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Abstract

In this paper we analyze and extend a recently developed
“task-swapping” procedure for improving schedules in over-
subscribed situations. In such situations, there are tasks
which cannot be directly added to the current schedule with-
out introducing capacity conflicts. A schedule is improved
if one or more of these tasks can be feasibly included, and
the goal of task swapping is to rearrange some portion of the
current schedule to make this possible. Key to effective task
swapping is an ability to exploit the scheduling flexibility in-
herent in the constraints associated with various scheduled
tasks, and previous work has shown that the use of retraction
heuristics that favor tasks with greater rescheduling flexibil-
ity can give rise to strong schedule improvement capabilities.
We extend this work by developing and evaluating several
improvements to the core task swapping procedure. We in-
troduce three pruning techniques and show that each signif-
icantly improves computational efficiency while maintaining
solution quality. We then investigate the possibility of im-
proving the “end” solutions by stochastically exploring the
“neighborhood” around them, and demonstrate that improved
solutions are possible given the ability to spend additional
time.

Introduction

Scheduling in a continuous plan-schedule-execute-
reschedule environment requires more than just the ability
to generate good schedules. In such an environment we take
as given that the schedules generated will be good, but not
optimal, since even if generating an optimal schedule were
possible, that schedule would quickly become obsolete as
requirements are revised and feedback from execution is
taken into account. This view of things puts a premimum
on the ability to revise and improve an existing schedule
quickly, while at the same time maintaining stability in
decisions wherever possible.

In (Kramer and Smith 2003), a task swapping algorithm,
referred to as MissionSwap, is introduced as a mecha-
nism for improving schedules in oversubscribed problem
domains. It was developed for specific application to the
USAF Air Mobility Command (AMC) mission scheduling
problem (Becker and Smith 2000). In this context, it was
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used to overcome the bias of a greedy priority-driven sched-
ule generation procedure and squeeze additional, lower pri-
ority missions into the airlift schedule. However, the proce-
dure appears equally applicable in schedule repair settings,
such as minimizing the number of missions that must be
dropped from the schedule when resource capacity is un-
expectedly lost.

Recognizing the more general applicability of this task
swapping search procedure, this paper studies the Mission-
Swap procedure in more detail. On one hand, we analyze
original search design decisions and consider opportunities
for efficiency improvements. On the other, we propose ex-
tensions aimed at boosting the performance of task retrac-
tion heuristics and producing better schedule improvement
results. We conduct experiments using a mission scheduling
data set comparable to that used in the original study, and
quantify performance tradeoffs associated with different al-
gorithmic variants. Interestingly, some of the improvements
considered differentially affect the performance of differ-
ent retraction heuristics, and lead to a somewhat different
picture of relative strengths than was obtained in (Kramer
and Smith 2003). Overall, our experiments show that Mis-
sionSwap can be made significantly faster without degrad-
ing quality, and that given a reasonable amount of time to
devote, iterated stochastic search can lead to additional so-
lution quality. These characteristics make MissionSwap a
particularly attractive method for anytime schedule repair
and improvement.

We begin by briefly summarizing the AMC scheduling
domain and the previously developed MissionSwap proce-
dure that we take as our starting point.

The AMC Scheduling Problem

Without loss of generality the AMC scheduling problem can
be characterized abstractly as follows:

o Aset T of tasks (or missions) are submitted for execution.
Each task ¢+ € T has an earliest pickup time est;, a latest
delivery time ! ft, a pickup location orzg;, a dropoff loca-
tion dest;, a duration d; (determined by orig; and dest;)
and a priority pr;

e A set Res of resources (or air wings) are available for as-
signment to missions. Each resource » € Res has capac-
ity cap, > 1 (corresponding to the number of contracted



aircraft for that wing).

e Each task 7 has an associated set Res; of feasible re-
sources (or air wings), any of which can be assigned to
carry out ¢. Any given task 7 requires 1 unit of capac-
ity (i.e., one aircraft) of the resource r that is assigned to
perform it.

e Each resource r has a designated location home,. For
a given task ¢, each resource » € Res; requires a posi-
tioning time pos, ; to travel from home, to orig;, and a
de-positioning time depos, ; to travel from dest; back to
home, .

A schedule is a feasible assignment of missions to wings.
To be feasible, each task ¢ must be scheduled to execute
within its [est;, [ ft;] interval, and for each resource r and
time point ¢, assigned-cap, , < cap,. Typically, the prob-
lem is over-subscribed and only a subset of tasks in 7" can
be feasibly accommodated. If all tasks cannot be scheduled,
preference is given to higher priority tasks. Tasks that cannot
be placed in the schedule are designated as unassignable.

Both the scale and continuous, dynamic nature of the
AMC scheduling problem effectively preclude the use of
systematic solution procedures that can guarantee any sort
of maximal accommodation of the tasks in 7". The approach
adopted within the AMC Allocator application instead fo-
cuses on quickly obtaining a good baseline solution via a
greedy priority-driven allocation procedure, and then pro-
viding a number of tools for selectively relaxing problem
constraints and incorporating as many additional tasks as
possible (Becker and Smith 2000). The task swapping pro-
cedure of (Kramer and Smith 2003) is one such schedule
improvement tool.

The Basic Task Swapping Procedure

The task swapping procedure summarized below takes the
solution improvement perspective of iterative repair meth-
ods (Minton et al. 1992; Zweben et al. 1994) as a start-
ing point, but manages solution change in a more system-
atic, globally constrained manner. Starting with an initial
baseline solution and a set U of unassignable tasks, the ba-
sic idea is to spend some amount of iterative repair search
around the “footprint” of each unassignable task’s feasible
execution window in the schedule. Within the repair search
fora given u € U, criteria other than task priority are used to
determine which task(s) to retract next, and higher priority
tasks can be displaced by a lower priority task. If the repair
search carried out for a given task u can find a feasible re-
arrangement of currently scheduled tasks that allows u to be
incorporated, then this solution is accepted, and we move on
to the next unconsidered task € U. If, alternatively, the
repair search for a given task u is not able to feasibly reas-
sign all tasks displaced by the insertion of « into the sched-
ule, then the state of the schedule prior to consideration of u
is restored, and u remains unassignable. Conceptually, the
approach can be seen as successively relaxing and reassert-
ing the global constraint that higher priority missions must
take precedence over lower priority missions, temporarily
creating “infeasible” solutions in hopes of arriving at a bet-
ter feasible solution.

In the subsections below, we describe this task swapping
procedure, and the heuristics that drive it, in more detail.

Task Swapping

task;, task,
task, task, task,

v

ConflictSet, = {{a,b}, {b,c}, {d,e}}

Figure 1: An unassignable task «

Figure 1 depicts a simple example of a task w that is
unassignable due to prior scheduling commitments. In this
case, u requires capacity on a particular resource r, and the
time interval RegInt, , = [esty — pos, o, fty + depos; 4]
defines the “footprint” of «’s allocation requirement. Within
ReqlInt, ., an allocation duration alloc-dur, ,, = pos, . +
dy +depos, ,, is required. Thus, to accommodate v, a subin-
terval of capacity within Req/nt, ., of at least alloc-dur, ,,
must be freed up.

To free up capacity for u, one or more currently scheduled
tasks must be retracted. We define a conflict C'on flict, ;¢
on a resource r as a set of tasks of size C'ap, that simul-
taneously use capacity over interval int. Intuitively, this is
an interval where resource r is currently booked to capacity.
We define the confict set C'on flictSet, of an unassignable
task u to be the set of all distinct conflicts over Reglnt, .,
on all » € R,,. In Figure 1, for example, Con flictSet,, =
{{a’ b}’ {b’ C}’ {d’ 6}}.

Given these preliminaries, the basic repair search proce-
dure for inserting an unassignable task, referred to as Mis-
sionSwap, is outlined in Figure 2. It proceeds by computing
ConflictSetyqsi, (line 2), and then retracting one conflict-
ing task for each C'on flict, in: € ConflictSet;qs (line3).
This frees up capacity for inserting task (line 5), and once
this is done, an attempt is made to feasibly reassign each re-
tracted task (line 6). For those retracted tasks that remain
unassignable, MissionSwap is recursively applied (lines 7-
10). As a given task is inserted by MissionSwap, it is
marked as protected, which prevents subsequent retraction
by any later calls to MissionSwap. Given that any task in
the current schedule can be reassigned only once and that the
number of conflicts introduced by any unassignable task is
bounded by the number of tasks scheduled on the resources
that it is competing for, the worst case complexity of this
procedure is O(n?),where n is the number of tasks sched-
uled on all »; € Resiqsk-



MissionSwap(task, Protected)
1. Protected < Protected U {task}

2. ConflictSet + ComputeTaskConflicts (task)

3. Retracted + RetractTasks (C'on flictSet, Protected)
4. if Retracted = () then Return(p)) ; failure

5. ScheduleTask(task)

6. ScheduleInPriorityOrder( Retracted, least-flexible-first)
7. loop for (i € Retracted A status; = unassigned) do
8 Protected + MissionSwap(i, Protected)

9. if Protected = ) then Return(f) ; failure
10.end-loop

11.Return(Protected) ; success

12.end

RetractTasks(C'on flicts, Protected)
. Retracted «
. loop for (OpSet € Conflicts do
if (OpSet — Protected) = () then Return(f)
t + ChooseTaskToRetract(OpSet — Protected)
UnscheduleTask(?)
Retracted < Retracted U {t}
end-loop
. Return(Retracted)
end
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Figure 2: Basic MissionSwap Search Procedure

In Figure 3, top-level InsertUnassignableTasks proce-
dure is shown. Once MissionSwap has been applied to all
unassignable tasks, one last attempt is made to schedule any
remaining tasks. This step attempts to capitalize on any op-
portunities that have emerged as a side-effect of Mission-
Swap’s schedule re-arrangement.

Retraction Heuristics

The driver of above repair process is the retraction heuristic
ChooseTaskToRetract. In (Kramer and Smith 2003), three
candidate retraction heuristics are defined and anlayzed,
each motivated by the goal of retracting the task assignment
that possesses the greatest potential for reassignment:

e Max-Flexibility - One simple estimate of this potential is
the scheduling flexibility provided by a task’s feasible ex-
ecution interval. An overall measure of task i’s temporal
flexibility is defined as

ZTeRes .alloc-dur, ;

(lftZ — efti) X |R68i|

leading to the following retraction heuristic:

MaxFlex =i € C: Flex; < Flex;Vj #1

Flex; =

where C' € Con flictSet,, for some unassignable task w.

e Min-Conflicts - Another measure of rescheduling poten-
tial of a task ¢ is the number of conflicts within its feasible
execution interval, i.e. |ConflictSet;|. This gives the
following heuristic:

MinConf =i € C :|ConflictSet;| < |ConflictSet;|

InsertUnassignableTasks({U nassignables)
Protected + 0
. loop for (task € Unassignables) do
SaveScheduleState
Result < MissionSwap(task, Protected)
if Result # 0
then Protected < Result
else RestoreScheduleState
end-loop
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10. ScheduleTask(z)
11.end-loop
12.end

Figure 3: InsertUnassignableTasks procedure

Vj#£i
where C' € Con flictSet,, for some unassignable task w.

¢ Min-Contention - A more informed, contention based
measure is one that consider’s the portion of a task’s ex-
ecution interval that is in conflict. Assuming that dur ¢
designates the duration of conflict ', task ¢’s overall con-
tention level is defined as

ZCEConflictSet, durc
ZTERes, Reqlntﬁi

leading to the following heuristic:

Cont; =

MinContention =1 € C': Cont; < Cont;,Vj # ¢

Prior results

The original experiments of (Kramer and Smith 2003) (car-
ried out on a suite of 100 problems) demonstrated the effi-
cacy of the MissionSwap procedure in the target domain.
In this study, max-flexibility was shown to be the strongest
performer; its application enabled scheduling, on average,
of 42% of the initial set of unassignable missions. Min-
contention, scheduled 38%, but was almost three times
slower. Min-conflicts proved less effective, scheduling only
30% on average.

Improving Task Swapping Performance

The MissionSwap task swapping procedure is clearly a gen-
eral mechanism for schedule repair in the presence of multi-
capacity resources. While the AMC Allocator performs
well employing a max-flexibility or min-contention heuris-
tic, even random choice can be used although with higher
cost and worse results. The max-flexibility heuristic, it
should be noted, turns out to be well informed because of
a reasonable variance in slack (more specifically the ratio of
runtime to feasible window) across the set of input tasks. In
domains where slack is not very variable, it is likely that a
contention-based heuristic would be the better informed.

Independent of heuristic, one can identify two different
factors that can impact the effectiveness of a schedule repair
procedure like task swapping:

. loop for (i € Unassignables A status; = unassigned) do



1. Extent of solution change - How much space should be
created in the schedule (how many tasks should be re-
tracted) when attempting to insert a new task? In con-
tinuous and reactive contexts, it is important to minimize
change. Also, retraction of more tasks implies that more
tasks need to be put back, and hence minimizing the num-
ber of tasks retracted can also be expected to have a pos-
itive impact on computational efficiency. On the other
hand, increasing the amount of change may increase op-
portunities for incorporation of additional tasks.

2. How to manage search efficiency? The scale and com-
plexity of the space searched by the task swapping proce-
dure prohibits systematic exploration of all retraction and
rescheduling options. The task swapping procedure gains
leverage from its retraction heuristic. At the same time,
this heuristic may offer more or less guidance in differ-
ent decision contexts, and this can lead to unproductive
search decisions and unnecessary search paths.

In the task-swapping procedure summarized in the pre-
vious section specific design decisions are made relative to
each of these issues. With respect to retraction, procedure
RetractTasks (in conjunction with the retraction heuristic
that is employed) identifies a set of tasks that may be larger
than necessary and may cover more of the resource timeline
than is strictly necessary to allow insertion of the new task.

With regard to search control, the MissionSwap proce-
dure will, in the worst case, try to retract and reschedule all
tasks involved in a given conflict before abandoning its at-
tempt to insert a new task, and each unassignable task is con-
sidered only once in the overarching InsertUnassignable-
Tasks procedure.

In the following sections, we reconsider these design de-
cisions and evaluate several variations of the task-swapping
procedure. Our experimental design follows that of the
original paper; using the same “AMC Tutorial Data Set”
(Kramer and Smith 2003) as a seed, five new data sets of
twenty problems each were generated, with resource capac-
ities randomly reduced from O to 10%, 0 to 20%, 0 to 30%, 0
to 40%, and 0 to 50% to obtain increasing levels of capacity
constrainedness. For each alteration in design space we con-
sider, this suite of 100 problems is used to evaluate solution
quality and runtime. In conducting our analysis, we make
use of the same retraction heuristics considered previously:
max-flexibility, min-conflicts, min-contention, and random
choice (as a baseline). All experiments were runon a 1.8Ghz
Pentium IV PC with 1Gb of RAM, running Windows 2000.
The scheduling engine is implemented in Allegro Common
Lisp 6.2.

Minimizing the Number of Tasks Retracted

The first two alterations to MissionSwap that we investigate
narrow the search space by reducing the number of tasks
that are retracted. The intuition is that by retracting less,
fewer branches will be need to be searched to produce a final
solution. We identify these two methods as Task Pruning
and Interval Pruning.

Task Pruning

In the original MissionSwap task swapping method, the
RetractTasks procedure frees up resource capacity for an
Unassignable task by retracting one task that is currently
scheduled in each conflict interval. In the naive implemen-
tation that is implied, these decisions are based strictly on
the advice of the retraction heuristic. It turns out that in
the actual implementation of the algorithm, though, a fairly
straightforward optimization was employed: if a task is re-
tracted in one interval and it happens to free up other in-
tervals, no further tasks need be retracted in those intervals.
Consider for example, the set of conflicts preventing the in-
sertion of unassignable task,, in Figure 4. If task; is se-
lected by the retraction heuristic to resolve conflict {a, b}
then conflict {b, ¢} is also resolved and there is no need
for further retraction, even if the retraction heuristic prefers
task,. totasky.

est,-pos, , Ift, +depos, ,
Reglnt, , |
alloc-dur,, ‘
| task, | | task, | task, |
r | task,, task,

ConflictSet, = {{a,b}, {b,c}, {d,e}}

Figure 4: Another unassignable task «

Intuitively it seems that minimizing the number of tasks
retracted in this manner will reduce the amount of search
required and thus make the base algorithm more efficient.
However, it not as obvious whether this optimization might
hurt or help solution quality. For instance, it might be the
case that task pruning reduces search, but in the process re-
duces quality by affording unassignable tasks less “room”
in which to reschedule. In general, it might be the case that
additional disruption of the current solution can create addi-
tional opportunities for solution improvement.

Figures 5 and 6 depict the average quality and cost per-
formance of various heuristics on the test problem suite with
task pruning enabled. The comparative performance results
(shown in Table 1) confirm that task pruning does improve
average runtime by 71% in the worst case (random choice
retraction heuristic) and by 85% (over a six-fold speed-up)
in the best case (max-flexibility retraction heuristic).

The interesting thing is that these significant speed-ups
are achieved with an accompanying increase in solution
quality for all of the retraction heuristics. Max-flexibility
improves the least at 2.63% and min-contention the most at
11.48%.

Given the win-win nature of this result we incorporate
task pruning as part of the base configuration for all sub-



sequent experiments reported below. It’s possible — though
unlikely — that some other tweak to the algorithm could mit-
igate against task pruning.
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Figure 6: Computational Cost

Interval Pruning

A second way in which RetractTasks is non-minimal is in
the amount of space that it clears along the timelines of re-
sources required by a given unassignable task. Consider
again the potential insertion of task, in Figure 4, where
three conflict intervals are identified over the required inter-
val ReqInt, . of task, onresource r. RetractTasks (with
or without task pruning) will retract sufficient tasks to re-
solve all conflicts and free up the entirety of Reglnt, ,;
even though task, could be feasibly scheduled on r in this
case without retraction of tasky or task.. Moreover, Re-
tractTasks will clear Reqint, ., foreach r € R,.

While it doesn’t seem productive to rule out one resource
over another a priori, it may be profitable to limit the number

of conflicts processed on a given resource r to a subset that
is strictly necessary to allow placement of the unassignable
task at hand.

Given that the default allocation strategy used to insert
new tasks schedules in an earliest-first manner, a natural
subset of conflicts to focus on are those are obtained via a
“left-to-right” scan of Reqlnt, ,. Specifically, we augment
RetractTasks to terminate at the point where a sub-interval
of ReqInt, , thatis greater than or equal to alloc-dur, ; has
been obtained. We refer to this extension to RetractTasks
procedure as interval pruning.

Running our base algorithm with interval pruning acti-
vated results in another significant cost performance gain for
all retraction heuristics, in general around a two-fold speed-
up (See Table 1 below). The results in terms of quality are
somewhat mixed, though. The quality of solutions obtained
with Max-flexibilty degrades slightly (by 1.66% on aver-
age), while the quality of min-contention solutions increases
by 5.45% on average.

It is understandable that the solution quality of max-
flexibility suffers somewhat as the interval that is freed up
is pruned in breadth. Basically we have given the newly
retracted tasks less room to schedule in, while the heuris-
tic is computed based on as task’s full feasible window.
The contention-based heuristics, alternatively, appear to gain
leverage as the extent of cleared space on resource timelines
is narrowed.

Depth-Bounded Search Cutoff

Depth-limited depth-first search is a well known technique
(Russell and Norvig 1995) for limiting search in many prob-
lem areas where a depth bound is known, to prune branches
and still produce a complete, but possibly non-optimal re-
sult.

In the case of task-swapping, the use of a depth bound
makes particular sense; as search proceeds further down in
the tree resulting from an attempt to resolve a given con-
flict, the retraction heuristic can be expected to become less
and less useful. For example, if max-flexibility is the heuris-
tic, then choices high in the search tree will correspond to
those operations that have the largest slack. As the search
descends to lower plies in the tree, the tasks selected for re-
traction have increasingly less slack and hence will likely
become more and more difficult to reschedule. A similar
progressive weakening of search leverage as the search de-
scends deeper into the tree can be expected from any retrac-
tion heuristic.

In practice, our observation of many hundreds of runs of
the MissionSwap algorithm on problems in the AMC do-
main indicates that if the search proceeds much past 8 to 10
levels deep, it is almost always doomed to fail. There is very
occassionally a successful path as much as 20 levels deep,
but that is very rare.

Accordingly, we examine the performance tradeoff of
running MissionSwap in truncated mode with a fixed depth
cutoff. Our expectation is that this depth cutoff should save
a good deal of time by failing earlier in the case of even-
tual failure, while only affecting the quality of the results



Average Unassignables by Pruning Technique

None Task Task+Interval Task+Depth T+I+D
Begin 21.83 21.83 21.83 21.83 21.83
Random 16.53 15.69 16 16.4 16.19
Min-Cont. 16.38 14.5 13.71 15.73 13.85
Min-Conf. 17.64 16.36 15.77 16.51 15.82
Max-Flex. 14.81 14.42 14.66 14.58 14.72

Average Runtime by Pruning Technique

None Task Task+Interval Task+Depth T+I+D
Random 518.85 151.91 56.79 45.71 46.8
Min-Cont. | 729.43 181.14 79.11 74.07 75.19
Min-Conf. | 750.88  148.23 93.57 63.75 78.99
Max-Flex. 528.8 78.37 43.7 37.34 37.36

Table 1: Overall Performance Results

slightly, if we have select a good depth bound. Following
the above observations we resolve our suite of test problems
using a cutoff value of 8.

Our comparative experimental results (See Table 1) prove
this conjecture to be true. By limiting search to eight levels
deep, we see run-times that are two to three times faster,
depending on heuristic. Degredation in solution quality is
seen to vary across heuristics; max-flexibilitty suffers only
a 1.11% decrease in solution quality, while Min-Contention
incurs an 8.48% decrease. Min-contention clearly needs to
occasionally search deeper than eight plies to achieve its best
results. At the same time, this quality loss can be weighed
against a 2.4 times speedup in runtime.

Composite Pruning Results

Our next experiment in design space of the MissionSwap
algorithm combines all pruning techniques — task, interval,
and depth. The results are summarized in Table 1. As can
be seen, this combination generally seems to be a good trade
off between the speed gains of depth pruning and the quality
gains of interval pruning.

The best that can be said is, that outside of task prun-
ing, which was an unmitigated success, improvements due
to interval and depth pruning were somewhat heuristic de-
pendent, and these results would likely vary somewhat de-
pending on the characteristics of the application domain.
Figure 7 shows the variation between the two best heuris-
tics, max-flexibility and min-contention, using the various
pruning techniques. Figure 8 compares their runtime perfor-
mance across those techniques.

While it is clear that max-flexibility is still far and away
the best heuristic in terms of runtime, several of the new
pruning techniques give min-contention an edge in terms of
solution quality. If the desire is for best solution quality, us-
ing min-contention as the retraction heuristic with task and
interval pruning is the best choice, with a final unassignable
average value of 13.71 at a 79.11 average runtime. If the
goal is to achieve the fastest runtime, it is best to use max-
flexibility using task and depth pruning, achieving an aver-
age final unassignable value of 14.58 in 37.34 seconds.
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Figure 8: Comparative computational cost

Iterated Task-Swapping

To this point, our investigation of tradeoffs in the design
space of task swapping search procedures has aimed at ex-
tensions that improve run time performance. In some cases,
these extensions have had a synergistic positive effect on so-
lution quality; in others, runtime improvement has come at
the expense of some decrease in solution quality.

In this section, we focus alternatively on mechanisms for
expanding the task-swapping repair search that is performed,
for use in obtaining better solutions in circumstances where
extended computation is possible. Specification of a com-
plete search procedure is out of the question due to the in-
tractable nature of the scheduling domains we are consider-
ing. Even a limited discrepancy search (Harvey and Gins-
berg 1995) is problematic for the application studied in this
paper, given the large size of the search space and the high
branching factor. At the same time, the current Mission-



Swap procedure relies heavily on the quality of its retraction
heursitic and the ability to broaden this search in some way
could be beneficial.

One approach to extending the search follows from the
fact that the overall InsertUnassignableTasks procedure
cycles just once through the set of unassignable tasks. Yet,
any time that MissionSwap is successful in inserting a new
unassignable into the schedule, a new problem state is de-
fined for inserting other tasks. From the standpoint of op-
timizing solution quality, this “try to insert only once” as-
sumption is restrictive.

Below we explore to ways of relaxing this assumption:

1. by iteratively invoking InsertUnassignableTasks until
quiessence, i.e., until a complete pass over the set of
unassignable tasks is made in which no new tasks are
scheduled. This extended search configuration is referred
to as Iterative-Deterministic below.

2. by iteratively invoking InsertUnassignableTasks for
some number of iterations using a non-deterministic vari-
ant of the retraction heuristic. A couple of alternative con-
figurations are defined in the next subsection.

Biased-Stochastic Task Retraction

The performance of MissionSwap depends heavily on the
decisions of its retraction heuristic, yet no heuristic is in-
fallable. Even very good retraction heuristics such as min-
contention and max-flexibility sometimes make the wrong
decisions and hence fail to reach the best solution on a given
problem. And sometimes, albeit rarely, even a policy of ran-
dom retraction will outperform. Starting from the assump-
tion that one has a good search heuristic, a number of tech-
niques have demonstrated an ability to boost search through
randomization (Bresina 1996; Oddi and Smith 1997; Ci-
cirello and Smith 2002). The basic idea is to broaden search
to encompass a stochastically defined “neighborhood” of the
heuristic’s deterministic trajectory through the search space.
Typically this is accomplished by re-running the search mul-
tiple times within an iterative sampling (or random restart-
ing) search framework.

In the context of task swapping, we adopt a slightly dif-
ferent methodology. Rather than restarting the search from
scratch each iteration, the search continually proceeds (as
in the case of iterative-deterministic) from the best solution
found so far. For instance, if our base heuristic is able to
reduce the initial number of unassignables from ten to five,
we start the stochastic search process in the state with five
unassignables. We give the stochastic procedure 7 iterations
to improve the solution, and if it improves the solution in less
than n, say from five to four, the stochastic search continues
from the state of four unassignables. This proceeds until ei-
ther n iterations of stochastic search have been completed
or the problem has been “solved’ (i.e., zero unassignables
achieved).

We consider two approaches to stochastically-biasing the
choices made by a given retraction heuristic:

1. acceptance band - This approach, based on work of (Oddi
and Smith 1997), chooses which task to retract randomly
from the set of all choices (tasks) whose heuristic value

falls within a certain percentage x of the highest rated
choice (i.e., the task that would have been retracted if the
retraction heuristic had been applied deterministically).
For example, suppose the base retraction heuristic is max-
flexibility and the highest ranked task has a flexibility
value of 0.12. (Recall from the earlier definition of flex-
ibility that the smaller the rating, the more flexible the
task.) Now suppose the next three highest ranked tasks
have values of 0.13, 0.15, and 0.18 respectively. In the
range (0, 1) these tasks do not differ much from the high-
est ranked task, and the heuristic would have to be al-
most perfect to differentiate between them. By specify-
ing an appropriate acceptance band these tasks are con-
sidered equally attractive, and the decision of which to
retract is made randomly. For the experiments reported
below, we settled on an acceptance band value of 10%
after some amount of preliminary experimentation. Note
that as values for this parameter increase toward 100% the
acceptance band method tends toward the same behavior
as random choice.

2. value-biased stochastic sampling (VBSS) - This approach

is based on the WHISTLING algorithm introduced in
(Cicirello and Smith 2002). Like the acceptance band
method, VBSS biases its choice based on heuristic value.
In the case of VBSS, however, the probability of select-
ing a particular choice (task) is tied directly to the relative
difference of its heuristic value and those of competing
choices. Thus if one task is rated five times more flexible
than a second task, then this task will have a five times
greater probability of being retracted. One potential ad-
vantage of this scheme over the acceptance band approach
is that no tasks are ever excluded from being selected in
a given context; rather some are simply not very likely to
be chosen. VBSS can be tuned through a bias parameter
which affects the probability that the highest ranked task
will be selected. At one extreme it is tuned so that VBSS
approaches deterministic selection, and at the other ran-
dom selection. After some initial exploratory runs, we
chose a polynomial bias function of degree 5 for the ex-
periments reported below.

To provide a baseline for comparison we also define and
evaluate a third, random retraction procedure.

Performance Results

Trials with stochastic sampling algorithms were conducted
on the same 100 problem set as the previous experiments.
In this case, though, the starting point was the end point
of those experiments. The intent of these trials was aimed
at determining how much the previous results could be im-
proved upon, and what level of effort would be necessary to
achieve this improvement.

The base retraction heuristic we chose was max-
flexibility, with task, interval, and depth pruning all acti-
vated. We chose max-flexibility because it is the most effi-
cient; our expectation is that we would obtain a comparable
level of improvement in solution quality with any informed
retraction heuristic.



Unassignables Runtime Best Iteration
Avg. Std.Deyv. Avg. Std.Deyv. Avg. Std.Deyv.
Begin 21.83 nja
Random | 12.71 0.14 961.41 31.85 4.11 0.28
VBSS 12.10 0.12 769.96 14.71 3.81 0.08
A-Band 12.68 0.07 689.46 12.95 2.97 0.17
It.Det. 14.28 nja 107.76 2.89 0.35 0.00

Table 2: Extended Search Results

Using the solution produced by running InsertU-
nassignabletasks with the composite pruning configuration
of MissionSwap as a starting point, we first ran [ferative
Deterministic to quiessence on each of the 100 problems to
see if it could improve on itself from the new state. These
results were then compared to runs using acceptance band
with a 10% band, vbss, and random choice (each also initial-
ized with the same deterministic InsertUnassignableTasks
solution). In these cases, the methods were given ten iter-
ations, with early termination in the case where an optimal
solution (zero unassignables) was found.

We arrived at ten iterations of stochastic search by doing
a number of runs up to 100 iterations, and noting that no
further progress was usually achieved by running more than
ten iterations. This gives us an indication that we are proba-
bly converging to optimal solutions, but it is always possible
that some further progress might be made. For each stochas-
tic procedure, the results reported for each problem instance
are the average of five trials.!

The results (See Table 2) show the following:

e Use of Iterative Deterministic to improve on itself was in
fact shown to yield some improvement over the results ob-
tained with a single application of InsertUnassignable-
Tasks, decreasing the average number of unassignables
from 14.72 to 14.28. However, this improvement is ob-
tained at the expense of 70.4 additional seconds on aver-
age (107.76 - 37.36), or at about triple the total cost.

e Stochastic neighborhood search was found to produce
more substantial improvement to solution quality, at
higher computational expense. =~ VBSS proved to be
the best overall performer, achieving a final average
unassignable value of 12.10. The average total time to
carry out 10 iterations was 770 seconds, or over 12 min-
utes per problem. However, on average it achieved its best
result by 3.8 iterations. This does not suggest running the
method for four iterations rather than ten, as many good
results would not be reached. What it does say is that im-
provement can be made incrementally, and if time is lim-
ited, the algorithm can be terminated prematurely without
sacrificing some improvement.

'Given the relatively small standard deviations observed, five
trials per instance were deemed sufficient. Note that the experi-
ments reported in this section consumed over 350 cpu hours. The
experiments summarized in Table 1 took another 105 cpu hours.

Conclusions

In this paper we have revisited a recently developed task
swapping procedure for improving oversubscribed sched-
ules. The original work demonstrated promise for the
method, MissionSwap, and touted an informed and fast re-
traction heuristic, max-flexibility. We have conducted a more
in-depth analysis of the task swapping algorithm, in order to
answer two questions:

1. Is it possible to improve the speed of the original algo-
rithm without sacrificing solution quality?

2. Is it possible to improve the solution quality of the orig-
inal algorithm given a reasonable amount of additional
search?

The answer to both questions is “yes”. Through judicious
pruning of the search space it was possible to achieve an or-
der of magnitude speedup in solution time without sacrific-
ing solution quality. Through application of iterated stochas-
tic task swapping it was possible on average to assign 45%
of the initial unassignable tasks, as opposed to at best a 37%
reduction (using min-contention) without stochastic search.

Experiments in the design space of the MissionSwap
algorithm have shown that max-flexibility as a retraction
heuristic is not as clear a winner in solution quality as we
had originally thought, however it remains by far the least
expensive computationally.

We feel that the task swapping procedure is broadly ap-
plicable to other scheduling domains, and intend to test its
applicability through further experimentation.
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