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Abstract

A pattern database is a heuristic function stored as a lookup
table. This paper considers how best to use a fixed amount (m
units) of memory for storing pattern databases. In particular,
we examine whether using n pattern databases of size m/n
instead of one pattern database of size m improves search
performance. In all the domains considered, the use of mul-
tiple smaller pattern databases reduces the number of nodes
generated by IDA*. The paper provides an explanation for
this phenomenon based on the distribution of heuristic values
that occur during search.

Introduction
Algorithms A* (Hart, Nilsson, & Raphael 1968) and IDA*
(Korf 1985) find optimal solutions to state space search
problems. They visit states guided by the cost function
f(n) = g(n)+h(n), where g(n) is the actual distance from
the initial state to the current state n and h(n) is a heuristic
function estimating the cost from n to a goal state. If h(s)
is “admissible” (i.e., it never overestimates the true distance
to the goal) then these algorithms are guaranteed to find op-
timal paths to the goal from any state.

Pattern databases were introduced in (Culberson & Scha-
effer 1994) as a method for defining heuristic functions and
have proven very valuable. For example, they are the key
breakthrough that enabled Rubik’s Cube to be solved opti-
mally (Korf 1997). Also, solutions to the sliding tile puzzles
can be found much faster with pattern databases (Korf &
Felner 2002). Pattern databases have also made it possible to
very significantly shorten the length of solutions constructed
using a macro-table (Hernádvölgyi 2001) and have proven
useful in heuristic-guided planning (Edelkamp 2001).

A pattern database stores a heuristic function as a lookup
table. To compute h(s), state s is mapped to a pattern φ(s),
which serves as an index into the table. The entry in the table
for φ(s) is the heuristic value used for h(s). The number
of distinct patterns – the size of the pattern database – is
generally much smaller than the number of states.

The method we use to define pattern databases (see the
next section) is simple and has three important properties.
First, it guarantees that the resulting heuristic functions are
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admissible.1 Second, it gives precise control over the size
of the pattern databases, so that they can be tailored to fit in
the amount of memory available. Finally, it makes it easy
to define numerous different pattern databases for the same
search space. The most successful applications of pattern
databases have all used multiple pattern databases. For ex-
ample, the heuristic function used to solve Rubik’s Cube
in (Korf 1997) is defined as the maximum of three pattern
database heuristics. The best heuristic function for the 24-
puzzle (Korf & Felner 2002) is defined using eight pattern
databases. They are divided into two groups, with each
group containing four pattern databases constructed in such
a way that their values for any state can be added together
without overestimating the true distance from the state to the
goal. The heuristic function used is the maximum of the sum
of the values in each group.

Two (or more) heuristics, h1 and h2, can be combined
to form a new heuristic by taking their maximum, that is,
by defining hmax(s) = max(h1(s), h2(s)). We refer to
this as “max’ing” the two heuristics. hmax is guaranteed to
be admissible (or consistent) if h1 and h2 are. An alterna-
tive way of combining heuristics is adding them. hadd(s) =
h1(s) + h2(s) is only admissible in special circumstances,
but when it is admissible, it is considered “better” than hmax

because hadd(s) ≥ hmax(s) for all s.
The ability to create multiple pattern databases of a wide

variety of different sizes, and to combine them to create one
heuristic, raises the following question, which is the focus
of this paper: given m units of memory for storing pattern
databases, how is this memory best used?

Our first set of experiments compares max’ing of n pat-
tern databases of size m/n for various values of n and fixed
total size of the pattern databases, m. These experiments
show that large and small values of n are suboptimal –
there is an intermediate value of n that reduces the number
of nodes generated by up to two orders of magnitude over
n = 1 (one pattern database of size m).

Our second set of experiments investigates max’ing over
additive groups of pattern databases. The performance of
one additive group of maximum-size pattern databases is
compared to the performance of two or more additive groups

1In fact, they have the stronger property of being consistent
(Holte et al. 1996). This is especially important when using A*.
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Figure 1: Abstracting a state makes a pattern

of smaller pattern databases. Here again the use of several,
smaller pattern databases reduces the number of nodes gen-
erated.

The phenomenon exhibited in these experiments, namely
that the number of nodes generated during search can be
reduced by using several, smaller pattern databases instead
of one maximum-size pattern database, is the paper’s main
contribution. An equally important contribution is the ex-
planation of this phenomenon, which is based on the distri-
bution of heuristic values that occur during search. In par-
ticular, we demonstrate that if heuristics h1 and h2 have ap-
proximately equal mean values, but h1 is more concentrated
around its mean, then h1 is expected to outperform h2.

A final contribution is the observation that IDA*’s perfor-
mance can actually be degraded by using a “better” heuristic.
We give an example that arose in our experiments in which
heuristics h1 and h2 are consistent and h1(s) ≥ h2(s) for
all states, but IDA* expand more nodes using h1 than it ex-
pands using h2. The underlying cause of this behavior is
explained.

Pattern Databases
The “domain” of a search space is the set of constants used
in representing states. For example, the domain of the 8-
puzzle might consist of constants 1 . . . 8 representing the
tiles and a constant, blank, representing the blank.

In (Culberson & Schaeffer 1998), a “pattern” is defined
to be a state with one or more of the constants replaced by
a special “don’t care” symbol, x. For example, if tiles 1, 2,
and 7 were replaced by x, the 8-puzzle state in the left part
of Figure 1 would be mapped to the pattern shown in the
right part of Figure 1. The goal pattern is the pattern created
by making the same substitution in the goal state.

The patterns are connected to one another using the same
transition rules (“operators”) that connect states. The “pat-
tern space” formed in this way is an abstraction of the orig-
inal state space in the sense that the distance between two
states in the original space is greater than or equal to the
distance between corresponding patterns.

original 1 2 3 4 5 6 7 8 blank

φ1 x x 3 4 5 6 x 8 blank
φ2 x x y y 5 z x z blank

Table 1: Examples of 8-puzzle domain abstractions.

A pattern database has one entry for every pattern in the
pattern space. The value stored in the pattern database for
pattern p is the distance in the pattern space from p to the

goal pattern. Because the pattern space is an abstraction of
the original state space, the pattern database defines an ad-
missible heuristic function.

The rule stating which constants to replace by x can be
viewed as a mapping from the original domain to a smaller
domain which contains some (or none) of the original con-
stants and the special constant x. Such a mapping is called a
“domain abstraction.” Row φ1 of Table 1 shows the domain
abstraction used above, which maps constants 1, 2, and 7 to
x and leaves the other constants unchanged.

A simple but useful generalization of the original notion
of “pattern” is to use several distinct “don’t care” symbols.
For example, in addition to mapping tiles 1, 2, and 7 to x,
one might also map tiles 3 and 4 to y, and tiles 6 and 8 to
z. Row φ2 in Table 1 shows this domain abstraction. Every
different way of creating a row in Table 1 with 8 or fewer
constants gives rise to a domain abstraction. This gener-
alization is useful because it allows pattern databases of a
greater variety of sizes to be created. As an illustration, con-
sider the 15-puzzle, and suppose two gigabytes of memory
are available for the pattern database. Using only the origi-
nal types of “pattern,” the largest pattern database that will
fit in memory is based on an abstraction that maps 7 tiles to
x (“don’t care”). This uses only half a gigabyte (at one byte
per entry) but the next larger pattern database, based on an
abstraction that maps 6 tiles to x, requires too much memory
(four gigabytes). However, an abstraction that maps 6 tiles
to x and 2 tiles to y uses exactly two gigabytes of memory.

The “granularity” of a domain abstraction is a vector in-
dicating how many constants in the original domain are
mapped to each constant in the abstract domain. For exam-
ple, the granularity of φ2 is 〈3, 2, 2, 1, 1〉 because 3 constants
are mapped to x, 2 are mapped to each of y and z, and con-
stants 5 and blank each remain unique. In the experiments
in this paper, the number of patterns produced by a domain
abstraction is fully determined by its granularity.

Applying a domain abstraction to states is trivial, but
constructing a pattern database also requires abstracting the
operators. If the operators are expressed in an appropri-
ate notation, such as PSVN (Hernádvölgyi & Holte 1999),
they are as easy to abstract as states. An additional po-
tential difficulty is that the inverses of the operators are
needed in order to construct the pattern database in the most
efficient manner, by running a breadth-first search back-
wards from the goal pattern until the whole pattern space is
spanned. This issue, and one possible solution, is discussed
in (Hernádvölgyi & Holte 1999).

Max’ing Multiple Pattern Databases
This section compares the performance of IDA* with heuris-
tics defined using n pattern databases of size m/n for vari-
ous values of n and fixed m. h(s) is computed by max’ing
the n pattern databases.

Experiments with Small Domains
The first set of experiments uses small search spaces so that
tens of thousands of problem instances can be solved for
each problem domain. m = 5040 was used for all experi-
ments on these spaces. This size was chosen because it is a



small percentage of the entire space and produces heuristics
for the 8-puzzle that are almost as good as the Manhattan
Distance heuristic. n varied from 1 (one pattern database of
size 5040) to between 20 and 30, depending on the space.
For each value of n, n abstractions of the same granularity
were generated at random, producing a set, S, of n pattern
databases whose sizes were all m/n. Each set S was evalu-
ated by running IDA* with the heuristic defined by S on 100
problem instances whose solution lengths were all equal to
the median solution length for the space. The same 100 in-
stances were used in testing all the pattern database sets for
a given domain.

Because of variability in average performance across dif-
ferent sets of the same size, we evaluated, for each n, 100
different sets of n pattern databases. This produced 100 av-
erages for each n, with each average being over 100 prob-
lem instances. The number of nodes generated reported in
the tables of this subsection is the overall average number
of nodes generated by the 100 sets of pattern databases for
each n.

Table 2 gives the results obtained for the 8-puzzle (median
solution length of 22). It is clear that taking the maximum
over two or more smaller pattern databases results in very
significant reductions in nodes generated over using a single
large pattern database. Using n = 10 reduces the number of
nodes generated almost an order of magnitude over a single
pattern database.

Granularity PDB n Nodes CPU
Size Generated (secs)

〈6, 2, 1〉 252 20 585 0.04
〈6, 1, 1, 1〉 504 10 460 0.02
〈5, 3, 1〉 504 10 725 0.03
〈4, 3, 1, 1〉 2,520 2 1,212 0.02
〈3, 3, 2, 1〉 5,040 1 3,842 0.07

Table 2: 8-puzzle results.

Granularity PDB n Nodes CPU
Size Generated (secs)

〈7, 2, 1, 1, 1〉 47,520 21 2,203 0.22
〈5, 4, 2, 1〉 83,160 12 3,511 0.23
〈5, 3, 3, 1〉 110,880 9 3,600 0.20
〈5, 4, 1, 1, 1〉 166,320 6 4,659 0.19
〈5, 2, 2, 2, 1〉 498,960 2 20,658 0.55
〈5, 2, 2, 1, 1, 1〉 997,920 1 408,666 11.72

Table 3: (3x4) sliding tile puzzle results.

A similar experiment was conducted using the (3x4) slid-
ing tile puzzle. In this experiment m = 997, 920, only 10
sets of pattern databases for each value of n were evalu-
ated, and only 5 random problem instances having a solu-
tion length of 34 (the approximate median solution length
for this space) were solved by each set of pattern databases.
As before, randomly generated abstractions were used to de-
fine the pattern databases. As can be seen in Table 3, in this

Granularity PDB n Nodes CPU
Size Generated (secs)

〈6, 2, 1〉 252 20 3,132 0.112
〈6, 1, 1, 1〉 504 10 2,807 0.056
〈5, 3, 1〉 504 10 2,173 0.044
〈4, 3, 1, 1〉 2,520 2 3,902 0.027
〈3, 3, 2, 1〉 5,040 1 18,665 0.113

Table 4: 9-Pancake puzzle results.

Granularity PDB n Nodes CPU
Size Generated (secs)

〈5, 2, 1〉 168 30 738 0.140
〈3, 3, 2〉 560 9 465 0.031
〈2, 2, 2, 2〉 2,520 2 558 0.015
〈2, 2, 2, 1, 1〉 5,040 1 1,751 0.040
〈5, 2, 1〉 168 30 2,227 0.42
〈3, 3, 2〉 560 9 1,098 0.07
〈2, 2, 2, 2〉 2,520 2 3,646 0.07
〈2, 2, 2, 1, 1〉 5,040 1 22,941 0.35

Table 5: (8,4)-TopSpin results. Upper 4 rows: 3-operator
encoding. Lower 4 rows: 8-operator encoding.

search space the reduction in nodes generated produced by
max’ing over nine or more pattern databases is over two or-
ders of magnitude.

To show that these results generalize to other spaces, anal-
ogous experiments were performed on the 9-pancake puzzle
(median solution length = 8), and two encodings of the (8-
4)-TopSpin puzzle, one with a low branching factor (3) and
long solution lengths (median = 15) and one with a high
branching factor (8) and shorter solution lengths (median =
8). These spaces are defined as follows.

In the N -pancake puzzle (Dweighter 1975), a state is a
vector of length N containing N distinct values and there are
N−1 operators, numbered 2 to N , with operator k reversing
the order of the first k vector positions. We used N = 9,
which has 9! = 362880 states.

The (N ,K)-TopSpin puzzle has N tokens arranged in a
ring. The tokens can be shifted cyclically clockwise or coun-
terclockwise. The ring of tokens intersects a region K to-
kens in length which can be rotated to reverse the order of
the tokens currently in the region. We used N = 8 and
K = 4, which has 8! = 40320 states. We used two differ-
ent encodings of this space. The first has 3 operators: (1)
a circular shift 1 position clockwise, (2) a circular shift 1
position counterclockwise, and (3) a rotation of the special
region. The second has N operators, one for each clockwise
circular shift of length 0 . . . N − 1 followed by a rotation.

Tables 4 and 5 show the results, which confirm the previ-
ous findings. Max’ing over approximately ten small pattern
databases outperforms the alternatives, reducing the number
of nodes generated by an order of magnitude over a single
pattern database in most of these domains.



Experiments with Rubik’s Cube
Rubik’s Cube is a standard benchmark domain for heuristic
search. Random problem instances were first solved opti-
mally by using the maximum of three pattern databases as a
heuristic function (Korf 1997). Our experiments on Rubik’s
Cube provide additional support for the claim that max’ing n
pattern databases of size m/n significantly reduces the num-
ber of node generations over using a single pattern database
of size m.

Rubik’s Cube has a much larger state space (there are
4.3252 × 1019 reachable states) than the previous domains.
Therefore, the starting point for comparison in this experi-
ment was one pattern database of size m = 106, 444, 800,
the largest one that fit in our memory. The domain abstrac-
tion defining this pattern database was the following. Four
of the edge cubies were mapped to the abstract constant a;
three others were mapped to the abstract constant b; the re-
maining five edge cubies were kept unchanged; and all eight
corner cubies were mapped to the same abstract constant c.2

We then experimented with max’ing n pattern databases of
size m/n for even values of n ranging from 2 to 8.

In addition to using more than one abstract constant to al-
low for fine-grained increments in the value of n, our state
encoding kept the identity and orientation of the cubies sep-
arate. This allowed us to abstract the orientation of a cubie
while keeping its identity distinct. We use a “1o” instead of
a “1” to represent this case in the granularity vector.

Table 6 shows the number of nodes generated by IDA* for
the chosen values of n (CPU times are reported in Table 11,
below). Since the state space is so large, the corresponding
heuristics were evaluated by running 10 problem instances
whose solution length was 12 (the median solution length for
Rubik’s Cube is believed to be 18) with one set of pattern
databases for each value of n. The table shows that node
generations were reduced the most (by a factor of more than
23) with n = 6. Similar experiments (see the Appendix)
with thousands of states whose solution lengths ranged from
8 to 11 also exhibited speedup factors of 20 or more. These
results strongly support the claim that the number of node
generations is reduced by using n > 1.

Granularity PDB n Nodes
〈 corners 〉〈 edges 〉 Size Generated

〈8〉〈4, 4, 1, 1, 1, 1〉 13,305,600 8 2,654,689
〈8〉〈3, 3, 3, 1, 1, 1〉 17,740,800 6 2,639,969
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 26,611,200 4 3,096,919
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 53,222,400 2 5,329,829
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 106,444,800 1 61,465,541

Table 6: Rubik’s Cube results.

Max’ing after Adding
As explained in the introduction, in some circumstances it
is possible to add, instead of max’ing, the heuristics defined

2While abstracting all corners may not yield the most informed
heuristic function, our experimental comparisons remain meaning-
ful since all abstractions shared this property.

by several pattern databases and still maintain admissibility.
This happens, for example, with the sliding tile puzzles

when the domain abstractions defining the pattern databases
are disjoint (Korf & Felner 2002). A set of domain abstrac-
tions for the sliding tile puzzles is disjoint if each tile is
mapped to x (“don’t care”) by all but one of the domain
abstractions. Another way to say this is that a disjoint set
of domain abstractions for the sliding tile puzzles is defined
by partitioning the tiles. A partition with b groups of tiles,
B1, ..., Bb, defines a set of b domain abstractions, A1, ..., Ab,
where domain abstraction Ai leaves the tiles in group Bi un-
changed and maps all other tiles to x. With this formulation,
if the moves of a specific tile are only counted in the one
pattern space where the tile is not mapped to x, values from
different pattern databases can be added to obtain an admis-
sible heuristic. See (Korf & Felner 2002) for more details
on this method.

Given several different partitions of the tiles, the sum can
be computed over the disjoint pattern databases defined by
each partition, and then the maximum over these sums can
be taken. We refer to this as “max’ing after adding”. The ex-
periments in this section explore the usefulness of max’ing
after adding for the 15-puzzle and the 24-puzzle. As in the
previous section, the experiments in this section compare the
performance (number of nodes generated by IDA*) obtained
using several sets of smaller disjoint pattern databases with
the performance obtained using one set of larger disjoint pat-
tern databases.

Fifteen Puzzle

For the 15-puzzle, the heuristic defined by one set of larger
disjoint pattern databases is called the 8-7 heuristic. It is the
sum of two pattern databases defined by partitioning the tiles
into two groups, one with 8 tiles and the other with the other
7 tiles. This heuristic is the best existing heuristic for this
problem and was first presented in (Korf & Felner 2002).3

We compare this with a heuristic we call the max-of-five(7-
7-1) heuristic. This heuristic is defined by max’ing 5 sets of
disjoint pattern databases, where each set partitions the tiles
into 3 groups, two of which contain 7 tiles while the third
contains just one tile. Figure 2 shows the partition defining
the 8-7 heuristic and one of the five 7-7-1 partitions used to
define the max-of-five(7-7-1) heuristic.

We ran these two heuristics on the 1000 random initial
states used in (Korf & Felner 2002). Results for the differ-
ent heuristics on these 1000 instances are provided in Table
7 (CPU times are reported in Table 9, below). Each row
corresponds to a different heuristic. For comparison reasons
we give results for the Manhattan distance heuristic in the
first row. The second row gives the results for the 7-7-1
heuristic from Figure 2. The third row is the max-of-five(7-
7-1) heuristic. Finally, the bottom row gives the results for

3In (Korf & Felner 2002), symmetries of the space are exploited
so that the same pattern database can be used when the puzzle is
reflected about the main diagonal. They took the maximum of the
corresponding two heuristics without the need to store them both
in memory. The experiments in this paper do not take advantage of
these domain-dependent symmetries.



  8-7 partition  7-7-1 partition

Figure 2: Different partitions of the 15-puzzle tiles. The
grey square represents the blank.

Heuristic Nodes Memory
Generated (Kbytes)

Manhattan 401,189,630 0
one 7-7-1 464,977 115,315
five 7-7-1 57,159 576,575
one 8-7 136,288 576,575

Table 7: 15-puzzle results.

the 8-7 heuristic from Figure 2. The Nodes Generated col-
umn gives the average number of nodes IDA* generated in
solving the 1000 problem instances. The Memory column
shows the memory requirements for each heuristic, which is
the total number of entries in all the pattern databases used
to define the heuristic.

The results confirm the findings of the previous experi-
ments. One 7-7-1 heuristic generates 464,977 nodes, while
max’ing 5 different 7-7-1 partitioning reduces that by a
factor of almost 10. In contrast, the 8-7 heuristic gener-
ates more than twice as many nodes the max-of-five(7-7-1)
heuristic4. Note that the memory requirements for the 8-7
heuristic and the max-of-five (7-7-1) heuristic are identical.

Twenty-Four Puzzle
We have performed the same set of experiments on the larger
version of this puzzle namely the 5x5, 24-puzzle. Here we
tested two heuristics. The first one is called the 6-6-6-6
heuristic. This heuristic partitions the tiles into four groups
of 6 tiles each. We used the same partitioning into groups of
sixes that were used by (Korf & Felner 2002). We then parti-
tioned the 24 tiles into 4 groups of five tiles and one group of
four tiles. We call this the 5-5-5-5-4 heuristic. We have gen-
erated 8 different 5-5-5-5-4 heuristics and combined them
by taking their maximum. We call this heuristic the max-
of-eight (5-5-5-5-4) heuristic (abbreviated “eight (5-5-5-5-
4)” in the Tables). Note that the 6-6-6-6 heuristic needs
4 × 256 = 976, 562 Kbytes while the max-of-eight (5-5-5-
5-4) heuristic needs 8× (4× 255 +254) = 315, 625 Kbytes
which is roughly a third of the 6-6-6-6 heuristic.5

4Note that taking the maximum of two 8-7 partitioning by using
the 8-7 partitioning of Figure 2 and its reflection about the main
diagonal generated only 36,710 nodes in (Korf & Felner 2002).
This can be seen as another support to the advantage of max’ing.

5Using symmetric attributes of this domain such as reflection
the databases about the main diagonal as done by (Korf & Felner
2002) could decrease these numbers for both heuristics. In this

Run 6-6-6-6 eight(5-5-5-5-4) Ratio
1 9,728,172,650 5,991,782,489 1.62
2 663,157,799,297 276,161,457,963 2.40
3 247,605,992,067 97,940,394,079 2.53
4 54,556,763,234 33,157,258,292 1.64
5 38,520,070,174 6,261,389,344 6.15
6 932,251,470,113 37,039,640,318 25.10

Table 8: 24-puzzle results.

Table 8 compares the number of generated nodes for these
two heuristics when optimally solving the first six problem
instances from (Korf & Felner 2002) with IDA* (CPU times
are reported in Table 10, below). The Ratio column shows
the number of nodes generated using the 6-6-6-6 heuristic
divided by the number of nodes generated using the max-of-
eight(5-5-5-5-4) heuristic. This is the speedup (in terms of
nodes generated) that results from max’ing over eight groups
of smaller additive pattern databases instead of using one
group of large additive pattern databases. As can be seen,
this speedup varies among the different instances from 1.62
to 25.16. Thus, we can confirm that even for this domain,
which is much larger than all the previous domains, the same
benefits of max’ing occur.

Why Performance is Improved by Max’ing
When using just one pattern database, search performance
in domains with uniform-cost operators is roughly propor-
tional to the size of the pattern database, with larger pattern
databases tending to outperform smaller ones (Hernádvölgyi
& Holte 2000). The experiments in the previous sections
have shown that this trend can be reversed if several smaller
pattern databases are max’d together, providing they are not
too small. Although individually inferior to a larger pattern
database, they are collectively superior to it.

Our explanation of this phenomenon is based on two in-
formal propositions, as follows.

Proposition 1: The use of smaller pattern databases in-
stead of one large pattern database usually reduces the num-
ber of patterns with high h-values, and often reduces the
maximum achievable h-value, but the max’ing of the smaller
pattern databases can make the number of patterns with low
h-values significantly smaller than the number of low-valued
patterns in the larger pattern database.

The two assertions in this proposition are both intuitively
clear. A smaller pattern database means a smaller pattern
space, which typically means fewer patterns at all but the
smallest distances, and therefore fewer patterns with high
h-values. Max’ing the smaller pattern databases replaces
small h-values by larger ones, and can substantially reduce
the number of patterns with very small h-values.

paper we decided not to exploit this domain-dependent property.
6For case 6 the number of generated nodes is better by a factor

of 3 than the number of generated nodes reported by (Korf & Felner
2002) (103,460,814,356), which used the 6-6-6-6 partitioning and
its reflection about the main diagonal. For this particular instance
we have the best published solution.



Proposition 2: Eliminating low h-values is more impor-
tant for improving search performance than retaining large
h-values.

This assertion is not immediately obvious. To see why
it is true, consider the formula developed in (Korf, Reid, &
Edelkamp 2001) to predict the number of nodes generated
by one iteration of IDA* to depth d:

d∑

i=0

N(i) · P (d − i) (1)

Here, N(i) is the number of nodes at level i and P (h) is
the fraction of nodes with a heuristic value less than or equal
to h. If two pattern databases differ only in that one has a
maximum h-value of 11, while the other has a maximum
value of 10, this has very little effect on the sum, since it
only affects P (11), P (12), etc. and these are multiplied by
N values (N(d − 11), N(d − 12), etc.) that are typically
relatively small. On the other hand, if two pattern databases
differ in the fraction of nodes that have h = 0, this would
have a large effect on the formula since this fraction is part
of every P (h), including P (0) which is multiplied by N(d),
usually by far the largest N value.

Together these two propositions imply that the disadvan-
tage of using smaller pattern databases – that the number
of patterns with large h-values is reduced – is expected to
be more than compensated for by the advantage gained by
reducing the number of patterns with small h-values.

Proposition 2 was first noted in (Korf 1997). Nodes with
small h-values were observed to recur much more frequently
in an IDA* search than nodes with high h-values. This is
because if small h-values occur during search they do not
get pruned as early as large values, and they give rise to more
nodes with small h-values.

To verify these propositions we created histograms show-
ing the number of occurrences of each heuristic value for
each of the heuristics used in our experiments. Figures 3 and
4 present the histograms for the 15-puzzle heuristics. The
histograms for the heuristics in other domains were similar.

Figure 3 shows the “overall” distribution of heuristic val-
ues for the 8-7 heuristic for the 15-puzzle (dashed line) and
for the max-of-five(7-7-1) heuristic (solid line). These two
histograms were created by generating 100 million random
15-puzzle states and counting how many states had each dif-
ferent value for each heuristic. The two distributions are
very similar, with averages of 44.75 for the 8-7 heuristic and
44.98 for the max-of-five(7-7-1) heuristic. As can be seen,
the 8-7 heuristic has a slightly greater number of high and
low heuristic values while the max-of-five(7-7-1) heuristic
is more concentrated around its average.

Figure 4 shows the “runtime” distribution of heuristic val-
ues for IDA* using each of these two heuristics. This his-
togram was created by recording the h-value of every node
generated while running IDA* with the given heuristic on
many start states and counting how many times each differ-
ent heuristic value occurred in total during these searches.
We kept on solving problems until the total number of
heuristic values arising in these searches was 100 million,
the same number used to generate the overall distributions
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Figure 3: Overall distribution of heuristic values
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Figure 4: Runtime distribution of heuristic values

in Figure 3. Unlike the overall distributions, there is a strik-
ing difference in the runtime distributions. Both distribu-
tions have shifted to the left and spread out, but these effects
are much greater for the 8-7 heuristic than for the max-of-
five(7-7-1) heuristic, resulting in the 8-7 heuristic having a
significantly lower average and much greater percentage of
low heuristic values. For example, IDA* search with the 8-
7 heuristic generates twice as many states with a heuristic
value of 36 or less than IDA* search with the max-of-five(7-
7-1) heuristic. What seemed to be a relatively small differ-
ence in the number of low values in the overall distributions
has been amplified during search to create a markedly dif-
ferent runtime distribution. This is empirical confirmation
of the effects predicted by the above propositions.

Making the pattern databases too small has a negative
impact on performance. This is because as the individual
pattern databases become smaller the heuristic distribution



Ratio RatioHeuristic Seconds
(secs) (Nodes)

one 7-7-1 0.23 0.48 0.29
max-of-five 7-7-1 0.10 1.10 2.38
one 8-7 0.11 1.00 1.00

Table 9: 15-puzzle timing results.

Ratio RatioRun 6-6-6-6 eight(5-5-5-5-4)
(secs) (Nodes)

1 1,198 2,495 0.48 1.62
2 81,666 110,359 0.74 2.40
3 3,049 3,764 0.81 2.53
4 6,718 13,995 0.48 1.64
5 4,505 2,576 1.74 6.15
6 107,014 14,160 7.55 25.10

Table 10: 24-puzzle timing results.

shifts to the left, and eventually becomes shifted so far that
the benefits of max’ing are outweighed by the losses due to
the individual heuristics being extremely poor.

The Overhead of Max’ing
Our experiments all show that using a heuristic defined by
max’ing several pattern databases results in fewer nodes
generated by IDA* than using a heuristic defined by one pat-
tern database with the same total number of entries. How-
ever, this does not necessarily produce a corresponding re-
duction in runtime because computing a heuristic defined
over several pattern database involves more pattern database
lookups, and is therefore more time-consuming, than using
just one pattern database. The overall speedup in runtime
of IDA* thus depends on the relative magnitudes of the de-
crease in the number of nodes generated and of the increase
in the cost of node generation.

Tables 9, 10, and 11 show the runtime in seconds of our
experiments on the 15-puzzle, 24-puzzle and Rubik’s Cube,
respectively. “Ratio(secs)” is the number of seconds when
using one large pattern database (or one set of large disjoint
pattern databases) divided by the number of seconds when
using several smaller pattern databases (or sets of smaller
disjoint pattern databases). “Ratio(Nodes)” is the corre-
sponding ratio of the number of nodes generated. These two
ratios represent the average speedup (if greater than 1) or
slowdown (if smaller than 1) as a multiplicative factor. The
runtime speedup is always smaller than the node speedup be-
cause of the overhead of max’ing several pattern databases.

There is a simple enhancement that reduces the overhead
of max’ing n pattern databases. The loop over the n pattern
databases to compute the maximum can terminate as soon
we encounter a heuristic value that makes the cost function
f = g+h exceed the current IDA* threshold. This node can
be pruned immediately without the need to finish computing
the maximum. This shortcut reduced the node overhead by
a factor of more than 2 for Rubik’s cube and by 60% for the
tile puzzles. The times reported in this section were obtained

Ratio RatioGranularity n Seconds
(secs) (Nodes)

〈8〉〈4, 4, 1, 1, 1, 1〉 8 11.72 12.09 23.15
〈8〉〈3, 3, 3, 1, 1, 1〉 6 9.90 14.31 23.28
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 10.55 13.43 19.85
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 14.35 9.87 11.53
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 141.64 1.00 1.00

Table 11: Rubik’s Cube timing results.

using this shortcut.
In the following analysis we will use n′ to refer to the

actual number of pattern databases consulted to compute the
heuristic.

The overhead per node can be expressed as the sum of
two factors, Ch + Co, where Ch is the cost of computing
the heuristic and Co is the cost of all other IDA* operations
such as applying the operators, determining the new thresh-
old etc. Ch can be expressed as a product, n′ × Cp, where
Cp is the cost of consulting one pattern database. The re-
lation between node speedup and runtime speedup depends
on n′ and on algorithmic and implementation factors that
influence the relative costs of C p and Co.

In the extreme case, the operations on the pattern
databases (lookups, adding, and max’ing) dominate the
other costs, Cp � Co. In this case, the overhead per
node when consulting n′ pattern databases is almost n′ times
greater than the overhead per node of consulting one, and
achieving a significant runtime speedup will therefore re-
quire a node speedup that is larger than n′.

For Rubik’s Cube the bijective function used to map a
state to an index in the pattern database is computation-
ally expensive. Significant runtime speedups are possible
because the node speedup is much larger than n′. In the
tile puzzles, however, the node speedup (around 2.4) is too
small to produce a significant runtime speedup for most of
the cases. This is because the max-of-five (7-7-1) heuristic
for the 15-puzzle involves roughly five times as many pat-
tern database operations as the 8-7 heuristic and the max-of-
eight(5-5-5-5-4) heuristic for the 24-puzzle involves roughly
ten times as many pattern database operations as the 6-6-6-6
heuristic.

The overhead of the other basic operations of IDA* (Co)
is usually very small. Thus, any increase in time that is spent
in calculating h (Ch) is directly reflected in the overall time
per node. When using A*, by contrast, this will not be the
case because of the substantial overhead in maintaining the
Open list, which is part of Co. Thus, any increase in Ch will
not influence the overall time overhead as much. We there-
fore expect that max’ing might perform better when using
A* than when using IDA*.

In the experiments on small domains, n pattern databases
of size m/n were used. Given that each pattern database
lookup incurs a cost, it is natural to ask if significant perfor-
mance gains accrue if fewer than n pattern databases of size
m/n are used. Although doing so will probably increase
the number of nodes generated, that increase might be quite



Figure 5: Nodes generated vs. number of pattern databases
used ( y-axis is a log scale).

small compared to the reduction in Ch, leading to an overall
reduction in runtime. An initial exploration of this possi-
bility is presented in Figure 5, which shows how the num-
ber of nodes generated decreases as more and more pattern
databases are consulted. These results are for the 8-puzzle
using 〈6, 2, 1〉 domain abstractions (each pattern database is
size 252). Note that the y-axis (nodes generated) is on a
log scale. As this Figure demonstrates, there are indeed di-
minishing returns for each additional pattern database used.
One pattern database of size 252 performs very poorly. It is
dramatically improved by adding a second pattern database
of size 252. Adding the third and fourth pattern databases
produces additional speedups, but the gains are clearly di-
minishing. Similar results were obtained for other domains.
This suggests a promising direction for reducing the over-
head incurred in max’ing multiple pattern databases.

Why Max’ing can Fail
Table 12 shows the number of nodes generated by IDA*
for each depth bound it uses when solving a particular
8-puzzle problem using three different heuristics, h1, h2,
and max(h1, h2). h1 and h2 are both of granularity
〈3, 3, 2〉. h1 is blank-preserving but h2 is blank-increasing7.
max(h1, h2) will never expand more nodes than h1 or h2

for a given depth bound, but because it might use a greater
set of depth bounds, and therefore do more iterations, its to-
tal number of nodes generated can be greater, as seen here.

This phenomenon was first noted in Manzini’s compar-
ison of the perimeter search algorithm BIDA* with IDA*
(Manzini 1995). Manzini observed that BIDA* cannot ex-
pand more states than IDA* for a given cost bound but that
BIDA* can expand more states than IDA* overall because

7A domain abstraction is “blank-preserving” if it leaves the
blank as a unique constant, distinct from the tiles, and is “blank-
increasing” if it maps the blank and one or more tiles to the same
abstract constant. Other than h2 in this example, all abstractions
for the sliding tile puzzles in this paper are blank-preserving.

depth bound h1 h2 max(h1, h2)
8 19 17 10
9 - 36 16

10 59 78 43
11 - 110 53
12 142 188 96
13 - 269 124
14 440 530 314
15 - 801 400
16 1,045 1,348 816
17 - 1,994 949
18 2,679 3,622 2,056
19 - 5,480 2,435
20 1,197 1,839 820

TOTAL 5,581 16,312 8,132

Table 12: Nodes generated for each depth bound. (“-” indi-
cates the depth bound did not occur using a given heuristic)

“the two algorithms [may] execute different iterations using
different thresholds” (p. 352).

Summary and Conclusions
In all our experiments we consistently observed that max’ing
n pattern databases of size m/n, for a suitable choice of n,
produces a significant reduction in the number of nodes gen-
erated compared to using a single pattern database of size
m. We presented an explanation for this phenomenon, in
terms of the distribution of heuristic values that occur dur-
ing search, and provided experimental evidence in support
of this explanation. We have also discussed the tradeoff be-
tween the reduction in the number of nodes generated and
the increase in the overhead per node. Speedup in runtime
can only be obtained when the node reduction is higher than
the increase in the overhead per node. Finally, we showed
that IDA*’s performance can actually be degraded by using
a better heuristic, even when the heuristic is consistent.
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Appendix: Additional Rubik’s Cube Results
This appendix presents the results of two additional sets of
experiments in the Rubik’s Cube domain.

First, Tables 13 to 16 show the results of the same experi-
ment as Table 6 for problem instances with solution lengths



of 11, 10, 9, and 8, respectively. The same trends are ap-
parent. Using several small pattern databases instead of one
large pattern database reduces the number of nodes gener-
ated by a factor of 20 or more and reduces CPU time by a
factor of about 10.

Second, Tables 17 to 19 show the performance of depth-
bounded IDA* searches where the depth bound varied from
12 to 14, respectively. In these experiments, we used com-
pletely random instances whose solution length was not
known a priori (as opposed to instances in the previous set
of experiments) and turned out to be greater than 14. In
other words, IDA* was executed on each instance until the
threshold exceeded the given depth bound. Even though
IDA* was stopped before finding a solution, these experi-
ments allow us to measure the relative pruning power of our
pattern database heuristics at different levels of the search
tree. Again in all cases, we observe an order of magnitude
speedup when using several small pattern databases instead
of one large pattern database.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈4, 4, 1, 1, 1, 1〉 8 132,445 0.59
〈8〉〈3, 3, 3, 1, 1, 1〉 6 158,463 0.62
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 149,201 0.53
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 176,700 0.49
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 2,777,571 6.56

Table 13: Performance of full IDA* search averaged over 10
instances whose solution length equals 11.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈4, 4, 1, 1, 1, 1〉 8 16,258 0.07
〈8〉〈3, 3, 3, 1, 1, 1〉 6 18,126 0.07
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 18,273 0.06
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 25,327 0.07
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 366,394 0.84

Table 14: Performance of full IDA* search averaged over
100 instances whose solution length equals 10.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈4, 4, 1, 1, 1, 1〉 8 1,608 0.01
〈8〉〈3, 3, 3, 1, 1, 1〉 6 1,739 0.01
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 1,807 0.01
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 2,687 0.01
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 41,477 0.09

Table 15: Performance of full IDA* search averaged over
1000 instances whose solution length equals 9.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈4, 4, 1, 1, 1, 1〉 8 337 0.00
〈8〉〈3, 3, 3, 1, 1, 1〉 6 338 0.00
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 353 0.00
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 572 0.00
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 6,679 0.01

Table 16: Performance of full IDA* search averaged over
1000 instances whose solution length equals 8.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈3, 3, 3, 1, 1, 1〉 6 2,560,295 10.36
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 2,406,539 8.70
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 2,507,068 7.25
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 36,502,603 85.15

Table 17: Performance of IDA* search to depth 12 averaged
over 10 random instances.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈3, 3, 3, 1, 1, 1〉 6 35,186,566 135.81
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 32,969,793 114.65
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 34,773,796 98.20
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 510,823,845 1,169.31

Table 18: Performance of IDA* search to depth 13 averaged
over 10 random instances.

Granularity n Nodes CPU
〈 corners 〉〈 edges 〉 Generated (secs)

〈8〉〈3, 3, 3, 1, 1, 1〉 6 480,381,702 1,874.98
〈8〉〈4, 3, 1o, 1o, 1, 1, 1〉 4 449,985,200 1,617.39
〈8〉〈4, 3, 1o, 1, 1, 1, 1〉 2 477,980,524 1,355.48
〈8〉〈4, 3, 1, 1, 1, 1, 1〉 1 7,048,115,616 15,932.47

Table 19: Performance of IDA* search to depth 14 averaged
over 10 random instances.
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