 T do(move(z, loc), s)) —inBc(A,s) Ao = BeANloc =L A=Pyi(s) V P(s)

[-inBcase(A, s1) A (Vsa2: So T so T s1)at(Be, L, s2)]. =
) . . x = BcANloc=LA-Pi(s) V Pas).
Let us apply transformatioM to this formula. Consider

the first disjunct, putin the equivalent form: Applying the transformationM yields the following pre-

—(3sa: So T 55 C do(move(w, loc), s))-at(Be, L, s2) condition axiom formove(z, loc):
From this, the transformation results in Poss(move(, loc), s) =
(3cloc).at(x, cloc, s) A cloc # loc A
M([=Py(do(move(x,loc), s))| = x = BcAloc=LA-Pi(s) V Pas).
R*[—Py(do(move(x,loc), s))].
The new fluentP; has the following successor state axiom: Related Work
As we have mentioned above, the approach to planning with
Pi(do(a, s)) = search control we have considered in this paper was intro-
M[-at(Bc, L, do(a, 5)) V P1(s) duced by (Bacchus & Kabanza 2000). The TALPlanner sys-
= R*[~at(Bc, L, do(a, s)) V P1(s) tem of (Kvarnstoim & Doherty 2000) follows Bacchus &
= a # move(Bc, L)A Kabanza’s approach: it utilizes search control knowledge
[~at(Bc, L, s) V (3l)a = move(Be,1)] V Pyi(s). expressed first-order linear temporal logic and Bacchus&
HenceR* [—P; (do(move(z, loc), s))] is equal to: Kabanza’s progression algorithm. It also pyovides the a!—
ternative to express the control knowledge in the system’s
—{move(z,loc) # move(Be, L) A underlying logical language TAL. The TALPlanner system
[-at(Bc, L, s) V (3)move(x, loc) = move(Bc,1)] V has been extended to incorporate some forms of prefix con-
Pi(s)} dition extraction that is similar to what we have considered
= here. (Kvarnstin 2002) shows how to extract prefix condi-
x = BeNloc= L A—Py(s). tions from some types of search control formulas in the TAL

language The class of control formulas he considers corre-
From the second disjunct, we obtain a similar sponds to formulas of the formi¢ where¢ is a formula
M([P;(do(move(z,loc), s))] and a new fluen, with the that mentions no temporal operator other thgnext), and
following successor state axiom: this cannot be nested. In this paper we show how to obtain

prefix conditions from general temporal logic formulas for
nonMarkovian basic action theories. Some of these condi-
tions can be compiled to produce a Markovian theory. The
conditions we obtain from the aforementiorieg formulas

the background theory in the situation calculus and how it
can be employed in planning algorithms. In (Lin 1998), he
formalizes control knowledge that is in the form of a partial
order on actions, in order to provide a situation calculus se-

are indeed among those that can be compiled, but the classmantics to the Prolog cut operator. Our work is in the spirit

is larger. Example 2 shows an example with a formula using
the operatofU (until). Example 1 shows a formula of the
form O[P D (Q U R)|, whereP, @, R are non-temporal.
This is a very useful form of control formula that also yields
compilable prefix conditions in our framework. On the other
hand the TALPlanner system utilizes several other formula
optimization techniques that we have not considered. We are
currently working on generalizing the transformation opera-
tor so that it can be used to compile all control expressions
¢ of Definition 1.

of Lin’s, of “the situation calculus as a general framework
for representing and reasoning about control and strategic
information in problem solving.”

Conclusion

We have considered the problem of planning with declar-
ative search control of the form used in Bacchus & Ka-
banza’s TLPIlan system, using the situation calculus as a for-
mal framework. We start with Green’s specification of the
planning problem and modify it by adding search control to

Reiter (2001) also discusses the use of domain dependentthe problem. In the modified specification, search control

control knowledge with several simple planners written in
the high level, situation calculus based language Golog. Re-
iter encodes control knowledge in the definition of a predi-
catebadSituation(s). Reiter's programs are also forward-
chaining planners and intuitively work as follows: an ac-
tion a is chosen, then it is executed by the program (thereby
checking that the action’s preconditions hold) and then the
test —=badSituation? is executed. This test amounts to
checking if—badSituation(do(a, s)) holds, wheres is the
current plan prefix. The planner proceeds recursively un-
til a situation that satisfies the goal is found or a bound is
reached. By using th&adSituation predicate instead of
using the search control as further preconditions, Reiter em-
phasizes that control constraints are not executability condi-
tions although both have the effect of eliminating sequences
of actions. We could easily adapt our approach and use
our plan prefix conditions to define bad situations instead
of adding them as further preconditions. As presented in his
book, Reiter’s predicatéadSituation must be defined by

an axiom:

badSituation(s) = W

whereW is a formula whose only situation variable is
The predecessor relatianon situations cannot appeariivi
nor any situation variable other than However, using the

approach we have presented above, we could take a control

expressionp and definéadSituation as follows:
badSituation(s) = ~M/|pscc(¢, So, s)].

That is, a situation is bad if it falsifies the prefix control
conditions. We can then run Reiter's Golog planning pro-
grams without modification.

Also using the situation calculus as a formal framework,
Lin has considered search control knowledge in planning. In
(Lin 1997), he considers control knowledge in the form of
a subgoal ordering given a conjunctive goa}; & . . . &gz,
the control knowledge is expressed in the form of prece-
dence relation statements of the fogn < g¢; saying that
any plan that achieves, achieves the gogj; first and later
achieveg; while having maintaineg;. Lin shows how sub-
goal ordering knowledge can be derived from the goal and

is viewed as a property of a sequence that possibly extends
a plan. Then, using this specification as a guide, we derive
some conditions that must be satisfied by every plan prefix.
These conditions are situation calculus formulas of a form
on which regression can be used. We then show that these
conditions correspond exactly to the temporal progression
algorithmused in TLPIlan, i.e., a prefix is eliminated through
these conditions iff the progression algorithm eliminates it.
Finally, we show how the control conditions can be directly
incorporated into the precondition axioms of a nonMarko-
vian action theory or, through a transformation, into a classic
Markovian one.

Acknowledgments | am very thankful to Fahiem Bacchus
and Yves Leserance for useful discussions on the subject of
this paper. Also my thanks to the reviewers for their useful
comments.

References

Bacchus, F., and Ady, M. 1999. Precondition control.
Available athttp://cs.toronto.edw/fbacchus/on-line.html

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goalsAnnals of Mathematics and Artificial
Intelligence22:5-27.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for plannigjificial
Intelligencel16:123-191.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planningnnals of
Mathematics and Artificial IntelligencE3:69-93.

Gabaldon, A. 2002. Non-markovian control in the situation
calculus. InProceedings of the 18th National Conference
on Artificial Intelligence (AAAI'02)519-524.

Gabaldon, A. 2003. Compiling control knowledge into
preconditions for planning in the situation calculusPho-
ceedings of the 18th International Joint Conference on Ar-
tificial Intelligence (IJCAI'03)

Green, C. 1969. Theorem proving by resolution as a ba-
sis for question-answering systems. In Meltzer, B., and
Michie, D., eds.Machine Intelligence ANew York: Amer-
ican Elsevier. 183-205.

Kautz, H., and Selman, B. 1998. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Proceedings of the Fourth International Confer-

ence on Artificial Intelligence Planning Systems (AIPS’98)
181-189.

Kvarnstom, J., and Doherty, P. 2000. TALplanner: A
temporal logic based forward chaining planndnnals of
Mathematics and Artificial Intelligenc&0:119-169.

Kvarnstom, J. 2002. Applying domain analysis techniques
for domain-dependent control in TALPlanner.Rrocs. of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS'02369-378.

Lin, F. 1997. An ordering of subgoals for plannirgnnals
of Mathematics and Artificial Intelligence. (Special issue in
honor of Professor Michael Gelfon@)1(1-3):59-83.

Lin, F. 1998. Applications of the situation calculus to for-
malizing control and strategic information: the Prolog cut
operatorArtificial Intelligencel03(1-2):273-294.

McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University. Reprinted in Seman-
tic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410-417.

Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the Situation Calculudournal of the ACM
46(3):325—-364.

Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., editificial In-
telligence and Mathematical Theory of Computatidoa-
demic Press. 359-380.

Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems Cambridge, MA: MIT Press.

Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed?rocs. of the 14th
European Conference on Artificial Intelligence (ECAI'00)
526-530. Amsterdam: 10S Press.

Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spacesAirtificial Intelligenceb5:115-135.

Wilkins, D. E. 1988. Practical Planning: Extending the
classic Al planning paradigm San Mateo, CA: Morgan
Kaufmann.

