
Policy Generation for Continuous-time Stochastic Domains with Concurrency

Håkan L. S. Younes and Reid G. Simmons
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{lorens, reids}@cs.cmu.edu

Abstract

We adopt the framework of Younes, Musliner, & Simmons
for planning with concurrency in continuous-time stochastic
domains. Our contribution is a set of concrete techniques for
policy generation, failure analysis, and repair. These tech-
niques have been implemented in TEMPASTIC, a novel tem-
poral probabilistic planner, and we demonstrate the perfor-
mance of the planner on two variations of a transportation
domain with concurrent actions and exogenous events. TEM-
PASTICmakes use of a deterministic temporal planner to gen-
erate initial policies. Policies are represented using decision
trees, and we use incremental decision tree induction to effi-
ciently incorporate changes suggested by the failure analysis.

Introduction
Most existing methods for planning under uncertainty are
impractical for domains with concurrent actions and events
(Bresinaet al. 2002). While discrete-time Markov decision
processes (MDPs) can be used to handle concurrent actions
(Guestrin, Koller, & Parr 2002), this approach is restricted
to synchronousexecution of sets of actions. Continuous-
time MDPs (Howard 1960) can be used to modelasyn-
chronoussystems, but are restricted to events and actions
with exponential delay distributions. In many occasions, the
exponential distribution is inadequate to accurately model
the stochastic behavior of a system or system component.
Component life time, for example, is often best modeled
using a Weibull distribution because it describes increas-
ing and decreasing failure rates (Nelson 1985). The semi-
Markov decision process (SMDP) (Howard 1971) permits
non-exponential distributions, but this model is not closed
under concurrent composition. This means that a system
consisting of two concurrent SMDPs with finite state spaces
cannot in general be modeled by a finite (or even countable)
state-space SMDP.

Younes, Musliner, & Simmons (2003) have proposed a
framework for planning with concurrency in continuous-
time stochastic domains. This framework allows path based
plan objectives expressed using the continuous stochastic
logic (CSL) (Aziz et al. 2000; Baieret al. 2003). The
framework is based on the Generate, Test and Debug (GTD)

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

paradigm (Simmons 1988), and relies on statistical tech-
niques (discrete event simulation and acceptance sampling)
for CSL model checking developed by (Younes & Simmons
2002b) to test if a policy satisfies specified plan objectives.

We adopt this framework and contribute a set of con-
crete techniques for representing and generating initial poli-
cies using an existing deterministic temporal planner, robust
sample path analysis techniques for extracting failure sce-
narios, and efficient policy repair techniques. These tech-
niques have been implemented in TEMPASTIC, a novel tem-
poral stochastic planner accepting domain descriptions in an
extension of PDDL described by Younes (2003) for express-
ing general stochastic discrete event systems.

The domain model that we use allows for actions and ex-
ogenous events with random delay governed by general con-
tinuous probability distributions. We enforce the restriction
that only one action can be enabled at any point in time, but
we can still model concurrent processes by having a start
action for each process with a short delay, and using an ex-
ogenous event with extended delay to signal process com-
pletion. Although the only continuous resource we consider
in this paper is time, we briefly discuss at the end how the
techniques presented here could be extended to work with
more general continuous resources.

Framework
We adopt the framework of Younes, Musliner, & Simmons
(2003) for planning with concurrency in continuous-time
stochastic domains, based on the Generate, Test and Debug
(GTD) paradigm proposed by Simmons (1988). The domain
model is a continuous-time stochastic discrete event system,
and policies are generated to satisfy properties specified in a
temporal logic. The approach resembles that of Drummond
& Bresina (1990) for probabilistic planning in discrete-time
domains.

Algorithm 1 shows the generic hill-climbing procedure,
FIND-POLICY, proposed by Younes, Musliner, & Sim-
mons (2003) for probabilistic planning based on the GTD
paradigm. The input to the procedure is a modelM of a
stochastic discrete event system, an initial states0, and a
goal conditionφ. The result is a policyπ such that the
stochastic processM[π] (i.e. M controlled byπ) satisfies
φ when execution starts ins0. The procedure GENERATE-
INITIAL -POLICY returns a seed policy for the policy search



algorithm. Later in this paper, we will describe in detail how
to implement this procedure using a deterministic temporal
planner. TEST-POLICY returns true iff the current policy
satisfies the goal condition, and this procedure can be im-
plemented using discrete event simulation and statistical hy-
pothesis testing as described by Younes, Musliner, & Sim-
mons (2003). The simulation traces generated during pol-
icy verification can, as described in later sections, be used
by DEBUG-POLICY to find reasons for failure and return a
repaired policy. The repaired policy is compared to the cur-
rently best policy by BETTER-POLICY, which returns the
better of the two policies. This procedure can also be imple-
mented using statistical techniques, reusing the samples gen-
erated during verification as suggested by Younes, Musliner,
& Simmons (2003).

Algorithm 1 Generic planning algorithm for probabilistic
planning based on the GTD paradigm.
FIND-POLICY(M, s0, φ)

π0 ⇐ GENERATE-INITIAL -POLICY(M, s0, φ)
if TEST-POLICY(M, s0, φ, π0) then

return π0

else
π ⇐ π0

loop � returnπ on break
repeat

π′ ⇐ DEBUG-POLICY(M, s0, φ, π)
if TEST-POLICY(M, s0, φ, π′) then

return π′

else
π′ ⇐ BETTER-POLICY(π, π′)

until π′ 6= π
π ⇐ π′

The proposed algorithm is sound if TEST-POLICY never
accepts a policy that does not satisfy the goal condition.
Since we rely on statistical techniques in our implementation
of this procedure, our planner can only give probabilistic
guarantees regarding soundness. The same holds for com-
pleteness because TEST-POLICY can reject a good policy
with some probability, but we sacrifice completeness in any
case by using local search.

Model of Uncertainty
Although FIND-POLICY does not rely on any specific model
of stochastic discrete event systems, we here describe the
model of uncertainty used in our implementation of the al-
gorithm. A modelM consists of a setS of states and a set
E of events. Each evente ∈ E has an enabling conditionφe

determining the set of states in whiche is enabled. An event
can trigger when it is enabled, causing an instantaneous state
transition in the system, but there is uncertainty in the time
from when an event becomes enabled until it triggers. The
time that an evente has to remain enabled before it triggers
is governed by a probability distributionF (t; e). Multiple
events can be enabled simultaneously, representing concur-
rent processes. We can associate a real-valued clockc(e)
with each evente that is currently enabled, representing the
time untile is scheduled to trigger. When an event becomes
enabled, having previously been disabled, the value ofc(e)

is sampled from the distributionF (t; e). Events race to trig-
ger in a states, and the event with the smallest clock value
causes a transition to a states′ determined by a probability
distribution over successor statesp(s′; s, e) defined for each
event. Lete∗ denote the triggering event ins. The clock val-
ues for events that remain enabled ins′ but did not trigger in
s are decremented byc(e∗). New clock values are sampled
for events that become enabled ins′, includinge∗ if it re-
mains enabled after triggering. The probability of multiple
events triggering simultaneously is zero if all delay distribu-
tions are continuous.

The model we have described is known in queuing the-
ory as ageneralized semi-Markov process(GSMP), first in-
troduced by Matthes (1962). A GSMP can intuitively be
viewed as the composition of concurrent semi-Markov pro-
cesses, and captures the essential dynamical structure of a
stochastic discrete event system (Glynn 1989). Note that
a GSMP model associates a local clock with each event,
which differentiates it from time-dependent MDPs (Boyan
& Littman 2001) where there is a single global clock.

For the purpose of planning, we identify a setEa ⊂ E of
actions (controllable events) that can be disabled at will. The
remaining events,Ee = E \ Ea, areexogenous eventsbe-
yond the control of the decision maker. An exogenous event
e ∈ Ee is always enabled in a states if φe is satisfied ins.
For an action to be enabled, it must be selected by the cur-
rent policy to be enabled in addition to having its enabling
condition satisfied. We assume thatEa always contains a
null-actionaε representing idleness.

We work with a factored representation of the state space
and adopt the syntactic extension of PDDL proposed by
Younes (2003) for specifying actions and events with ran-
dom delay. This allows us to compactly represent com-
plex planning domains. Figure 1 shows part of the defini-
tion of a transportation domain that will be used to illustrate
the techniques introduced in this paper. The declarations of
one action schema (“check-in”) and one event schema (“fill-
plane”) are shown. All events instantiated from the “fill-
plane” event schema have an exponentially distributed delay
with rate0.01, while actions instantiated from the “check-
in” action schema have a deterministic delay of1 time unit.

Goal Formalism
We adopt thecontinuous stochastic logic(CSL) (Aziz et al.
2000; Baieret al. 2003) as a formalism for expressing prob-
abilistic temporally extendedgoals in continuous-time do-
mains. The syntax of CSL is defined as

φ ::= >∣∣a
∣∣φ ∧ φ

∣∣¬φ
∣∣P./ p

(
φ U≤t φ

) ∣∣P./ p (φ U φ) ,

wherea is an atomic proposition,p ∈ [0, 1], t ∈ R≥0, and
./∈ {≤,≥}.

Regular logic operators have their usual semantics. A
probabilistic formulaP./ p (ρ) holds in a states if and only
if the set of paths starting ins and satisfying the path for-
mulaρ is p′ andp′ ./ p. A path of a stochastic process is a
sequence of states and holding times:

σ = s0
t0−→ s1

t1−→ s2
t2−→ . . .



(define (domain transportation)
. . .
(:delayed-action check-in

:parameters (?pers - person ?plane - airplane ?loc - airport)
:delay 1
:condition (and (at ?pers ?loc) (at ?plane ?loc)

(or (not (full ?plane)) (has-reservation ?pers ?plane)))
:effect (and (not (at ?pers ?loc)) (in ?pers ?plane) (not (has-reservation ?pers ?plane))))

(:delayed-event fill-plane
:parameters (?plane - airplane ?loc - airport)
:delay (exponential 0.01)
:condition (and (not (full ?plane)) (at ?plane ?loc))
:effect (full ?plane))

. . . )

Figure 1: Part of a domain description with exogenous events and continuous delay distributions.

A path formulaφ1 U≤t φ2 (“time-bounded until”) holds
over a pathσ if and only if φ2 holds in some statesi such
that

∑i−1
j=0 tj ≤ t andφ1 holds in all statessj for j < i. The

formulaφ1 U φ2 (“until”) holds over a pathσ if and only if
φ1 U≤t φ2 holds overσ for somet ∈ R≥0.

A wide variety of goals can be expressed in CSL. Table 1
shows examples of achievement goals, goals with safety
constraints on execution paths, and maintenance/prevention
goals. In this paper we focus on goal conditions of the form
P./ p

(
φ1 U≤t φ2

)
, where bothφ1 andφ2 are regular propo-

sitional formulae.

Initial Policy Generation
Given a planning problem〈M, s0, φ〉, we want to find a sta-
tionary policy π : S → Ea such thatφ holds in s0 for
the stochastic processM[π]. Algorithm 1 outlines a pro-
cedure for finding such a policy by means of local search.
The efficiency of the procedure will depend on the quality of
the initial policy returned by GENERATE-INITIAL -POLICY.
A quick solution would be to simply return the null-policy
mapping every state to the idle actionaε, but this ignores
the goal condition of the planning problem. If we can make
a more informed choice for an initial policy, it is likely to
have fewer bugs than the null-policy, thus requiring fewer
repairs.

We propose an implementation of GENERATE-INITIAL -
POLICY that relaxes the original planning problem by ignor-
ing uncertainty, and solves the resulting deterministic plan-
ning problem using an existing temporal planner. Our im-
plementation uses a slightly modified version of VHPOP
(Younes & Simmons 2003), a heuristic partial order causal
link (POCL) planner with support for PDDL2.1 (Fox &
Long 2003) durative actions.

Conversion to Deterministic Planning Problem
We relax a continuous-time probabilistic planning problem
by treating all events of a model equally, ignoring the fact
that some events are not controllable. In other words, all
events are considered to be actions that the deterministic
planner can choose to include in a plan. We can eliminate
probabilistic effects by splitting events with probabilistic ef-
fects into multiple events with deterministic effects. Each

(:delayed-event crash
:delay (uniform 0 10)
:condition (up)
:effect (probabilistic 0.4 (down) 0.6 (broken)))

(:durative-action crash1
:duration (and (>= ?duration 0)

(<= ?duration 10))
:condition (over all (up))
:effect (at end (down)))

(:durative-action crash2
:duration (and (>= ?duration 0)

(<= ?duration 10))
:condition (over all (up))
:effect (at end (broken)))

Figure 2: A stochastic event (top) and two durative deter-
ministic actions (bottom) representing the stochastic event.

new event would have the same enabling condition as the
original event and an effect representing a separate outcome
of the original event’s probabilistic effect. Furthermore, in-
stead of a probability distribution over possible event dura-
tions, we associate an interval with each event representing
the possible durations for the event. This interval is simply
the support of the probability distribution for the event delay.
The deterministic temporal planner is allowed to select any
duration within the given interval for an event that is part of a
plan. We can now represent each event as a PDDL2.1 dura-
tive action with an interval constraint on the duration, with
the enabling condition of the event as an invariant (“over
all”) condition of the durative action that must hold over the
duration of the action, and with the effects associated with
the end of the durative action. Figure 2 shows a stochas-
tic event with delay distributionU(0, 10) and a probabilistic
effect with two outcomes, and it also shows the two dura-
tive actions with deterministic effects that would be used to
represent the stochastic event. The purpose of the transfor-
mation is to make every possible outcome of a stochastic
event available to the deterministic planner.

A CSL goal condition of the formP≥ p

(
φ1 U≤t φ2

)
is

converted into a goal for the deterministic planning prob-
lem as follows. We makeφ2 a goal condition that must be-



Goal description Formula
reach office with probability at least 0.9 P≥ 0.9 (> U office)

reach office within 17 time units with probability at least 0.9 P≥ 0.9

(> U≤17 office
)

reach office within 17 time units with probability at least 0.9 whileP≥ 0.9

(¬coffee-spilled U≤17 office
)

not spilling coffee
reach office within 17 time units with probability at least 0.9 whileP≥ 0.9

(P≥ 0.5

(> U≤5 recharging
) U≤17 office

)

recharging at least every 5 time units with probability at least 0.5
remain stable for at least 8.2 time units with probability at least 0.7P≤ 1−0.7

(> U≤8.2 ¬stable
)

Table 1: Examples of goals expressible in CSL.

come true no later thant time units after the start of the plan,
while φ1 becomes an invariant condition that must hold un-
til φ2 is satisfied. We can represent this goal in the temporal
POCL framework as a durative action with no effects, with
an invariant conditionφ1 that must hold over the duration
of the action, and a conditionφ2 associated with the end of
the action. We add the temporal constraints that the start
of the goal action must be scheduled at time0 and that the
end of the action must be scheduled no later than at timet.
VHPOP records all such temporal constraints in asimple
temporal network(Dechter, Meiri, & Pearl 1991) allowing
for efficient temporal inference during planning. A plan now
represents an execution of actions and exogenous events sat-
isfying the path formulaφ1 U≤t φ2, possibly ignoring the
adverse effects of some exogenous events which is left to
the debugging phase to discover.

For CSL goals of the formP≤ p

(
φ1 U≤t φ2

)
, we instead

want to find plans representing executions not satisfying the
path formulaφ1 U≤t φ2. We then use¬φ2 as an invariant
condition that must hold in the interval[0, t]. Note that it
is not necessary to achieveφ1 in order forφ1 U≤t φ2 to be
false, so we do not includeφ1 in the deterministic planning
problem. This means that an empty plan will satisfy the goal
condition, unlessφ2 holds in the initial state in which case
the problem lacks solution, and we return the null-policy as
an initial policy for these goals.

There are a few additional constraints inherited from the
model that we enforce in the modified version of VHPOP.
The first is that we do not allow concurrent actions. This
is due to the restriction on policies being mappings from
states to single actions. The restriction is not severe, how-
ever, since an “action” with extended delay can be modeled
as a controllable event with short delay to start the action
and an exogenous event to end the action, allowing for addi-
tional actions to be executed before the temporally extended
action completes. The second constraint is that separate in-
stances of the same exogenous event cannot overlap in time.
For example, if one instance of the “fill-plane” event is made
enabled at timet1 and is scheduled to trigger at timet2, then
no other instance of “fill-plane” can be scheduled to be en-
abled or trigger in the interval[t1, t2]. This constraint fol-
lows from the GSMP domain model. Both constraints are of
the same nature and is represented in the planner as a new
flaw type, associated with two eventse1 ande2, that can be
resolved in two ways analogous to promotion and demotion
for regular POCL threat resolution: either the end ofe1 must
come before the start ofe2, or the start ofe1 must come after
the end ofe2.

A final adjustment to “close the gap” between events is
made to an otherwise complete plan before it is returned. It
ensures that events are scheduled to become enabled at the
triggering of some other event, and not at an arbitrary point
in time. This restriction also follows from the GSMP domain
model.

From Plan to Policy
Given a plan, we now want to generate a policy. We rep-
resent a policy using adecision tree(cf. Boutilier, Dearden,
& Goldszmidt 1995), and we generate a policy from a plan
by converting the plan to a set of training examples〈si, ei〉,
si ∈ S andei ∈ Ea, and then generating a decision tree from
these training examples. The training examples are obtained
by serializing the plan returned by VHPOP and executing
the sequence of events starting in the initial state.

A plan returned by VHPOP is a set of triples〈ti, ei, di〉,
whereei is an event,ti is the time thatei is scheduled to be-
come enabled, anddi is the delay ofei (i.e. ei is scheduled
to trigger at timeti + di). We serialize a plan by sorting the
events in ascending order based on their trigger time, break-
ing ties nondeterministically. The first event to trigger, call
it e0, is applied to the initial states0, resulting in a state
s1. If e0 ∈ Ea, then this gives rise to a training example
〈s0, e0〉. Otherwise, the first event gives rise to the training
example〈s0, aε〉, signifying that we are waiting for some-
thing beyond our control to happen in states0. We continue
to generate training examples in this fashion until there are
no unprocessed events left in the plan. Given a set of train-
ing examples for the initial plan, we use regular decision
tree induction (see, e.g., Quinlan 1986) to generate an initial
policy.

To illustrate the process of generating an initial pol-
icy, consider the planning problem described by Younes,
Musliner, & Simmons (2003), which is a continuous-time
variation of a problem developed by Blythe (1994). In this
problem, the goal is to have a person transport a package
from CMU in Pittsburgh to Honeywell in Minneapolis with
probability at least0.9 in at most300 time units without los-
ing it on the way. In CSL, this goal can be expresses as
P≥ 0.9

(¬lostpkg U≤300 atme,honeywell ∧ carryingme,pkg

)
.

Figure 3(a) shows the plan generated by the determinis-
tic temporal planner. The plan schedules two events to be-
come enabled at time zero, one being the action to enter a
taxi at CMU, and the other being the exogenous event caus-
ing the plane to depart from Pittsburgh to Minneapolis. Ac-
tions are identified by an entry in the second column of the
table in Figure 3(a). The “enter-taxi” action is scheduled



to trigger first, resulting in a training example mapping the
initial state to this action. The following state is mapped
to the first “depart-taxi” action, while the state following
the triggering of that action is mapped to the idle action.
This is because the next event (“arrive-taxi”) is not an ac-
tion. Eight additional training examples can be extracted
from the plan, and the decision tree representation of the
policy learned from the eleven training examples is shown
in Figure 3(b). This policy, for example, maps all states sat-
isfying atpgh-taxi,cmu ∧ atme,cmu to the action labeleda1

(the first “enter-taxi” action in the plan), while states where
atpgh-taxi,cmu, atplane,mpls-airport, andatme,pgh-airport are
all false andinme,plane is true are mapped to the idle action
aε.

Additional training examples can be obtained from plans
with multiple events scheduled to trigger at the same time
by considering different trigger orderings of the simultane-
ous events. If two eventse1 ande2 are both scheduled to
trigger at timet, we would get one set of training example
by applyinge1 beforee2, and a second set by applyinge2

beforee1.

Policy Debugging and Repair

During verification of a policyπ for a planning problem
〈M, s0, φ〉, we generate a set of sample execution paths
starting ins0 for the stochastic processM[π]. If the pol-
icy π does not satisfy the goal condition, then these sample
paths can help us understand the “bugs” ofπ and provide us
with valuable information on how to repair the policy.

We next present the techniques for sample path analysis
we use in our implementation of the DEBUG-POLICY pro-
cedure. The result of the analysis is a set of ranked failure
scenarios. A failure scenario can be fed to the deterministic
temporal planner, which will try to generate a plan taking
the failure scenario into account. The resulting plan, if one
exists, can be used to repair the current policy.

Sample Path Analysis

Policy verification generates a set of sample pathsσσσ =
{σ1, . . . , σn}, with each sample path being of the form

σi = s0
ti0,ei0−→ si1

ti1,ei1−→ . . .
ti,ki−1,ei,ki−1−→ siki

.

We start the sample path analysis by computing a value, rel-
ative to a goal formulaP≥ p

(
φ1 U≤t φ2

)
, for each state oc-

curring in some sample path. This is done by constructing
a stationary Markov process representing the sample paths.
The state space for this Markov process is the set of states
occurring in some sample path. The transition probabilities
p(s′; s) are defined as the number of timess′ is immediately
followed bys in the sample paths divided by the total num-
ber of occurrences ofs. We assign the value+1 to states sat-
isfying φ2 and the value−1 to states satisfying¬(φ1 ∨ φ2).
We represent the exceeding of the time boundt along a sam-
ple path with a special eventeτ leading to a statesτ that also
is assign the value−1 (for a goal formulaP≤ p (ρ), all the
+1 and−1 values are interchanged). The value of the re-

Failure Path 1 Failure Path 2 Failure Scenario
e1 @ 1.2 e1 @1.6 e1 @ 1.4
e2 @ 3.0 e2 @3.2 e2 @ 3.1
e1 @ 4.5 e3 @4.4 e1 @ 4.5
e3 @ 4.8 e1 @4.5 e3 @ 4.6
e4 @ 6.8 e5 @6.4 e5 @ 6.7
e5 @ 7.0 - -

Table 2: Example of failure scenario construction from two
failure paths.

maining states is computed using the recurrence

V (s) = γ
∑

s′∈S

p(s′; s)V (s′),

whereγ < 1 is a discount factor. The value of a state signi-
fies the closeness to a success or failure state, ignoring tim-
ing information and only counting the number of transitions.
A large positive value indicates closeness to success, while
a large negative value indicates closeness to failure. The dis-
count factor permits us to control the influence a success or
failure states has on the value of states at some distance
from s.

The next step is to assign a value to each event occurring
in some sample path. Each triples

e−→ s′ is given the value
V (s′)−V (s) and the valueV (e) of an evente is the sum of
the values of all triples thate is part of. We also compute the
meanµe and standard deviationσe over triples involvinge.
The event with the largest negative value can be thought of
as the “bug” contributing the most to failure, and we want to
plan to avoid this event or to prevent it from having negative
effects.

Finally, we construct a failure scenario for each evente by
combining the information from all failure pathsσi (paths
ending in a state with value−1) containing a triples

e−→ s′
such thatV (s′)−V (s) < µe +σe. The reason for the cutoff
is to not include information from failure paths where an
event contributes to failure significantly less than on average
so that the aggregate information is representative for the
“bug” being considered. A failure scenario is a sequence
of events paired with time points and is constructed from a
set of paths by associating each event occurring in all paths
with the average trigger time for the event. Table 2 shows
how two example failure paths are combined into a single
failure scenario. Evente1 occurs twice in both failure paths
and therefore also occurs twice in the failure scenario, while
evente4 only appears in the first path and is thus excluded
from the scenario.

Planning for Failure Scenarios
We select the failure scenario for the event with the lowest
value and try to generate a plan for the selected scenario that
achieves the goal. If this fails, we try planning for the next
worst failure scenario, and continue in this manner until we
find a promising repair or run out of failure scenarios.

We plan for a failure scenario by incorporating the events
and timing information of the scenario into the planning
problem that we pass to the temporal deterministic planner.



ti:ei[di] act.
0:(enter-taxi me pgh-taxi cmu)[1] a1

0:(depart-plane plane pgh-airport mpls-airport)[60]
1:(depart-taxi me pgh-taxi cmu pgh-airport)[1] a2

2:(arrive-taxi pgh-taxi cmu pgh-airport)[20]
22:(leave-taxi me pgh-taxi pgh-airport)[1] a3

23:(check-in me plane pgh-airport)[1] a4

60:(arrive-plane plane pgh-airport mpls-airport)[90]
150:(enter-taxi me mpls-taxi mpls-airport)[1] a5

151:(depart-taxi me mpls-taxi mpls-airport honeywell)[1]a6

152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]
172:(leave-taxi me mpls-taxi honeywell)[1] a7

(a) Plan for simplified deterministic planning problem.

a4 inme,plane

atme,pgh−airport

movingmpls−taxi,mpls−airport,honeywell

a7aε

atme,mpls−airport

a5 a6

atmpls−taxi,mpls−airport

atplane,mpls−airport

a2

atme,cmu

aε movingpgh−taxi,cmu,pgh−airport

aε a3

a1

atpgh−taxi,cmu

(b) Policy generated from plan in (a).

Figure 3: (a) Initial plan and (b) policy for transportation problem. Leafs in the decision tree are labeled by actions, with labels
taken from the table in (a). To find the action selected by the policy for a states, start at the root of the decision tree. Traverse
the tree until a leaf node is reached by following the left branch of a decision node ifs satisfies the test at the node and following
the right branch otherwise.

Given a failure scenarioe1@t1, . . . , ek@tk, . . . , en@tn as-
sociated with the eventek, we generate a sequence of states
s0, . . . , sn, wheres0 is the initial state of the original plan-
ning problem andsi for i > 0 is the state obtained by apply-
ing ei to statesi−1. We can plan to avoid the bad eventek by
generating a planning problem with initial statesi for i < k.
By choosingi closer tok, we can potentially avoid planning
for situations that the current policy already handles well.
Our implementation iterates over the possible starts states
from i = k − 1 to i = 0. If a solution is found for somei,
then we do not have to attempt further initial states. For each
planning problem that we generate, we limit the number of
search nodes explored by VHPOP. In case the search limit
is reached, we attempt an earlier initial state, or try to plan
for the next worst failure scenario if we already are ati = 0.

Given an initial statesi, we incorporate the events follow-
ing si in the failure scenario into the planning problem in
the form of a set ofevent dependency treesTi and a set of
untriggeredeventsUi. Each node in an event dependency
tree stores an event and a trigger time for the event relative
the parent node (or relative the initial state for root nodes).
The children of a node for an evente represent events that
depend on the triggering ofe to become enabled. The setUi

represents events that are enabled in all statessj but differ
from all eventsej for j ≥ i, and these events should not be
allowed to trigger between time0 andtn in the determinis-
tic planning problem. An event dependency tree node can
be associated with a set of untriggered events as well, these
being events that should not be allowed to trigger between
the triggering of the event associated with the node and time
tn.

We define the setsTi andUi for statesi recursively. The
base case isTn = ∅, with Un containing all events enabled
in sn. For i < n, let δ = ti − ti−1 (or simplyti for i = 1)
and construct a treeτi consisting of a single node with event
ei and trigger timeδ. For each treeτ ∈ Ti+1:

• if the event at the root ofτ is an action, then addτ to Ti.

ei @ ti Label
(enter-taxi me pgh-taxi cmu) @ 0.909091 a1

(depart-taxi me pgh-taxi cmu pgh-airport) @ 1.81818 a2

(fill-plane plane pgh-airport) @ 13.284 e3

(arrive-taxi pgh-taxi cmu pgh-airport) @ 30.0722 e4

(leave-taxi me pgh-taxi pgh-airport) @ 30.9813 a5

(lose-package me pkg pgh-airport) @ 44.0285 e6

Figure 4: Failure scenario for the policy in Figure 3(b) asso-
ciated with the “fill-plane” event.

• if the event at the root ofτ is enabled insi, then addδ to
the trigger time of the root node and add the resulting tree
to Ti.

• if the event at the root ofτ is disabled insi, then addτ to
the children ofτi.

Let U be the set of eventse ∈ Ui+1 not enabled insi. Then
Ui = Ui+1 \U ∪{ei+1} and the root node ofτi is associated
with the setU . Finally, addτi to Ti.

Figure 4 shows an actual failure scenario for the pol-
icy in Figure 3(b). For this scenario, in the state right be-
fore the “fill-plane” event, there are three event trees: one
with e4@28.254 as the sole node, one withe3@11.4658
as the sole node, and a final tree witha5 at the root and
e6@13.0472 as a child node.

We incorporate the event trees inTi with exogenous
events at the root into the deterministic planning problem by
forcing all the events in these trees to be part of the plan.
Events at root nodes are scheduled to become enabled at
time 0 and to trigger at the time stored at the node, and
events at non-root nodes are scheduled to become enabled
at the time the parent event triggers and scheduled to trig-
ger t time units after the parent event triggers (t being the
time stored at the node). The planner is allowed to disable
the effects of a forced event by disabling its enabling con-
dition. This can easily be handled in a POCL framework
by treating the enabling condition as an effect condition that



can be disabled by means ofconfrontation(see, e.g., Weld
1994). The setUi, and sets of untriggered events associated
with event dependency tree nodes, impose further schedul-
ing constraints that restrict the possibilities for the determin-
istic planner, forcing it to produce a plan consistent with the
timing information contained in the failure scenario. For an
example of an untriggered event, consider the failure sce-
nario in Figure 4. There is a “move-taxi” event for the Pitts-
burgh taxi that becomes enabled immediately after it arrives
at the Pittsburgh airport, but the “move-taxi” event is treated
as an untriggered event since it does not appear in the fail-
ure scenario. This means that the deterministic planner is
not permitted to schedule a “move-taxi” event for the Pitts-
burgh taxi until after any events in the plan that are part of
the failure scenario.

Once a plan is found for a failure scenario, we extract a set
of training examples from the plan as described earlier in this
paper. We update the current policy by incorporating the ad-
ditional training examples into the decision tree using incre-
mental decision tree induction (Utgoff, Berkman, & Clouse
1997). This requires that we store the old training examples
in the leaf nodes of the decision tree, and some additional in-
formation in the decision nodes, but we avoid having to gen-
erate the entire decision tree from scratch. We adapt the al-
gorithm of Utgoff, Berkman, & Clouse to our particular situ-
ation by always giving precedence to new training examples
over old ones in case of inconsistencies, and by only restruc-
turing the decision tree after incorporating all new training
examples.

Figure 5(a) shows a plan for the failure scenario in Fig-
ure 4, with the state after the “enter-taxi” action as the initial
state for the planning problem. The policy after incorporat-
ing the training examples generated from the plan is shown
in Figure 5(b). The entire right subtree for the repaired pol-
icy is the same as for the initial policy, so it does not have to
be regenerated.

Results
The results in this section were generated on a PC with a
650 MHz Pentium III processor running Linux. A search
limit of 10,000 explored nodes was set for the deterministic
planner. We used the additive heuristic described by Younes
& Simmons (2002a) with VHPOP, a variation for POCL
planning of the additive heuristic for state space planning
first proposed by Bonet, Loerincs, & Geffner (1997).

First we consider the transportation problem described
so far in this paper. There are several things that can go
wrong with the initial policy in Figure 3(b): the plane can
become full or leave before we get to the Pittsburgh airport
to check in, the Minneapolis taxi can be serving other cus-
tomers when we arrive at the Minneapolis airport, and the
package can get lost if we stand with it at an airport for too
long. The top part of Table 3 shows the worst three “bugs”
for the initial policy as determined by the sample path anal-
ysis. The numbers in the table are averages over five runs
with different random seeds, and we used the parameters
α = β = 0.01 (error probability) andδ = 0.005 (half-
width of indifference region) with the verification algorithm
(see (Younes & Simmons 2002b) for details on the meaning

ti:ei[di] act.
0:(leave-taxi me pgh-taxi cmu)[1] a8

0:(depart-plane plane pgh-airport mpls-airport)[60]
0:(fill-plane plane pgh-airport)[12.3749]
1:(make-reservation me plane cmu)[1] a9

2:(enter-taxi me pgh-taxi cmu)[1] a1

3:(depart-taxi me pgh-taxi cmu pgh-airport)[1] a2

4:(arrive-taxi pgh-taxi cmu pgh-airport)[20]
24:(leave-taxi me pgh-taxi pgh-airport)[1] a3

25:(check-in me plane pgh-airport)[1] a4

60:(arrive-plane plane pgh-airport mpls-airport)[90]
150:(enter-taxi me mpls-taxi mpls-airport)[1] a5

151:(depart-taxi me mpls-taxi mpls-airport honeywell)[1]a6

152:(arrive-taxi mpls-taxi mpls-airport honeywell)[20]
172:(leave-taxi me mpls-taxi honeywell)[1] a7

(a) Plan for failure scenario.

atme,cmu

atpgh−taxi,cmu

a9a1 a8a1

..
.

has−reservation has−reservationme,plane me,plane

(b) Repaired policy.

Figure 5: (a) Plan for failure scenario in Figure 4 using the
second state as initial state, and (b) the policy after incorpo-
rating the training examples from the plan in (a). The right
subtree of the root node is identical to that of the initial pol-
icy in Figure 3(b), and is only indicated by three dots.

of these parameters). The influence of these parameters on
the complexity of the verification algorithm are discussed by
Youneset al. (2004). By a wide margin, the worst bug is that
the plane becomes full before we have a chance to check in.
Losing the package at Minneapolis airport comes in second
place. Note that the package is more often lost at Pittsburgh
airport than at Minneapolis airport, but this bug is not ranked
as high because it only happens when the plane already has
been filled.

The “fill-plane” bug is repaired by making a reservation
before leaving CMU, resulting in the policy shown in Fig-
ure 5(b). The top three bugs for this policy are shown in the
bottom part of Table 3. Now, losing the package at Min-
neapolis airport appears to be the only severe bug left. Note
that losing the package at Pittsburgh airport no longer ranks
in the top three because the repair for the “fill-plane” bug
took care of this bug as well. The package is lost at Min-
neapolis airport because the taxi is not there when we arrive,
and the repair found by the planner is to store the package in
a safety box until the taxi returns. The policy resulting from
this repair satisfies the goal condition so we are done.

Table 4 shows running times for the different parts of the
planning algorithm on two variations of the transportation
problem. The first problem uses the original transportation



Event Rank Value µe + σe Paths
(fill-plane plane pgh-airport) 1.0 -24.1 -0.36 41.8

first policy (lose-package me pkg mpls-airport) 2.0 -14.7 -0.76 15.0
(lose-package me pkg pgh-airport) 3.2 -6.8 -0.15 36.4
(lose-package me pkg mpls-airport) 1.0 -94.3 -0.70 101.6

second policy (arrive-plane plane pgh-airport mpls-airport) 2.4 -19.9 0.04 99.4
(move-taxi mpls-taxi mpls-airport) 2.6 -18.2 0.06 107.4

Table 3: Top ranking “bugs” for the first two policies of the transportation problem. All numbers are averages over five runs.

domain, while the second problem replaces the possibility
of storing a package with an action for reserving a taxi and
uses the probability threshold0.85 instead of0.9. The ver-
ification time is inversely proportional to the logarithm of
the error boundsα andβ (cf. Youneset al. 2004). We can
see that the sample path analysis takes very little time. The
time for the first repair is about the same for both problems,
which is not surprising as exactly the same repair applies
in both situations. The second repair takes longer time for
the second problem because we have to go further back in
the failure scenario in order to find a state where we can ap-
ply the taxi reservation action so that it has desired effects.
We observe that the sample path analysis finds the same ma-
jor bugs despite random variation in the sample paths across
runs and varying error bounds.

Discussion
We have presented concrete techniques for policy genera-
tion, debugging, and repair that can be used in the frame-
work of Younes, Musliner, & Simmons (2003) for planning
in continuous-time domains with concurrency. We repre-
sent policies using decision trees, which are generated from
training examples extracted from a serial plan produced by
a deterministic temporal planner. Our debugging technique
utilizes the samples generated during policy verification, and
reliably identifies the two major bugs in our transportation
example. The sample path analysis results in a set of fail-
ure scenarios that help guide the replanning effort required
to repair a policy. These failure scenarios could also be
useful in helping humans understand negative behavior of
continuous-time stochastic systems, and can be thought of
as corresponding to “counter-examples” in non-probabilistic
model checking.

The policies we generate are stationary, but we could eas-
ily extend our techniques to generate non-stationary policies
by adding a time stamp to each training example extracted
from a plan and allowing numeric tests in the decision tree.
If the deterministic planner we use supports planning with
continuous-valued resources other than time, then we could
also lift the restriction on only allowing boolean state vari-
ables in the domain descriptions.

We are currently trying to avoid some replanning by not
always planning from the initial state when planning for a
failure scenario. We could potentially save more effort by
using a different goal than the original goal, for example by
considering some cross section of the previous partial order
plan and plan for a goal that is the conjunction of link con-
ditions crossing the cut. Alternatively, we could reuse the

most recent plan and use transformational plan operators to
repair the plan.

Extensions of the planning framework to decision theo-
retic planning are also under consideration (Ha & Musliner
2002). The techniques presented in this paper may be use-
ful in this setting as well. Instead of assigning the values
−1 and+1 to terminal states during sample path analysis,
we could assign values according to a user defined value
function, with the failure scenarios then indicating execu-
tion paths that bring down the overall value for the policy
being analyzed.

Acknowledgments. This paper is based upon work sup-
ported by DARPA and ARO under contract no. DAAD19–
01–1–0485, and a grant from the Royal Swedish Academy
of Engineering Sciences (IVA). The U.S. Government is au-
thorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the sponsors.

References
Aziz, A.; Sanwal, K.; Singhal, V.; and Brayton, R. 2000.
Model-checking continuous-time Markov chains.ACM
Transactions on Computational Logic1(1):162–170.
Baier, C.; Haverkort, B. R.; Hermanns, H.; and Katoen, J.-
P. 2003. Model-checking algorithms for continuous-time
Markov chains.IEEE Transactions on Software Engineer-
ing 29(6):524–541.
Blythe, J. 1994. Planning with external events. InProc.
Tenth Conference on Uncertainty in Artificial Intelligence,
94–101. Morgan Kaufmann Publishers.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. InProc.
Fourteenth National Conference on Artificial Intelligence,
714–719. AAAI Press.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. InProc. Four-
teenth International Joint Conference on Artificial Intelli-
gence, 1104–1111. Morgan Kaufmann Publishers.
Boyan, J. A., and Littman, M. L. 2001. Exact solutions
to time-dependent MDPs. InAdvances in Neural Informa-
tion Processing Systems 13: Proc. 2000 Conference. Cam-
bridge, MA: The MIT Press. 1026–1032.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D. E.; and Washington, R. 2002. Planning under



first policy second policy third policy
Verification Analysis Repair Verification Analysis Repair Verification

α = β = 10−1 0.044 0.008 0.642 0.232 0.012 0.014 0.176
problem 1 α = β = 10−2 0.084 0.014 0.640 0.470 0.012 0.018 0.344

α = β = 10−4 0.160 0.004 0.646 0.974 0.020 0.022 0.698
α = β = 10−1 0.072 0.006 0.666 2.372 0.036 2.468 0.606

problem 2 α = β = 10−2 0.140 0.006 0.670 5.490 0.074 2.496 1.318
α = β = 10−4 0.272 0.010 0.682 10.036 0.128 2.568 2.494

Table 4: Running times, in seconds, for different stages of the planning algorithm for the original transportation problem
(problem 1) and the modified transportation problem (problem 2) with varying error bounds (α and β). All numbers are
averages over five runs.

continuous time and resource uncertainty: A challenge for
AI. In Proc. Eighteenth Conference on Uncertainty in Ar-
tificial Intelligence, 77–84. Morgan Kaufmann Publishers.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence49(1–3):61–95.
Drummond, M., and Bresina, J. 1990. Anytime synthetic
projection: Maximizing the probability of goal satisfaction.
In Proc. Eighth National Conference on Artificial Intelli-
gence, 138–144. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20. Forthcoming.
Glynn, P. W. 1989. A GSMP formalism for discrete event
systems.Proceedings of the IEEE77(1):14–23.
Guestrin, C.; Koller, D.; and Parr, R. 2002. Multiagent
planning with factored MDPs. InAdvances in Neural In-
formation Processing Systems 14: Proc. 2001 Conference.
Cambridge, MA: The MIT Press. 1523–1530.
Ha, V., and Musliner, D. J. 2002. Toward decision-theoretic
CIRCA with application to real-time computer security
control. InPapers from the AAAI Workshop on Real-Time
Decision Support and Diagnosis Systems, 89–90. AAAI
Press. Technical Report WS-02-15.
Howard, R. A. 1960.Dynamic Programming and Markov
Processes. New York, NY: John Wiley & Sons.
Howard, R. A. 1971.Dynamic Probabilistic Systems, vol-
ume II. New York, NY: John Wiley & Sons.
Matthes, K. 1962. Zur Theorie der Bedienungsprozesse.
In Trans. Third Prague Conference on Information Theory,
Statistical Decision Functions, Random Processes, 513–
528. Publishing House of the Czechoslovak Academy of
Sciences.
Nelson, W. 1985. Weibull analysis of reliability data
with few or no failures. Journal of Quality Technology
17(3):140–146.
Quinlan, J. R. 1986. Induction of decision trees.Machine
Learning1(1):81–106.
Simmons, R. G. 1988. A theory of debugging plans and
interpretations. InProc. Seventh National Conference on
Artificial Intelligence, 94–99. AAAI Press.
Utgoff, P. E.; Berkman, N. C.; and Clouse, J. A. 1997. De-
cision tree induction based on efficient tree restructuring.
Machine Learning29(1):5–44.

Weld, D. S. 1994. An introduction to least commitment
planning.AI Magazine15(4):27–61.
Younes, H. L. S., and Simmons, R. G. 2002a. On the role
of ground actions in refinement planning. InProc. Sixth In-
ternational Conference on Artificial Intelligence Planning
and Scheduling Systems, 54–61. AAAI Press.
Younes, H. L. S., and Simmons, R. G. 2002b. Probabilis-
tic verification of discrete event systems using acceptance
sampling. InProc. 14th International Conference on Com-
puter Aided Verification, volume 2404 ofLNCS, 223–235.
Springer.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner.Journal of Artificial
Intelligence Research20:405–430.
Younes, H. L. S.; Kwiatkowska, M.; Norman, G.; and
Parker, D. 2004. Numerical vs. statistical probabilistic
model checking: An empirical study. InProc. 10th Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer. Forthcoming.
Younes, H. L. S.; Musliner, D. J.; and Simmons, R. G.
2003. A framework for planning in continuous-time
stochastic domains. InProc. Thirteenth International Con-
ference on Automated Planning and Scheduling, 195–204.
AAAI Press.
Younes, H. L. S. 2003. Extending PDDL to model stochas-
tic decision processes. InProc. ICAPS-03 Workshop on
PDDL, 95–103.


