
An Improved Integer Local Search for Complex Scheduling Problems

Weixiong Zhang and Xiaotao Zhang
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA

Email: zhang@cse.wustl.edu

Abstract

We consider complex scheduling problems that can
be captured as optimization under hard and soft con-
straints. The objective of such an optimization prob-
lem is to satisfy as many hard constraints as possible
and meanwhile to minimize a penalty function deter-
mined by the unsatisfied soft constraints. We present
an efficient local search algorithm for these problems
which improves upon Wsat(oip), a Walksat-based lo-
cal search algorithm for overconstrained problems
represented in integer programs. We introduce three
techniques to the Wsat(oip) algorithm to extend its
capability and improve its performance: backbone
guided biased moves to drive the search to the re-
gions in search space where high-quality and optimal
solutions reside; sampling-based aspiration search to
reduce search cost and make anytime solutions avail-
able over the course of the search; and dynamic pa-
rameter tuning to dynamically adjust the key param-
eters of the algorithm to make it robust and flexible
for various applications. Our experimental results on
large-scale crew scheduling, basketball tournament
scheduling and progressive party scheduling show
that the new improved algorithm can find better so-
lutions with less computation than Wsat(oip).

1 Introduction and Overview
The recent advances in the research of Boolean satisfiabil-

ity (SAT) have provided great insights into the problem, such
as phase transitions and backbones [14; 15; 22], and have
developed efficient algorithms for solving SAT, represented
by the widely applied Walksat local search algorithm [13;
17] and its variants [7; 13]. The success of Walksat has
also led to the paradigm of formulating and solving com-
plex planning and scheduling problems as SAT problems [9;
11; 10]. Under this paradigm, a complex problem is en-
coded as a SAT problem, a solution to the SAT problem is
found by applying an algorithm for SAT, and finally the so-
lution is mapped back to the original problem. This SAT-
based paradigm has been shown successful for some com-
plex problems in real applications. For example, Blackbox
is one of the most competitive methods for planning [10;

Copyright c
�

2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

11], which was developed under the SAT-based paradigm by
applying SAT encoding and SAT algorithms.

Many constraints in real-world applications, however, are
complex and may not be easily and efficiently encoded as
clauses. More useful and general constraint formulations
are integer linear programs (ILP) [6; 20], which allow inte-
ger variables and complex constraints, and subsume pseudo
Boolean formulae with variables taking values 0 or 1 [5; 19;
20]. ILPs and pseudo Boolean formulae have been well ap-
plied to planning and scheduling problems [1; 12; 20].

Wsat(oip) [20] is an extension to the Walksat algorithm for
handling overconstrained integer programs (OIPs) that involve
hard and soft constraints. Here a hard constraint is one that
needs to be satisfied, and a soft constraint is one that may
be violated but incurs a penalty if not satisfied. The objec-
tive of such a problem is to satisfy all hard constraints, if
possible, or as many hard constraints as possible when over-
constrained, while minimizing a penalty function. Wsat(oip)
has been shown effective on large constraint optimization and
scheduling problems [12; 19; 20].

Inherited from the Walksat algorithm, Wsat(oip) is a local
search algorithm that makes stochastic local perturbations to
the current assignment of all variables in searching for pro-
gressively better solutions [20]. A noticeable characteristic of
Walksat and Wsat(oip) is that whenever multiple choices exist,
a uniformly random choice will be made. For example, when
an unsatisfied clause is to be selected from a set of unsatisfied
clauses, each qualified candidate is given equal change to be
picked. Likewise, the variable whose value is to be changed
to next is chosen, uniformly randomly, from multiple candi-
dates. Such uniform random moves are ineffective when there
exist large “plateau” regions in search space, and the problem
is exacerbated in OIPs and Wsat(oip) when “plateau” regions
become larger due to larger domains of integer variables.

Motivated to solve complex, real-world scheduling prob-
lems with hard and soft constraints, particularly those de-
scribed in [2], we aim to improve Wsat(oip). We introduce
three techniques to the existing algorithm. The first is a method
of making biased moves in attempting to fix possible discrep-
ancies between the current variable assignment and an opti-
mal solution, so as to drive the search to the regions in search
space where high-quality and optimal solutions locate. These
biased moves are devised based on our previous work of back-
bone guided local search for (maximum) Boolean satisfiabil-
ity [23]. The second method is a sampling-based aspiration
search in order to restrict the search to finding progressively

improving solutions, so as to reduce search complexity and in-
crease anytime performance of the resulting algorithm. Our
experimental analysis show that this method is particularly ef-
fective on problems with hard and soft constraints. The third
method is an extension of Hoos’s dynamic noise strategy for
Walksat [8] to Wsat(oip), so that the critical parameter of noise
ratio of Wsat(oip) does not have to be tuned for each individual
problem instance. The resulting enhanced Wsat(oip) algorithm
becomes more robust, general and flexible for different appli-
cations.

The paper is organized as follows. We first describe in Sec-
tion 2 our motivating scheduling problem and consider its com-
plexity. We then discuss pseudo Boolean encoding and over-
constrained integer programs in Section 3, and briefly describe
Walksat and Wsat(oip) in Section 4. We then present the three
improving techniques for Wsat(oip) in Section 5. We exper-
imentally evaluate the extended Wsat(oip) algorithm in Sec-
tion 6, using our scheduling problems and the instances of two
scheduling problems from CSPLIB [4]. Finally, we conclude
in Section 7.

2 Scheduling and Resource Allocation
The specific, motivating scheduling problem of this research
is to schedule a large number of training activities for a crew
over a period of time, ranging from a few days to a few weeks
or months [2]. In such a problem, a trainee needs to finish a set
of required activities that requires many trainers and various
equipment. These activities are associated with one another
by precedent relationships, i.e., one training activity cannot be
scheduled until a trainee has finished certain prerequisites. A
used equipment (resources) can be reused after some mainte-
nance, which itself is an activity to be scheduled. In addition,
individual activities have different importance and carry differ-
ent penalties if not scheduled. The objective is to schedule as
many activities as possible for all the trainees within a gross
period of time using the available trainers and equipment so
that the penalty of unscheduled activities is minimized. Even
though this scheduling problem is not overarchingly sophis-
ticated, it can indeed be viewed as a representative of gen-
eral scheduling problems with various constraints and being
required to optimize an objective function.

At the center of our training scheduling problem, as well as
many other similar problems, is a resource allocation problem,
i.e., a problem of assigning resources (e.g., trainers and equip-
ment in our scheduling problem) to needy activities. The prop-
erties of such an underlying resource allocation problem can
help characterize the scheduling problem. The complexity of
the former will dominate the complexity of the latter. If the re-
source allocation problem is difficult, the scheduling problem
is doomed to be hard as well.

We now consider a simple, static resource allocation prob-
lem that was abstracted from our training scheduling prob-
lem at a particular time. We are given a set of � tasks,� � �����
	����	�������	�����

, and a set of � resources, � �������	�����	�������	������
. Each task requires a certain number of

resources in order to execute, which we call resource re-
quirements. Each resource can only be allocate to one re-
source requirement, and a resource requirement can be met
by having one desirable resource allocated to it. We de-
note the �
� resource requirements of task

� � by � � ���! �#" � 	$! �%" � 	������&	$! �%" ')(� . Table 1 shows a small example of re-

� � � � ��*��� !+� " � 0 1 1! � " � 1 0 0� � ! � " � 1 1 0! � " � 1 1 0

Table 1: A simple resource allocation problem.

source requirements of two tasks over three resources. An en-
tity of 1 (0) in the table means that a resource can (cannot)
be allocated to the corresponding requirement. In general, the
available resources may not be sufficient to fulfill every task;
and a task carries a penalty, called task penalty, if not sched-
uled. The resource allocation problem is to allocate the re-
sources to the tasks so that the overall penalty of unfulfilled
tasks is minimized, which constitutes an optimization problem.
If all tasks have equal penalties, it is equivalent to fulfill the
maximal number of tasks.

Compared to some other resource allocation problems, for
instances the permutation problems considered in [18; 21], our
problem has a unique, small structure embedded within a task.
A task can be scheduled if and only if all its resource require-
ments are met. We call this feature bundled resource require-
ment. Furthermore, a pair of resource requirements have an
exclusive resource contention in that a resource acquired by
one requirement cannot be allocated to the others. We call this
feature exclusive resource contention. To be convenient, we
call the problem bundled, exclusive resource allocation prob-
lem, or BERAP for short.

We now show that BERAP is NP-hard [3]. To this end,
we prove that a decision version of the problem is NP-
complete [3]. A simple, special decision version of BERAP
is the following. Given a set of tasks, each of which has a set
of resource requirements, decide if at least , tasks can be ful-
filled. Here we simply consider every task having a penalty
one if it is not fulfilled.

Theorem 1 BERAP with more than two resource requirements
per task is NP-complete.

Proof: To show the NP-completeness of the above decision
version of BERAP, we reduce a NP-complete set packing prob-
lem [3] to it. Given a collection - of finite sets and a positive
integer .0/21 -31 , set packing is to decide if - contains at least. mutually disjoint subsets. Formally, it is to decide if there
exists -54768- such that 1 -94:1<;=. and for all - �?> -54 and- �7> -@4 , - �5A - � �CB . The problem is NP-complete when ev-
ery subset - � > - has more than two elements. We now reduce
an NP-complete set packing problem to our decision BERAP.
We map all the elements in the subsets of a set packing prob-
lem instance to the resources of BERAP, each subset of the
set packing instance to a task of BERAP, and an element in the
subset to a resource requirement of the respective task. In other
words, the total number of tasks is the number of subsets 1 -31 ,
the number of resources is the number of distinct elements in
all subsets of - , and the number of resource requirements of
a task is the number of elements in the corresponding subset.
Given .D/E1 -<1 , the constructed BERAP is to decide if at least. tasks can be fulfilled. Clearly, a solution to the BERAP is
also a solution to the original set packing problem. FG

This NP-completeness result leads to the conclusion that our
crew scheduling problem is intractable in the worst case.

3 PB Encoding and Integer Programs
A clause of Boolean variables can be formulated as a linear
pseudo Boolean (PB) constraint [5; 20], which we illustrate by
an example. We start by viewing Boolean value True (

�
) as

integer 1, and value False (H) as 0. We then map a Boolean
variable I to an integer variable J that takes value 1 or 0, and
map I to K3LMJ . Therefore, when I �2� , we have J � K andK�LNJ �PO

which corresponds to I � H . With this mapping,
we can formulate a clause in a linear inequality. For example,Q I ��R I �R I *�S can be mapped to J ��T Q KULVJ � S T J * ;WK . Here,
the inequality means that the clause must be satisfied in order
for the left side of the inequality to have a value no less than
one. In general, the class of linear PB constraints is defined asX ��Y � �:Z ��[]\ , where Y � and \ are rational numbers, [belongs
to
���^	 / 	�_`	 ; 	�a�� , and the

Z � are literals.
However, a clause in an overconstrained problem may not be

satisfied so that its corresponding inequality may be violated.
To represent this possibility, we introduce an auxiliary integer
variable b to the left side of a mapped inequality. Variableb � K if the corresponding clause is unsatisfied, making the
inequality valid; b �=O

otherwise. Since the objective is to
minimize the number of violated clauses, it is then to minimize
the number of auxiliary variables that are forced to take value
1. To be concrete,

Q I �cR I �dR I *�S&	 Q I �eR Igf S can be written as
an overconstrained PB formula of minimizing h �Wi � � b �UTi � � b � , subject toj J �kT Q KlLmJ � S T J * T b � ;WKJ � T Q KlLnJ�f S T b � ;WK
where

i �
and

i �
are the penalties of the first and second

clauses, respectively.
More complex constraint problems, where variables takes

integers rather than Boolean values, can be formulated as over-
constrained integer programs (OIPs) [20], which are integer
linear programs (ILPs) [6] in the sense that they both use in-
equalities to define the feasible regions of a solution space and
aim to optimize an objective function. OIPs differ from ILPs
in that OIPs introduce additional, competing soft constraints to
encode the overall optimization objective.

A constraint in OIP defines a feasible region for all assign-
ments of the (integer) variables involved. For an assignment
that violating a constraint, we can define the distance of the
assignment to the boundary of the feasible region specified by
the constraint. Such a distance can be measured by the Man-
hattan distance, the minimum integer distance in the grid space
defined by the variable domains. This Manhattan distance was
call score of the constraint under the given assignment [20].
Obviously, if an assignment satisfies a constraint, then its dis-
tance to the constraint boundary is zero.

4 The Walksat and Wsat(oip) Algorithms
Wsat(oip) belongs to the family of Walksat-based local search
algorithms, each of which follows the same basic procedure
of the Walksat algorithm [13; 17]. For pedagogic reason, we
discuss Walksat first.

4.1 Walksat
The Walksat algorithm starts with an initial random variable
assignment and makes moves by changing the value of one
selected variable at a time, until it finds a satisfying assignment

pick a variable of least break-
count in C (greedy pick)

initial assignment generation

pick a unsatisfied clause C
(clause pick)

exist a variable in C with
zero break-count?

pick a variable of
zero break-count in C

(flat pick)
flip a coin

1-p p

yes
no

pick a variable in C
(noise pick)

flip the chosen variable

Figure 1: Main operations in a try of WalkSAT.

or after it has executed a predefined maximal number of flips.
In the latter case, the best solution encountered so far will be
taken as the outcome. Each such unsuccessful attempt is called
a try or restart. The procedure repeats until a maximal number
of tries has been attempted.

To select a variable to flip in each step, the effect of chang-
ing the current value of a variable is assessed. Changing a
variable’s value may make some currently satisfied constraint
unsatisfied. The numbers of constraints that will be made un-
satisfied by changing a variable value is called the break-count
of the variable at the current assignment. Walksat attempts
to change a variable with zero break-count, aiming at not to
make the next assignment worse than the current one. To find
such a variable with zero break-count, Walksat first selects an
unsatisfied clause

i
, uniformly randomly, from all unsatisfied

clauses. This is called clause pick. If
i

has a variable of zero
break-count, Walksat then picks such a variable, uniformly ran-
domly, from the ones that qualify (called flat pick). If no zero
break-count variable exists in

i
, Walksat then makes a random

choice. With probability o it chooses, uniformly randomly,
a variable from all the variables involved in

i
(called noise

pick); or with probability K`Lpo it selects a variable with the
least break-count, breaking a tie arbitrarily if multiple choices
exist (called greedy pick). The overall procedure for one try of
the algorithm is shown in Figure 1. The algorithm takes three
parameters to run, the number of tries, the maximal number
of flips in each try, and a probability for noise pick, which is
commonly referred to as the noise ratio of the algorithm.

4.2 Wsat(oip)
Wsat(oip) was built to solve OIPs by extending the Walksat
algorithm to support integer variables and generic constraints
such as inequalities. The main extensions and modifications
made by Wsat(oip) are the following.q Distinguishing hard and soft constraints: When Choos-

ing a violated constraint
i

, Wsat(oip) selects a violated
hard constraint with probability o5r and a violated soft
constraint with probability KlLso r .q Restricted neighborhood: When choosing a variable
whose value to be changed from all the variables asso-
ciated with the selected constraint

i
, the (integer) values

that differs from the current value by at most \ will be
considered.q Tabu search: When multiple variable-value pairs exist in
the greedy choice which make the same amount of im-
provement to the objective value, break ties first in favor
of the one that has been used the least frequently, and then
in favor of the one that has not been used the longest.

Note that similar to Walksat, Wsat(oip) still uses a noise ra-
tio, which has to be tuned for every problem instance.

5 Improvement and Extensions to Wsat(oip)
Wsat(oip) is not very efficient on large problems. We introduce
three extensions to improve its performance.

5.1 Backbone-guilded biased moves
One observation on local search for SAT problems is that there
exist a large amount of plateau regions in the search space
where neighboring states all have the same quality. This obser-
vation inspired the development of Walksat that “walks” on the
plateau, thus the name of Walksat, by making random moves
in order to navigate through plateau regions and to hopefully
find downfall edges. Such random, sometimes aimless, plateau
moves are not very effective. Even though the use of a tabu list
can help prevent to visit the recently visited states [7], the al-
gorithm may still have to explore a large portion of a plateau
area.

The inefficacy of Walksat’s random moves is exacerbated
in Wsat(oip) where non-Boolean variables can have large do-
mains, which lead to larger neighborhoods and thus larger
plateau regions. Therefore, it is important to shorten or avoid,
if possible, such random moves.

The main ideas
Our main idea to address the inefficacy caused by uniformly
random moves in Wsat(oip) is to exploit an extended concept
of backbone. The backbone variables of an optimization prob-
lem are the ones that have fixed values among all optimal so-
lutions; and these backbone variables are collectively called
the backbone of the problem. The size of the backbone, the
fraction of backbone variables among all variables, is a mea-
sure of the constrainedness of a given problem. The concept
of backbone variables can be extended to backbone frequen-
cies. The backbone frequency of a variable-value pair is the
frequency that the pair appears in all optimal solutions; and the
backbone frequency of a variable is the maximum backbone
frequency of its values. Specifically, let J be a variable with
domain t �u� I ��	 I �v	�������	 Ivw � , and o Q J Q I � S�S be the backbone
frequency of J taking I � , then the backbone frequency of J iso Q J Sl�Cxzy�{g| (~}v� � o Q J Q I�� S�S�� . Thus, a backbone variable must
have backbone frequency of one. The backbone frequency of a
variable captures the tightness of the constraints that the vari-
able is involved; the higher the frequency, the more constrained
the variable is.

We can apply backbone frequencies to modify random
moves in Wsat(oip). If, somehow, we knew the backbone fre-
quencies of the variable-value pairs of a problem, we could
construct a “smart” search algorithm by using the backbone
frequency information as an oracle to guide each step of
Wsat(oip). At each step of the algorithm, we could use the
backbone frequencies to change the way in which a variable

is chosen to focus on fixing the critically constrained variables
that are not currently set correctly.

Unfortunately, obtaining the exact backbone frequencies of
a problem requires to find all optimal solutions, thus is more
difficult than finding just one solution. To address this prob-
lem, the second key idea of backbone guided local search is to
estimate backbone frequencies using local minima from a local
search algorithm. We simply treat local minima as if they were
optimal solutions and compute pseudo backbone frequencies,
which are estimates to real backbone frequencies. More pre-
cisely, we define the pseudo backbone frequency of a variable-
value pair as the frequency that the pair appears in all local
minima.

The quality of pseudo backbone frequencies depends on the
effectiveness of the local search algorithm used. High-quality
local minima can be obtained by effective local search algo-
rithms. Even though Wsat(oip) may land on suboptimal solu-
tions with fairly high probabilities, most of the local minima
from Wsat(oip) are expect to have large portions of variables
set to correct values, so that they contain partial optimal solu-
tions or partial backbone. In this research, we directly adopt
Wsat(oip) to collect local minima, and then in return apply the
backbone guided search method to the algorithm to improve its
performance.

Biased moves in Wsat(oip)
Pseudo backbone frequencies can be incorporated in Wsat(oip)
to make ”biased” moves. Consider an example of two vari-
ables, J � and J � , that appear in a violated constraint and have
the same effect under the current assignment, i.e., changing
the value of one of them makes the violated constraint sat-
isfied, and both variables have the same break-count or will
cause the same number of satisfied constraints unsatisfied if
changed. Let � be the set of backbone variables along with
their fixed values in the backbone,

�
be the set of local min-

ima from which pseudo backbone frequencies were computed,
and I � and I � be the current values of J � and J � . We will
prefer to change J � over J � if under the current assignment,� � Q J � � I � S > ��1 �z�m_ � � Q J � � I � S > �s1 ��� , which means
that under the current assignment, J � is less likely to be part of
backbone than J � , given the set of local minima

�
. Note that� � Q J � I S > ��1 ��� is the pseudo backbone frequency of J � I

under the evidence of the set of local minima
�

.
How can the pseudo backbone frequencies be used to al-

ter the way that Wsat(oip) chooses variables? As discussed
in Section 4, Wsat(oip) uniformly randomly chooses a vari-
able when multiple choices exist. For example, when there are
multiple variables with zero break-count, Wsat(oip) chooses
one arbitrarily. In backbone guided search, we apply pseudo
backbone information to force Wsat(oip) to make random yet
biased choices. If two variables can make a constraint satisfied,
the variable having a higher backbone frequency will be cho-
sen. In other words, we modify Wsat(oip)’s random strategies
in such a way that a backbone or critically constrained vari-
able will be chosen more often than a less restricted variable.
To this end, we use pseudo backbone frequencies to help make
random biased selections.

Specifically, we apply pseudo backbone frequencies to mod-
ify the random choices made in Wsat(oip). The first random
choice in Wsat(oip) is constraint pick, where a violated con-
straint is selected if multiple ones exist. We want to pick, with
high probabilities, those variables that are part of the backbone

or highly constrained in all optimal solutions. Therefore, we
choose a constraint with the largest number of critically con-
strained variables. We use the pseudo backbone frequencies
of variables in an unsatisfied constraint, normalized among the
violated constraints involved, to measure the degree of con-
strainedness of the constraint. We then select an unsatisfied
constraint among all violated ones based on their degrees of
constrainedness. Specifically, let � be the set of unsatisfied
constraints, and ��� the sum of pseudo backbone frequencies of
all the variables in a constraint

i > � . We then select con-
straint

i
, with probability o � � � ��� ! , from all unsatisfied

constraints in � , where
!�� X]� }�� ��� is a normalization fac-

tor.
Wsat(oip) uses three other random rules to arbitrarily se-

lect a variable after an unsatisfied constraint is chosen (see
Section 4 and Figure 1). The flat pick rule chooses a vari-
able from a set of zero break-count variables, if any; the
noise pick rule selects one from all variables involved in the
chosen constraint; and the greedy pick rule takes a variable
among the ones of least break-count. In essence, these rules
use the same operation, i.e., picking a variable equally likely
from a set of variables. Therefore, we can modify these rules
all in the same way by using pseudo backbone frequencies.
Let

� J � 	 J � 	�������	 J�� � be a set of b variables from which one
must be chosen,

� I � 	 I � 	������&	 I�� � be their best satisfying as-
signments (the ones satisfying the constraint and having the
highest pseudo backbone frequencies), and

� o ��	 o ��	�������	 o � �
be the pseudo backbone frequencies of variable-value pairs� Q J � � I � S�	 Q J � � I � S�	�������	 Q J�� � I�� S�� . Then we chooseJ � with probability o �~� X ���� � o � .

Furthermore, the idea of pseudo backbone frequencies can
also be applied to generate an initial assignment for a local
search. Specifically, a variable is assigned a particular value
with a probability proportional to the pseudo backbone fre-
quency of the variable-value pair.

The backbone guided Wsat(oip) algorithm
The backbone guided Wsat(oip) algorithm has two phases. The
first is the estimation phase that collects local minima by run-
ning Wsat(oip) with a fixed number of tries. The local minima
thus collected are compiled to compute the pseudo backbone
frequencies of all variable-value pairs.

The second phase carries out the actual backbone guided
search, which uses pseudo backbone frequencies to modify the
way that Wsat(oip) chooses variables to change. This phase
also runs many tries, each of which produces a (new) local min-
imum. The newly discovered local minima are subsequently
added to the pool of all local minima found so far to update the
pseudo backbone frequencies.

5.2 Aspiration search
Solving an OIP requires to optimize two (conflicting) objec-
tives, satisfying the maximum number of hard constraints and
minimizing a penalty function of soft constraints violated. Two
obvious methods can be adopted to make a balance between
these two objectives. One is to directly search for a solution
by considering hard and soft constraint together, which was
suggested and taken in Wsat(oip) [20]. This method attempts
to select a variable involved in a hard or soft constraint with
probability o r or probability K7L?o r , respectively. Note that
the performance of Wsat(oip) depends to a large degree on this

parameter. The other method is to satisfy the maximum num-
ber of hard constraints first and then try to minimize the total
penalty of violated soft constraints. However, based on our ex-
perimental experience on Wsat(oip), these two methods do not
work very well on large, complex OIPs.

In many real-world constraint problems, our training
scheduling problems discussed in Section 2 in particular, the
number of hard constraints may be large; finding the best as-
signment to the variables involved in hard constraints itself
may be a costly task. Even if such an optimal solution can
be found, it may be too hard to be further extended to an over-
all assignment of minimal penalty. Therefore, many optimal
assignments to the variables in hard constraints must be exam-
ined, making the overall search prohibitively costly.

To make Wsat(oip) efficient on OIPs, we propose what we
call aspiration search strategy, which is controlled by aspi-
ration levels. An aspiration level corresponds to a targeted
penalty score; the higher an aspiration level, the lower the tar-
geted penalty score. Given an aspiration level, we first search
for an assignment so that the total penalty of unsatisfied soft
constraints is no more than the targeted penalty value. When
such an assignment is found, we attempt to extend the cur-
rent partial assignment to satisfy the maximum number of hard
constraints. This process of extending a partial assignment to
a complete assignment may be repeated many times; and the
maximum number - r of hard constraints satisfied is recorded.
Each such process corresponds to a probing in the search space
under the current aspiration level. We then increase the aspira-
tion level and repeat the processes of probing with the objec-
tive of finding an assignment that violates no more less than- r hard constraints and whose penalty meets the restriction of
the current new aspiration level. -9r is also updated if a better
assignment, one violating less hard constraints, is found under
the current aspiration level. This means that the overall pro-
cesses attempt to find progressively better solutions for both
hard and soft constraints. If we fail to find an assignment satis-
fying at least -Ur hard constraints and keeping the penalty above
the current aspiration level after a certain number of tries, the
algorithm terminates and the best solution found so far is re-
turned.

Aspiration search has several advantages. First, it decom-
poses an OIP into several decision problems, each of which
has a different degree of constrainedness represented by an as-
piration level. At a given aspiration level, this strategy also in-
tegrates a sampling method, which first probes the search space
to reach a partial assignment such that the penalty function is
above the aspiration level, with a search for satisfaction of the
hard constraints. Thanks to the partial assignment, the hard
constraints can be simplified, as the variables involved in soft
constraints are instantiated, so that optimizing hard constraints
becomes relatively easier. As a result, aspiration search is able
to reduce search cost. Second, the probability o r of choosing
a variable involved in hard constraints, an important parameter
determining the performance of Wsat(oip), disappears, making
the algorithm less problem dependent. Third, the aspiration
search strategy can interact closely with the backbone-guided
local search method, making the latter more effective. Finally,
since aspiration search is able to reach progressively better so-
lutions, the suboptimal solutions at various aspiration levels
can thus be used as local minima to compute pseudo backbone
frequencies, which expedites the process of gathering back-

bone frequency information.
When applying sampling method, it is desirable, albeit dif-

ficult, to know if the current partial assignment at a certain
aspiration level can be extended to satisfy at least -cr hard
constraints. Our approach to this problem is to monitor the
progress of extending the partial assignment to a full assign-
ment. If the number of violated hard constraints decreases af-
ter a fixed number of moves � , we consider the current partial
assignment extensible. Otherwise, the current partial assign-
ment will be abandoned, and another partial assignment above
the current aspiration level will be sampled. Note that the per-
formance of the overall search is affected by the fixed number
of moves � within which a better complete assignment must
be found. If this number is too large, we may waste too much
time on an unsatisfiable deadend; whereas if it is too small, we
may miss a satisfiable sample. We develop a dynamic method
to adjust this parameter � in our extended Wsat(oip) algo-
rithm. The detail of this method will be discussed in the next
section where we collectively deal with the issues of how to dy-
namically adjust the parameters of the Wsat(oip) and extended
Wsat(oip) algorithm.

5.3 Dynamic, adaptive parameters
One limitation of the WalkSAT family of algorithms, includ-
ing Wsat(oip), is its dependence on a manually set noise ratio,
which is the probability of how often a nongreedy move should
be taken (see Section 4). In addition, whenever a noise ratio is
chosen it will be used throughout the search. It is evident that
big progresses can be more easily made at an early stage of
a local search than at a late stage. Therefore the noise ratio
should be adjusted dynamically depending on where the cur-
rent search is in the overall search space.

The dynamic noise strategy proposed in [8] for Walksat is
one such method. The idea of this strategy is simple: start a
local search with the noise ratio equal to zero, and examine
the number of violations in the current state every ��� flips,
where � is the number of constraints of a given problem, and� a constant. If the number of violations has not decreased
since the last time we checked (��� flips ago), the search is
assumed to have stagnated, and the noise ratio is increased tob@o T Q K+L�b@o S�� , where b@o is the current noise ratio and

�
is another constant. Otherwise, the noise ratio is decreased tob@o Q KgL�� ��S . The discrepancy between the formulas for increas-
ing and decreasing the noise ratio is based on some empirical
observations of how Walksat behaves when the noise ratio is
too high, compared with how it behaves when the parameter
is too low [8]. We refer to this strategy as Dyna-Walksat for
convenience.

Dyna-Walksat uses two parameters, � and
�

. The difference
of using these two new parameters and using the noise ratio
in the original algorithm is that these two new parameters do
not have to be tuned for every single problem instance; the
performance of Dyna-Walksat with the same values for � and�

is relatively consistent across different problem instances.
Although Dyna-Walksat was originally designed and tested

on Walksat for SAT, we have found it effective as well on
Wsat(oip) for pseudo Boolean encoded problems and OIPs.
We call Wsat(oip) using the dynamic noise strategy Dyna-
Wsat(oip). Following [8] we set � � K ��� and

��� K �v� in
Dyna-Wsat(oip), which have been found to be effective over
a wide range of problem instances. Due to its simplicity and

reasonable performance, in the rest of the paper we will use
Dyna-Wsat(oip) with � � K ��� and

��� K ��� as default param-
eters in our experimental analysis.

As mentioned at the end of the previous section, another pa-
rameter in our extended Wsat(oip) algorithm is the number of
moves � between two consecutive check points for examin-
ing progress, if any, made by the algorithm in extending the
current partial assignment to a complete one that satisfies the
maximum number of hard constraints under the current aspi-
ration level. A good value for parameter � can be achieved
when a good balance is made between the algorithm’s ability to
find satisfied solutions and its ability to escape from local min-
ima. This leads to our adaptive parameter approach, in which
the parameter � is dynamically adjusted based on progress
made or not made, as reflected in the time elapsed since the
last improvement made to hard constraints. At the beginning
of the search, we give an initial value that is proportional to the
number of hard constraints � to parameter � . If the number
of hard constraints does not decrease over the last � search
steps, we increase � by , � � , where , � is a positive constant
less than one. Otherwise, we decrease � by , � � , where , � is
another positive constant less than one. In our experiments, we
took � �2x����� � 	 . � K O�� and , �`� , �^� � �v� , where . is
the maximum number of moves for a restart.

6 Applications and Experimental Evaluation
We implemented an improved and extended Wsat(oip) algo-
rithm that incorporates the backbone-guided biased moves,
sampling-based aspiration search and dynamic parameter
strategies. We short-handed the improved Wsat(oip) as
EWsat(oip). In this section, we report the experimental re-
sults, comparing the EWsat(oip) algorithm with its predeces-
sor, the Wsat(oip) algorithm. We carried out our analyses on
three different scheduling problems: our crew training schedul-
ing problem (Section 2), progressive party scheduling and bas-
ketball tournament scheduling. The last two problems were
studied in [20], and also included as benchmark problems in
CSPLIB [4], an online repository of CSP problems. All our
experiments were run on an AMD Athelon 1900 machine with
2GB memory.

In our experiments, we tried various parameter settings for
the Wsat(oip) algorithm, which include the probability odr of
choosing a hard violated constraint over a soft violated con-
straint and the size of tabu list. The comparison results below
are for the best parameters for Wsat(oip). Specifically, on our
crew scheduling problems, the best probability o9r is 99%, and
on the party scheduling and basketball scheduling problems,
the best o r is 90%. To make a fair comparison, we applied
dynamic parameter method to automatically adjust the noise
ratios for both Wsat(oip) and EWsat(oip), and let EWsat(oip)
have the same size of tabu list as used by Wsat(oip), which was
set to 4.

6.1 Crew training scheduling
The first and main problem we considered is our crew train-
ing scheduling problem. The test set consists of six large and
many small problem instances, derived from a real applica-
tion domain involved with a large number of crew members of
different specialty and various equipment that requires routine
maintenance. These problem instances vary in sizes and degree
of constrainedness; the largest instances has 79,580 variables

Problem Wsat(oip) EWsat(oip)� � unsat penalty time unsat penalty time
11520 16308 12.43 10380 287.4 12.08 9330 167.6
21240 34908 10.58 8550 824.7 8.05 6270 490.2
21800 37501 3.45 2520 56.0 3.35 2325 56.3
40718 72071 3.95 2970 26.2 3.88 2880 41.2
41496 66892 11.93 10230 1936.4 8.70 6810 965.2
79580 143896 4.10 3120 514.5 3.97 2963 344.3

Table 2: Comparison on crew training scheduling, where � and � are the numbers of variables and clauses, respectively; unsat
is the average number of violated hard constraints, penalty the average penalty score, and time the average CPU time in seconds.
The better results between the two algorithms are in bold.

0 1000 2000 3000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time (seconds)

P
en

al
ty

 S
co

re

Wsat(oip)
EWsat(oip)

Figure 2: Anytime comparison on a crew scheduling.

and 143,896 constraints. These problems were collected from
overconstrained situations and their hard constraints did not
seem to be satisfiable all together. Here we present the results
on these six large instances.

In our experiments, we allowed Wsat(oip) and EWsat(oip)
to have 200 random restarts for each of their run, and 60,000
maximum moves (variable-value changes) with each restart.
The average results comparing these two algorithms over 40
runs on all six problem instances are shown in Table 2. We ex-
amined the average minimum number of unsatisfied hard con-
straints (unsat), the average minimum penalties (penalty) and
the average CPU time (time) required to reach solutions of such
qualities. As the results show, EWsat(oip) is able to find better
solutions with more hard constraints satisfied and lower penal-
ties for all problem instances, and with less execution time on
four out of the total six instances.

Additional insights were gained when we examined the any-
time performance of the two algorithms on these difficult prob-
lems. Figure 2 shows such an anytime comparison on one
of the six instances, also averaged over 40 runs. As shown,
EWsat(oip) can make significant improvement in an early stage
of the search, indicating that it explores more fruitful regions
of the search space more effectively than Wsat(oip). The any-
time results on the other problem instances were similar to that
in Figure 2.

6.2 Progressive party scheduling

The Progressive Party Problem (PPP) is to progressively
timetable a sequence of parties. There are a total of six criti-
cally constrained PPP problem instances in CSPLIB [4], which
are all satisfiable. The sizes of these problem instances are rela-
tively small, comparing to the crew scheduling problems, with
the number of variables less than five thousand and the number
of constraints no more than 32,000. We considered all of them
in our experiments. We allowed 100 random restarts in one
run of the algorithm, each of which used 60,000 moves. We
averaged the results over 40 runs for each of two algorithms.
Table 3 shows the median and average CPU times to reach sat-
isfying solutions by Wsat(oip) and EWsat(oip).

On four of the six problem instances, both algorithms take
less than one second to finish and have similar performance.
On the other two problem instances, EWsat(oip) can reduce
median execution time from 15.3 seconds to 9.5 seconds and
44.9 seconds to 34.6 seconds, giving time reductions of 37.9%
and 22.9%, respectively.

6.3 Basketball tournament scheduling

The ACC Basketball Scheduling Problem (ACC) is to ar-
range a basketball tournament in the Atlantic Coast Confer-
ence. The problem was originally described by Nemhauser
and Trick [16]. Walser developed a pseudo Boolean integer
linear programming model for these problems [20]. The ob-
jective of an encoded ACC scheduling problem is to satisfy all
the hard constraints while minimizing the total penalty caused
by violated soft constraints. The difficulties of the available
problem instances vary dramatically. Here we only consider
four instances of moderate difficulties.

The experiment setup was the same as for the party schedul-
ing problem considered earlier. The median and average times
to reach satisfying solutions to these problems are included in
Table 4. EWsat(oip) outperformed Wsat(oip) on all these in-
stances except the slightly slower average time on instance acc-
tight:2. The performance of EWsat(oip) seems to particularly
improve on hard instances. For example, EWsat(oip) reduced
the median running time by 48.4% on acc-tight:5, increased
from 20.5% on acc-tight:4.

7 Conclusions

Wsat(oip) is an extensively applied integer local search algo-
rithm for solving constraint problems with hard and soft con-
straints which are represented as overconstrained integer linear

Problem Wsat(oip) EWsat(oip)
name � � median average median average

ppp:1-12,16 4662 31725 0.175 0.185 0.186 0.190
ppp:1-13 4632 30964 0.406 0.441 0.388 0.423

ppp:1,3-13,19 4608 30348 0.469 0.472 0.388 0.449
Ppp:3-13,25,25 4644 31254 0.625 0.713 0.656 0.718
ppp:1-11,19,21 4602 30179 15.283 15.814 9.453 12.856
ppp:1-9,16-19 4626 30747 44.906 63.553 34.546 58.302

Table 3: Comparison on progressive party scheduling problem, where � and � are the numbers of variables and clauses, respec-
tively, and median and average are the median and average CPU times in seconds. The better results are in bold.

Problem Wsat(oip) EWsat(oip)
name � � median average median average

acc-tight:2 1620 2520 0.86 1.03 0.77 1.05
acc-tight:3 1620 3249 1.30 2.16 1.26 1.83
acc-tight:4 1620 3285 44.14 61.49 35.35 48.69
acc-tight:5 1339 3052 1171.17 1071.18 603.57 609.05

Table 4: Comparison on ACC backetball scheduling problem, where the legends are the same as in Table 3.

programs (OIPs). In this paper, we introduced three strate-
gies to improve the performance and applicability of Wsat(oip)
in solving complex scheduling problems: biased-move strat-
egy to improve the efficacy of local search by exploiting back-
bone structures; sampling-based aspiration search to find high
quality solutions and improve anytime performance; dynamic
parameter adaptation to make Wsat(oip) robust and more ap-
plicable to real-world problems. Our experimental results
on three large and complex scheduling problems show that
our improved Wsat(oip) algorithm significantly improves upon
the original Wsat(oip) by finding better solutions on overcon-
strained problems or finding better or same-quality solutions
sooner. We expect that these new methods can be applied to
other search algorithms and combinatorial optimization prob-
lems.

Acknowledgment

This research was funded in part by NSF Grants IIS-0196057
and ITR/EIA-0113618, and in part by DARPA Cooperative
Agreements F30602-00-2-0531 and F33615-01-C-1897. We
particularly thank Joachim Walser for making the source code
of his Wsat(oip) algorithm available to us. Thanks also to
USC/ISI Camera group for bringing to our attention the crew
scheduling problems and for providing many problem in-
stances studied in the research. We thank Alejandro Bugacov
for many helpful discussions.

References
[1] H. Dixon and M. L. Ginsberg. Inference methods for a

pseudo-Boolean satisfiability solver. In Proc. of the 18th
National Conference on Artificial Intelligence (AAAI-02),
pages 635–640, 2002.

[2] M. Frank, A. Bugacov, J. Chen, G. Dakin, P. Szekely,
and B. Neches. The marbles manifesto: A definition and
comparison of cooperative negotiation schemes for dis-
tributed resource allocation. In Proc. AAAI-01 Fall Sym-

posium on Negotiation Methods for Autonomous Cooper-
ative Systems, pages 36–45, 2001.

[3] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
Freeman, New York, NY, 1979.

[4] I.P. Gent and T. Walsh. CSPLib: a benchmark library
for constraints. Technical report, Technical report APES-
09-1999, 1999. Available at http://csplib.cs.strath.ac.uk/.
A shorter version appears in the Proceedings of the 5th
International Conference on Principles and Practices of
Constraint Programming (CP-99).

[5] P. Hammer and S. Rudeanu. Boolean Methods in Opera-
tions Research and Related Areas. Springer, 1968.

[6] F. Hillier and G. Lieberman. Introduction to Operations
Research. McGraw-Hill, 7th edition, 2002.

[7] H. H. Hoos. On the run-time behaviour of stochastic
local search algorithms for SAT. In Proc. of the 16th
National Conference on Artificial Intelligence (AAAI-99),
pages 661–666, 1999.

[8] H. H. Hoos. An adaptive noise mechanism for WalkSAT.
In Proc. the 18th National Conference on Artificial Intel-
ligence (AAAI-02), pages 655–660, Edmonton, Canada,
July 28-Aug. 1 2002.

[9] H. Kautz and B. Selman. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In Proc.
of the 13th National Conference on Artificial Intelligence
(AAAI-96), pages 1194–1201, 1996.

[10] H. Kautz and B. Selman. BLACKBOX: A new approach
to the application of theorem proving to problem solving.
In Working notes of the Workshop on Planning as Combi-
natorial Search, held in conjunction with AIPS-98, 1998.

[11] H. Kautz and B. Selman. Unifying SAT-based and graph-
based planning. In Proc. the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), 1999.

[12] H. Kautz and J. P. Walser. Integer optimization models of
AI planning problems. Knowledge Engineering Review,
15:101–117, 2000.

[13] D. McAllester, B. Selman, and H. Kautz. Evidence for
invariants in local search. In Proc. of the 14th National
Conference on Artificial Intelligence (AAAI-97), pages
321–326, 1997.

[14] D. Mitchell, B. Selman, and H. Levesque. Hard and easy
distributions of SAT problems. In Proc. the 10th National
Conference on Artificial Intelligence (AAAI-92), pages
459–465, 1992.

[15] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman,
and L. Troyansky. Determining computational com-
plexity from characteristic ’phase transitions’. Nature,
400:133–137, 1999.

[16] G. Nemhauser and M. Trick. Scheduling a major college
basketball conference. Operations Research, 46(1), 1998.

[17] B. Selman, H. Kautz, and B. Cohen. Noise strategies for
local search. In Proc. the 12th National Conference on
Artificial Intelligence (AAAI-94), pages 337–343, 1994.

[18] B. M. Smith. Modelling a permutation problem. In Proc.
of ECAI-00 Workshop on Modelling and Solving Prob-
lems with Constraints, 2000.

[19] J. P. Walser. Solving linear pseudo-boolean constraint
problems with local search. In Proc. of the 14th National
Conference on Artificial Intelligence (AAAI-97), 1997.

[20] J. P. Walser. Integer Optimization by Local Search.
Springer, 1999.

[21] T. Walsh. Permutation problems and channeling con-
straints. In Proc. IJCAI-01 Workshop on Modeling
and Solving Problems with Constraints, pages 125–133,
2001.

[22] W. Zhang. Phase transitions and backbones of 3-SAT and
maximum 3-SAT. In Proc. Intern. Conf. on Principles
and Practice of Constraint Programming (CP-01), pages
153–167, 2001.

[23] W. Zhang, A. Rangan, and M. Looks. Backbone guided
local search for maximum satisfiability. In Proc. the 18th
International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 1179–1184, 2003.

