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Abstract

In this paper, we show how a planner can use a model-
checking verifier to guide state space search. In our work
on hard real-time, closed-loop planning, we use a model-
checker’s reachability computations to determine whether
plans will be successfully executed. For planning to pro-
ceed efficiently, we must be able to efficiently repair can-
didate plans that are not correct. Reachability verifiers can
return counterexample traces when a candidate plan violates
desired properties. A core contribution of our work is our
technique for automatically extracting repair candidates from
counterexample traces. We map counterexample traces onto
a search algorithm’s choice stack to direct backjumping. We
prove that our technique will not sacrifice completeness, and
present empirical results showing substantial performance
improvements in difficult cases. Our results can be applied
to other applications, such as automatic design, and manufac-
turing scheduling.

Introduction
In this paper, we show how a planning system can effi-
ciently use a reachability-computing verification system in
state space search. In our work on hard real-time, closed-
loop planning, we use a model-checker’s reachability com-
putations to determine whether plans will be successfully
executed. For planning to proceed efficiently, we must be
able to efficiently repair candidate plans that are not correct.
A key contribution of our work is a technique for mapping
error traces from a reachability verifier onto a search algo-
rithm’s choice stack to direct backjumping. Backjumping
promises significant planning performance improvements
since it is guaranteed to be at least as efficient as chrono-
logical backtracking. We show that these benefits are actu-
ally realizable by providing empirical results that show sub-
stantial performance improvements in our planner’s perfor-
mance. Our results can be applied to other applications, such
as automatic design, and manufacturing scheduling.

We use timed automaton verification as an integral, on-
line component in our planning system, the CIRCA Con-
troller Synthesis Module (CSM) (Musliner, Durfee, & Shin
1995). Unlike classical planners, CIRCA plans for an agent
that operates in a dynamic environment, concurrently with
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uncontrolled processes. Therefore, our plans will be closed-
loop policies: given a plan, the CIRCA agent will choose
its actions by observing its environment and taking the ac-
tion the plan prescribes. The CSM also differs from MDP
planners and conditional planners in that its environment is
assumed to evolve asynchronously and in continuous time:
the CIRCA agent does not “take turns” with its environment.
This means that we must concern ourselves with how long
actions will take, and whether they can be completed in time
to forestall (or preempt) uncontrolled processes that threaten
the CIRCA agent. The CIRCA CSM is based on heuristic
state-space search, and uses a model-checking verifier to de-
termine whether its plans will be successful.

To limit search size and to simplify analysis and imple-
mentation of the executive, the planner reasons in a time-
abstract state space: planner states are associated only with
propositions, not with temporal information. Were we to in-
clude temporal information with the states, the state space
would explode. If there are n processes, each taking up to
k time units to evolve, even a discrete time representation
would suffer up to a kn factor state space explosion. This is
why we do not plan directly with the verifier, unlike other re-
searchers who work in untimed domains (e.g., (Giunchiglia
& Traverso 1999)). Furthermore, we might generate plans
that could not be realized: for example, a plan where we
take action A when a given clock has exactly the value x,
but action B when the clock is not equal to x. Since time is
dense, this plan is not realizable.

While the planner reasons about states that ignore time,
temporal information is critical to determining whether a
given plan is correct. We use a very efficient, special-
purpose model-checking verifier to check state space charac-
teristics that depend on global temporal analysis. In partic-
ular, we use the model-checker to assess state reachability,
including the reachability of failure states, which are sink
states that indicate unrecoverable failures.

When the verifier finds that failure is reachable, it can re-
turn a trace illustrating a path to failure. By mapping this
failure trace onto the search stack choice points, our plan-
ner is able to pinpoint the decisions that are responsible for
failure, and backjump to revise the most recent implicated
decision. This backjumping avoids revisiting more-recent
but irrelevant decisions, and can considerably improve the
efficiency of the search without sacrificing completeness.



Our backjumping method was developed for real-time
planning in the context of the CIRCA intelligent control
architecture (Musliner, Durfee, & Shin 1995). However,
it should be generally useful in any planning method that
uses a verifier as an external correctness oracle (e.g., (Tri-
pakis & Altisen 1999)). It should also be possible to adapt
our method to the needs of AI automatic design applica-
tions that use verifiers to check correctness. There has also
been work on using temporal automaton reachability com-
putations for manufacturing scheduling applications (Hune,
Larsen, & Pettersson 2001); our approach should be helpful
in such scheduling applications as well.

We begin the rest of the paper by briefly reviewing our
planning approach in the CIRCA Controller Synthesis Mod-
ule. We then review backjumping, a technique for directed
backtracking that is guaranteed to search no more nodes than
chronological backtracking, without sacrificing the com-
plete enumeration of consistent (i.e., safe) solutions. The
correct behavior of backjumping depends on correctly for-
mulating eliminating explanations, or “nogoods,” when an
inconsistency is detected in the search process. After de-
scribing backjumping, we present the method for extract-
ing nogoods from counterexample traces produced by a ver-
ifier (the core contribution of this paper). We present perfor-
mance results from several domains illustrating the resulting
reduction in search. We conclude with comparisons with re-
lated work and some summary remarks.

CIRCA Controller Synthesis
CIRCA’s Controller Synthesis Module (CSM) automatically
synthesizes real-time reactive discrete controllers that guar-
antee system safety when executed by CIRCA’s Real-Time
Subsystem (RTS), a reactive executive with limited mem-
ory and no internal clock. The CSM takes in a description
of the processes in the system’s environment, represented
as a set of transitions that modify world features. Transi-
tions have preconditions, describing when they are applica-
ble, and bounded delays, capturing the temporal character-
istics of controllable processes (i.e., actions) and uncontrol-
lable processes (i.e., world dynamics). For a transition to
fire, its preconditions must hold throughout the delay period.

Figure 1 shows several transitions from a CIRCA prob-
lem description for controlling the Cassini spacecraft during
Saturn Orbital Insertion (Gat 1996; Musliner & Goldman
1997). Discrete states of the system are modeled as sets of
feature-value assignments. Thus the transition descriptions,
together with specifications of initial states, implicitly define
the set of possible system states.

The CSM reasons about both controllable and uncontrol-
lable transitions:

Action transitions represent actions performed by the
RTS. Associated with each action is a worst case execu-
tion time, an upper bound on the delay before the action
occurs.

Temporal (uncontrollable) transitions represent uncon-
trollable processes. Associated with each temporal
transition is a lower bound on its delay. Transitions
whose lower bound is zero are referred to as events, and

;; Turning on the main engine
ACTION turn_on_main_engine

PRECONDITIONS: ’((engine off))
POSTCONDITIONS: ’((engine on))
DELAY: <= 1

;; Sometimes the inertial reference units
;; (IRUs) break without warning.
EVENT IRU1_fails

PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’((IRU1 broken))

;; If the engine is burning while the active
;; IRU breaks, we must fix the problem
;; before the we get too far off course.
TEMPORAL fail_if_burn_with_broken_IRU1

PRECONDITIONS: ’((engine on)(IRU1 broken)
(active_IRU IRU1))

POSTCONDITIONS: ’((failure T))
DELAY: >= 5

Figure 1: Example transition descriptions.

are handled specially for efficiency reasons. Transitions
whose postconditions include the proposition(failure
T) are called temporal transitions to failure (TTFs).

If a temporal transition leads to an undesirable state, the
CSM may plan an action to preempt the temporal:

Definition 1 (Preemption). A temporal transition may be
preempted in a (discrete) state by planning an action for that
state which will necessarily occur before the temporal tran-
sition’s delay can elapse.

Note that successful preemption does not ensure that the
threat posed by a temporal transition is handled; it may sim-
ply be postponed to a later state (in general, it may require a
sequence of actions to handle a threat). A threat is handled
by preempting the temporal with an action that carries the
system to a state which does not satisfy the preconditions of
the temporal.

The controller synthesis (planning) problem can be posed
as choosing a control action for each reachable discrete
state (feature-value assignment) of the system. Note that
this controller synthesis problem is simpler than the general
problem of synthesizing controllers for timed automata. In
particular, CIRCA’s controllers are memoryless and cannot
reference clocks. This restriction has two advantages: first,
it makes the synthesis problem easier and second, it ensures
that the synthesized controllers are actually realizable in the
RTS.

Algorithm 1 (Controller Synthesis)

1. Choose a state from the set of reachable states (at the start
of controller synthesis, only the initial states are reach-
able).

2. For each uncontrollable transition enabled in this state,
choose whether or not to preempt it. Transitions that lead
to failure states must be preempted.

3. Choose a single control action or no-op for this state.



4. Invoke the verifier to confirm that the (partial) controller
is safe.

5. If the controller is not safe, use information from the ver-
ifier to direct backjumping.

6. If the controller is safe, recompute the set of reachable
states.

7. If there are no “unplanned” reachable states (reachable
states for which a control action has not yet been chosen),
terminate successfully.

8. If some unplanned reachable states remain, loop to step 1.

The search algorithm maintains the decisions that have
been made, along with the potential alternatives, on a search
stack. The algorithm makes decisions at two points: step 2
and step 3.

The CSM uses the verifier module after each assignment
of a control action (see step 4). The verifier is used to con-
firm both that failure is unreachable and that all the cho-
sen preemptions will be enforced. This means that the ver-
ifier will be invoked before the controller is complete. At
such points we use the verifier as a conservative heuristic
by treating all unplanned states as if they are “safe havens.”
Unplanned states are treated as absorbing states of the sys-
tem, and any verification traces that enter these states are
regarded as successful. Note that this process converges to
a sound and complete verification when the controller syn-
thesis process is complete. When the verifier indicates that
a controller is unsafe, the CSM will query it for a path to the
distinguished failure state. The set of states along that path
provides a set of candidate decisions to revise. We describe
this process in detail in the following sections.

Backjumping
Although the search algorithm includes heuristic guidance it
may still need to explore a number of possible controller de-
signs (action assignments) before finding a safe controller. If
the heuristic makes a poor decision at a state, the search pro-
cess will lead to dead ends, and it must back up to that state
and resume searching with a different decision. The simplest
approach to “backing up” is chronological backtracking: un-
doing the most recent decision in the search and trying an
alternative. However, in some problems, it is possible to
determine that the most recent decision was not relevant to
reaching the dead end. Backjumping exploits such informa-
tion by skipping over irrelevant decisions and backtracking
directly to the most recent relevant decision, d, undoing all
the decisions above d in the search stack.

An example taken from the CIRCA controller synthesis
problem may help understand why backjumping is useful.
Consider the problem shown in Figure 2. The search al-
gorithm has assigned control actions to the states in the or-
der indicated by the state numbering. The planned actions
and the un-preempted temporal transitions are shown by the
heavy lines (dashed for actions, double-solid for temporals).
At this point, the system has planned an action for state 1
that will take it to state 2, an action for state 2 that will take
it to state 3, and a no-op action for state 3. Unexplored al-
ternatives are shown as fainter dotted lines. There are two
alternative actions for state 1 and three for state 2. The plan-
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Figure 2: An example showing the utility of backjumping.
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Figure 3: A search tree corresponding to the controller syn-
thesis problem in Figure 2

ner has also permitted a nonvolitional transition to carry the
system from the initial state to state 4.

Unfortunately, when trying to choose an action for state 4,
we will reach an impasse. There is a nonvolitional temporal
transition leading from state 4 to Failure, and none of the
action choices applicable in state 4 are fast enough to pre-
empt the TTF. We have reached a dead-end in our search,
and must back up.

A conventional, chronological backtracking algorithm
would now return to state 3 and attempt to assign a new con-
trol action to it. However, it should be clear from Figure 2
that this is a waste of time. No revision to the choices for
states 2 or 3 will solve the problem, and it will take us an
arbitrarily large amount of time to find this out. It would be
far better for us to simply “jump” back to state 1 and try to
find a better solution to the problem posed by that state, in
this case by preempting the temporal to state 4. A search
tree corresponding to this problem is given as Figure 3. The
wasted search is shown as shaded triangles. Note that the
subtrees corresponding to these triangles may be arbitrarily
deep.

Backjumping makes this kind of intelligent, guided revi-
sion possible. It can be shown that backjumping is com-
plete and never expands more nodes than depth-first search.
Backjumping was developed by Gaschnig (1979), but our
discussion follows the presentation by Ginsberg (1993). We
have modified Ginsberg’s discussion somewhat to make it fit
our search algorithm more closely.



Definition 2 (Constraint Satisfaction Problem (CSP)). A
constraint satisfaction problem is a tuple, (I, V ) with I
a set of variables; for each i ∈ I there is a set Vi =
{vi,0, vi,1 . . . vi,ni} of possible values for the variable i.
There are some constraints that limit the acceptable assign-
ments of values to variables.

In the case of the CIRCA controller synthesis problem,
the variables in question are the preemption decisions and
the action assignments. The constraints are implicitly de-
fined by the scenario definition, and whether or not an as-
signment is consistent is determined by consulting the timed
automaton verifier. E.g., in Figure 2 there is no assignment
to the action variable for state 4 that is consistent with the
assignment of not-preempted to the nonvolitional from state
1 to state 4.

Definition 3 (Partial Solution). Let (I, V ) be a CSP. By a
partial solution to the CSP, we mean an ordered subset J ⊆
I, and an assignment of a value to each i ∈ J . A partial
solution corresponds to a tuple of ordered pairs, where each
ordered pair 〈i, v〉 assigns the value v to i. For a partial
solution,P , we will write P for the set of variables assigned
values by P .

In general, we cannot assign arbitrary values to variables
— some of the values are eliminated by constraints:

Definition 4 (Eliminating Explanation). Given a partial
solution P to a CSP, an eliminating explanation for a vari-
able i is a pair 〈v, S〉 where v ∈ Vi and S ⊆ P . That is, i
cannot take the value v because of the values assigned by P
to the variables in S. The set of eliminating explanations for
i is Ei.

Definition 5 (Solution Checker). A solution checker for a
CSP is a function C : P, i, v → {�} ∪ Ei. That is, the
solution checker, given a partial assignment P and an as-
signment to a variable i �∈ P will return either � (the as-
signment satisfies all complete constraints), or will return an
eliminating explanation for 〈i, v〉.

Now we can present the definition of backjumping. For
backjumping we will require the solution checker to provide
more specific information.

Definition 6 (Solution Checker for Backjumping). For
an assignment that violates some constraints, we require
C(P, i, v) to return some Ei(v) ⊂ P , such that the set of
values assigned to the variables Ei(v), taken together with
the assignment 〈i, v〉, violates some constraint of the prob-
lem.

As one would expect, the smaller the explanations, the bet-
ter. In the worst case, where Ei(v) = P for all i and v,
backjumping degenerates to depth-first search.

Note that these eliminating explanations can be inter-
preted as logical implications. Given an eliminating expla-
nation, e.g., Ei(v) = {j, k, l} ⊂ P for 〈i, v〉, we can inter-
pret this as a clause ¬〈i, v〉 ← 〈j, vj〉, 〈k, vk〉, 〈l, vl〉, where
〈j, vj〉, 〈k, vk〉, 〈l, vl〉 ∈ P . With some abuse of notation, we

var value nogoods
4 v4,3 fails {〈v4,1, {1}〉, 〈v4,2, {1}〉, 〈v4,3, {1}〉}
3 v3,1 ∅
2 v2,1 ∅
1 v1,1 ∅

(a)
var value nogoods
1 v1,2 {< v1,1, ∅ >}

(b)

Figure 4: Search state for Figure 2, before (a) and after (b)
backjump.

will write such clauses as: ¬〈i, v〉 ← Ei(v). This interpre-
tation will be helpful in understanding how the backjumping
algorithm updates eliminating explanations.

Algorithm 2 (Backjumping) Given a CSP P and a solu-
tion checker C:

1. P := ∅ and Ei := ∅ for all i ∈ I. P will record
the current partial solution. Ei will be a set of pairs
of the form 〈vi,k, Ei(k)〉 where vi,k ∈ Vi is a value
eliminated from the domain of i and E i(k) ⊂ P is an
eliminating explanation for 〈i, v i,k〉. The set of vari-
ables mentioned in the eliminating explanations for i, is
Ei ≡

⋃
{k|vi,k∈Vi}

Ei(k).

2. If P is a complete solution, return it.
3. Select a variable i ∈ I − P .
4. Let S := Vi − Ei, the set of remaining possibilities for i.
5. If S = ∅, backjump: if Ei = ∅ return failure, otherwise,

let 〈j, vj〉 be the most recent entry in P such that j ∈ Ei.
Remove 〈j, vj〉 and all other assignments above it in the
stack from P . Add 〈vj , Ei − j〉 to Ej , set all eliminating
explanations from Ej+1 to Ei := ∅. Go to step 4.

6. If S �= ∅, choose a value, vi,k ∈ S to assign to i.
7. If C(P, i, vi,k) = � then P := P ∪ {〈i, vi,k〉} and go to

step 3.
8. If C(P, i, vi,k) �= � then add 〈vi,k, C(P, i, vi,k)〉 toEi and

go to step 4.

Remarks To understand the description of an actual back-
jump, in step 5 of Alg. 2, recall the interpretation of elim-
inating explanations as implications. When backjumping
we have eliminated all elements of Vi, so we have Ei(v),
or ¬〈i, v〉 ← Ei(v), for all v ∈ Vi. Implicitly, we also
have

∨
v∈Vi
〈i, v〉. From these, we can use resolution to con-

clude
∨
v∈Vi
Ei(v), the Ej update computation performed

in step 5.
Figure 4 shows the stack operations from Algorithm 2

performed on the example of Figure 2. Initially, (Figure 4 a)
we are trying the last available value for variable 4, v4,3,
which fails. The other implicated decision in this failure is
the current value of variable 1, which we add to the nogood
set as < v4,3, {1} >. Since we have exhausted the possible
values for 4, we resolve together the nogoods, and backjump



to the most recent (in this case, only) stack entry, 1 (Figure 4
b), undoing all assignments in between (2 and 3 in this case).
We add the residue of the resolvent, in this case ∅, as the no-
good for v1,1, and move on to the next value, v1,2

Eliminating Explanations from Verifier Traces
As we indicated earlier, CIRCA uses a timed automaton ver-
ification program as its solution checker (see Def. 5). The
key to applying backjumping in our controller synthesis is
to be able to translate counterexample traces into eliminat-
ing explanations, per Def. 4 and Def. 6.

The model used by the CIRCA Controller Synthesis Mod-
ule is not directly interpretable by a timed automaton veri-
fier. Since the CIRCA execution system does not use clocks,
the CSM reasons only about the discrete state space. Nev-
ertheless, one must reason about clocks in order to deter-
mine whether a CIRCA controller is safe. Accordingly, the
CIRCA CSM translates its (partial) controllers into timed
automata, and then submits these automata to the verifier.

We do not have space here to fully describe this transla-
tion process, which we have written about elsewhere (Gold-
man, Musliner, & Pelican 2002). In summary, for every state
in the plan there is a state in the timed automaton (TA). If
the state has not been planned yet (i.e., it is a frontier state),
then the TA state will be a sink (in the limit the plan will
be fully verified, because there will be no unplanned states).
For each planned state, there will be transitions out for every
nonvolitional CSM transition. If the nonvolitional is a TTF,
it will go to failure; if the CSM has planned to preempt the
nonvolitional, it will also go to failure (since if it fires, the
preemption has failed); otherwise, the TA transition will go
to the image of the successor state. There will also be a tran-
sition for the action the CSM has chosen for the state, if any
(the state can be assigned no-op).

There are three facts about this translation important to
our discussion here. First, there is a function from the lo-
cations of the timed automaton model to the discrete states
in the CSM model, CSMstate(·). Second, there is a func-
tion from the jumps in the timed automaton model to the
transitions of the CSM, CSMtrans(·). These are both com-
putable in constant time. Third, the timed automaton models
of our controllers contain a distinguished failure location.

The counterexample traces generated as a result of check-
ing CIRCA plans for safety have the following form:

s0
t0→ s1

t1→ s2
t2→ . . . sn

tn→ sfail

Each si is made up of a location and a clock zone (which
represents an equivalence class of clock valuations for the
same location). In the following, we will only be concerned
with the location. Since each si corresponds to a single lo-
cation, we will not be fussy about the notation. The state
s0 is a distinguished initial state that does not correspond to
any CSM state. The state s1 will map to some CSM ini-
tial state. sfailis a state whose location is the distinguished
failure location.

The transition sn
tn→ sfail will correspond to one of two

classes of failure: either tn is a transition to failure in the
CIRCA model or tn corresponds to a nonvolitional, nv the

CSM has chosen to preempt. In the latter case, crossing tn
means the CSM’s intention to preempt tn has failed, and the
plan is no good.

We extract an eliminating explanation from the counterex-

ample using a function from state-jump-state triples, si
ti→

si+1 into search decisions. This function is defined over the
CSM states and transitions, σi ≡ CSMstate(si), σi+1 ≡
CSMstate(si+1) and τi ≡ CSMtrans(ti), as shown in
Def. 7.

In this definition, we make use of two classes of search
decision: action decisions, α(·), and preemption decisions,
�(·, ·). Each of these search decisions corresponds to an
entry in the search stack. The domain of an action decision,
α(l) is the set of actions enabled in state l. Preemption
decisions are boolean, �(l, t) = �(resp., ⊥) means that t
must be (need not be) preempted in l.

Remarks The first and second pairs of cases are mutually
exclusive and covering (σi+1 = sfail versus σi+1 �= sfail)
and the cases in each pair are also mutually exclusive and
covering.

Consider the example in Figure 2 again. The CSM might
get the following counterexample trace:

σ1
tt

⇒ σ4
ttf

⇒ sfail

where tt is the temporal transition from 1 to 4 and ttf is
the temporal transition to failure from 4. The corresponding
eliminating explanation would be {�(σ1, tt), α(σ4)}. If the
CSM were to try and fail to preempt tt in 1 (to avoid the
unsolvable state 4), the counterexample might be:

σ1
tt

⇒ sfail

yielding the eliminating explanation {�(σ1, tt), α(σ1)}.
Using the function of Def. 7, a timed automaton verifier

can act as a solution checker for backjumping, per Def. 6.
When the verifier returns a counterexample trace, we apply
the mapping given in Def. 7 to the trace, remove duplicate
decisions, and then remove α(s) from the result to get a no-
good. Search using these eliminating explanations proceeds
per Alg. 2. Note that the pre-checks (used to avoid unnec-
essary calls to the verifier) also return eliminating explana-
tions.

There are three conditions required of the solution
checker to ensure the soundness and completeness of
Alg. 2 (Ginsberg 1993). Our approach meets all three:

1. Correctness: If C(P, i, v) = � then every complete con-
straint1 is satisfied by P ∪ {〈i, v〉}.
Proof: The set of completed constraints is determined by
the reachable subspace of the state space. That is, a set of
variable assignments in the CSM search is consistent iff
the sub-space generated by those variable assignments is
safe. If the timed automaton verifier we use is correct the
correctness condition is met. �
1A constraint is complete if all its participating variables have

been assigned a value.



Definition 7. Eliminating Explanations from Counterexamples

f(σi, τi, σi+1) =




{α(σi)} if τi is a TTF and σi+1 = sfail.

{α(σi), �(σi, τi)} if τi ∈ π(σi) and σi+1 = sfail.

{α(σi)} if τi is an action or an event
and σi+1 �= sfail.

{�(σi, τi)} if τi is a temporal transition
(and not an event) and σi+1 �= sfail.

2. Completeness: Whenever P∪{〈i, v〉} is consistent,P ′ ⊃
P and P ′ ∪ {〈i, v〉} is not consistent, then C(P ′, i, v) ∩
(P ′−P ) �= ∅. That is, if P can be extended by assigning
v to i and P ′ cannot be, at least one element of P ′ − P is
identified as a possible reason for the problem.
Proof: Corresponding to P ∪ {〈i, v〉} there is a timed
automaton subspace that is safe. Corresponding to P ′ ∪
{〈i, v〉} there is a timed automaton subspace that is not
safe. Ergo, there must be a trace of the following form:

s0
t0→ s1

t1→ . . . sm
tm→ . . . sn

tn→ sfail where sm corre-
sponds to a state that was not yet planned in P (note that
sm may or may not be equal to sn, s1 , or both), otherwise
a correct verifier would have found the path when check-
ingP ∪{〈i, v〉}. Examining the mapping given in Def. 7,

we can see that applying that mapping to sm
tm→ sm+1

will add to the nogood at least one variable in P ′ − P .�
3. Concision: Only one reason is given why a particular

variable cannot have the value v in a partial solutionP .
Proof: The explanations are generated by our timed au-
tomaton verifier. For each safety verification failure,
the verifier will generate a single counterexample, from
which Def. 7 will generate a single nogood.�
It follows that Alg. 1, using backjumping according to the

solution checking mechanism proposed here, will be sound
and complete.

Test Results
Backjumping is critical to making challenging domains fea-
sible. We can assess the results of trace-directed backjump-
ing by comparing against CSM performance using chrono-
logical backtracking. Forcing the CSM to use chronologi-
cal backtracking is simple: we still call the verifier to as-
sess whether the current plan is acceptable, but if the verifier
finds failure is reachable we simply backtrack one step and
change the last decision on the stack. Note that backjump-
ing is guaranteed never to search more states (or decisions)
than chronological backtracking, since it only eliminates ir-
relevant decisions from consideration, never adds new ones.
There is some overhead computation involved with main-
taining nogoods, and we must evaluate this as well, but there
is no way to fool the backjumping mechanism itself into
poor decisions or added search.

We evaluated the effectiveness of backjumping on
three problem sets. First, we examined its performance

on two scalable domains that are constructed specif-
ically to fool the search heuristic into poor choices,
which backjumping can then help overcome. Second,
we assessed the benefits of backjumping on our re-
gression testing domains of varying size, derived from
real-world problems or prior investigations (available at
http://www.htc.honeywell.com/projects/sa-circa/).

Deceptive Goals
The CIRCA search heuristic is based on a greedy goal re-
gression search, guiding the system to take actions that are
apparently on the path to achieving all the desired goals.
However, CIRCA is designed first and foremost to build
safety-preserving plans, and it can sacrifice some of its goals
in service of safety. Thus one way to fool the heuristic is to
build domains with goals that are not consistent with system
safety. The heuristic will attempt to achieve the goals, and
the planner must realize they are impossible and change de-
cisions to achieve only a subset of its goals while guarantee-
ing system safety. The example shown in Figure 2 illustrates
this type of domain. If we make state 3 have one or more de-
sirable goal features, the heuristic will recognize the path to
those goals and plan to achieve them. However, the only
way to build a safe plan is to ignore that goal and choose a
different action from state 1. We can make a scalable class
of similar domains by varying the length of the chain of ac-
tions leading to the deceptive goal. The more states in that
path, the more work chronological backtracking will require
to find the correct solution (backtracking all the way to the
action decision for state 1). After generating the deceptive
path, the backjumping search will have no problem skipping
any number of decisions in that deceptive goal chain, recog-
nizing at once that the state 1 action choice is the key ele-
ment of the path to failure, and that the other decisions are
irrelevant. Figure 5 summarizes the results of running the
CSM on this type of domain with goal path lengths vary-
ing up to eight steps. As expected, the chronological back-
tracking search grows exponentially, while the backjumping
search scales linearly.

Pathological Ordering
Because the greedy CIRCA search heuristic largely ignores
temporal aspects of the domain, another way to fool the
heuristic into making poor choices is to make the correct
choices dependent on temporal transitions. For example, we
can build a scalable class of domains where a series of N
actions are required to achieve the goal, and they must be
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Figure 5: As the path to deceptive goals grows, chronological backtracking scales badly, while backjumping search scales
linearly.

executed in a specific order or else uncontrollable temporals
will occur that undo the progress made towards the goal. We
can then declare the final goal to be mandatory, meaning that
CIRCA is not allowed to build a plan that does not achieve
that goal. If we carefully construct the domain so that the
heuristic always suggests the wrong ordering first, then we
can force backtracking in proportion toN .

In this case, backjumping is of less utility because it
cannot skip back many action decisions: as the depth-first
search proceeds, when a failure is detected it always im-
plicates the most-recent action. However, backjumping is
still advantageous because it avoids backtracking to irrele-
vant preemption decisions (see step 2 in Alg. 1).

As shown in Figure 6, the backjumping planner still must
explore the growing set of all action orderings, but the
chronological backtracking planner performs even worse,
because it must consider the growing set of preemption de-
cisions.

Regression Suite
In a set of 23 domains from our regression suite, our evalua-
tions indicate major advantages for backjumping in moder-
ate and large domains, and no measurable overhead penal-
ties. For example, one of our regression testing domains ab-
stractly represents a problem the Cassini spacecraft faced in
planning to pre-heat a backup system before a critical mis-
sion phase (Musliner & Goldman 1997). The chronological
backtracking version requires 143 backtracks and 1.5 sec-
onds to solve the problem, while the backjumping version
uses only 58 backjumps and 0.9 seconds; both versions ex-
amine 66 states. On one of our larger regression tests, drawn
from a robot arm workstation domain with complicated tem-
poral elements, the chronological backtracking version per-
forms 235 backtracks before timing out after 20 minutes
and failing to solve the problem. The backjumping version
makes only 93 well-directed backjumps and solves the prob-
lem in 4.9 seconds.

Trace-directed backjumping can help eliminate search
even when no plan is possible. In a simpler variant of the
robot arm domain, the chronological backtracking version
explores 68 states, backtracks 90 times, and concludes that
no plan is possible in about 500 milliseconds. The back-
jumping version comes to the same conclusion in only 85
milliseconds, after six backtracks and 52 states.

Related Work
Buccafurri, et al. (1999) also attempt to tackle the problem
of automatically extracting repair information from coun-
terexamples. They describe a technique for adding auto-
matic repair to model checking verification. They use ab-
ductive model revision to alter a concurrent program de-
scription in the face of a counterexample. The class of sys-
tems and repairs they consider seem most appropriate for
handling concurrency protocol errors, especially involving
mutual exclusion and deadlocks, and rather less appropriate
for control applications like the ones that interest us.

Tripakis and Altisen (1999) have independently devel-
oped an algorithm very similar to ours. They use the
term “on-the-fly” for algorithms that generate their reach-
able state spaces at the same time as they synthesize the
controller. AI planning algorithms, including the original
CIRCA planning/controller synthesis algorithm (Musliner,
Durfee, & Shin 1993; 1995) have typically been on-the-fly
in this sense. We believe that a suitably-modified back-
jumping scheme could be profitably incorporated into their
algorithm.

Backjumping provides a restricted form of guidance to
backtracking, using limited record-keeping. Dynamic back-
tracking is similar to backjumping, but additionally permits
the search algorithm to salvage some of the work done be-
tween the backjump point and the point at which failure is
detected. However, for many applications, this seems to
be counterproductive, sometimes behaving exponentially
worse than simpler approaches (Baker 1994).
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Figure 6: Backjumping search avoids consideration of irrelevant preemption decisions.

Conclusions
We have presented a technique for extracting decision re-
pair candidates from counterexample traces produced by a
model-checking plan verifier. These repair candidates take
the form of entries in a search stack, and allow us to use
backjumping search in the planning process. In difficult
planning problems, where heuristic guidance may err, back-
jumping provides a crucial advantage. Our technique should
be directly applicable to other on-the-fly controller synthe-
sis and AI planning methods. We hope that it will also point
the way to improvements in other uses of model-checking
verification.
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