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Abstract

LPG is a planner that performed very well in the last Interna-
tional planning competition (2002). The system is based on a
stochastic local search procedure, and it incorporates several
heuristic features. In this paper we experimentally analyze
the most important of them with the goal of understanding
and evaluating their impact on the performance of the plan-
ner. In particular, we examine three heuristic functions for
evaluating the search neighborhood and some settings of the
“noise” parameter, that randomizes the next search step for
escaping from local minima. Moreover, we present and ana-
lyze additional heuristic techniques for restricting the search
neighborhood and for selecting the next inconsistency to han-
dle. The experimental results show that the use of such tech-
niques significantly improves the performance of the planner.

Introduction
The results of the 3rd planning competition (Long & Fox
2003) showed thatLPG is an efficient planner for PDDL2.1
domains (Gerevini & Serina 2002; Gerevini, Saetti, & Se-
rina 2003). The system is based on a stochastic local
search procedure, calledWalkplan, that is similar to the well-
known Walksat procedure for solving SAT problems (Sel-
man, Kautz, & Cohen 1994).

As in any local search scheme, the definition of the search
neighborhood (the set of possible successor states) and the
heuristic function for evaluating its elements are crucial fea-
tures for the effectiveness ofWalkplan. When the number
of the elements in the neighborhood is high, its evaluation
can be computationally expensive, and a technique for prun-
ing some elements can be very effective. Moreover, in an
iterative-repair approach, the strategy to select the next flaw
to handle (inconsistency inLPG, unsatisfied clause inWalk-
sat) may also affect the performance of the search.

In order to escape from local minima, inWalkplan as in
Walksat, if every element in the neighborhood is worse than
the current state (according to an heuristic function), then
with some probability (called “noise”) an element of the
neighborhood is randomly chosen, instead of selecting the
best one. In general, the value of the noise can significantly
affect the performance of the search. InLPG the noise value
can be either statically set by the user, or automatically set
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to an initial default value that is dynamically changed during
search.

This paper has two main contributions:

• we propose some techniques for effectively restricting the
search neighborhood ofWalkplan, and for selecting the
next inconsistency to handle;

• we experimentally analyze the main heuristic features for
local search inLPG with the goal of understanding and
evaluating their impact on the performance of the planner.

In addition to the techniques for neighborhood restriction
and inconsistency selection, we analyze three heuristic func-
tions for evaluating the neighborhood elements, that we in-
troduced in previous work (Gerevini & Serina 1999; 2002;
Gerevini, Saetti, & Serina 2003), and the noise setting. We
focus our analysis on simpleSTRIPSdomains.

The second section gives the necessary background on
LPG andWalkplan; the third section presents the techniques
for the neighborhood restriction and the inconsistency selec-
tion; the fourth section presents and discusses the results of
our experimental analysis; finally the last section gives the
conclusions.

Background on LPG
In this section, we give an overview ofLPG’s plan repre-
sentation, search space, search algorithm and main heuristic
features (Gerevini & Serina 1999; 2002; Gerevini, Saetti, &
Serina 2003).

Plan Representation: Linear Action Graphs
In our framework, plans are represented throughaction
graphs (Gerevini & Serina 1999) that are particular sub-
graphs of planning graphs (Blum & Furst 1997). Given a
planning graphG for a planning problemΠ, anaction graph
(A-graph) forΠ is a subgraphA of G such that, ifa is an
action node ofG in A, then also the fact nodes ofG corre-
sponding to the preconditions and positive effects ofa are in
A, together with the edges connecting them toa. An action
graph can contain someinconsistencies, i.e., action precon-
ditions that are notsupported, or pairs of action nodes in-
volved inmutex relations.1 A precondition nodeq at a level

1LPG considers only pairs of actions that areglobally mutex, i.e.
that hold at every level ofG (Gerevini, Saetti, & Serina 2003).



i is supported in an action graphA of G if in A there is an
action node (or a no-op node) at leveli − 1 representing an
action with a positive effectq.2 An action graph without in-
consistencies represents a valid plan that we call asolution
graph.

In the current version ofLPG, plans forSTRIPSproblems
are represented through a subclass of A-graphs calledlinear
action graph with no-ops propagation (LA-graphs).3 A lin-
ear action graphA is an A-graph in which each action level
contains at most one action node and any number of no-op
nodes. Moreover, ifa is an action node ofA at a levell,
then, for any positive effecte of a and any levell′ > l of
A, the no-op node ofe at a levell′ is in A, unless there is
another action node at a levell′′ (l < l′′ ≤ l′) that is mutex
with the no-op node. In any LA-graph, the only inconsis-
tencies that the search procedure needs to manage explicitly
are the unsupported preconditions. Although an LA-graph
cannot contain more than one action per level, a plan with
parallel actions (a partial order plan) can be derived from a
solution graph by considering the causal dependencies and
mutex relations between the actions in the graph. LA-graphs
offer some advantages with respect to A-graph that are dis-
cussed in (Gerevini, Saetti, & Serina 2003). All experiments
presented in this paper were conducted using this represen-
tation.

Stochastic Local Search: Walkplan
Given a planning problemΠ, LPG uses local search for
searching a solution LA-graph in the space of the LA-graphs
for Π. The general scheme consists of two main steps. First
we construct an initial LA-graph; then we iteratively apply
some graph modifications to transform the initial LA-graph
into a solution graph. In the current version ofLPG, the de-
fault initial graph is the empty LA-graph with the “fixed-
point level” of the underlying planning graph as the last
level.

At each search step,LPG selects an inconsistency (unsup-
ported precondition) in the current LA-graph. As will be
shown, the strategy for selecting the next inconsistency to
handle can have a significant impact on the overall perfor-
mance. In the next sections we will present and analyze
some possible strategies that are implemented inLPG.

In order to resolve the selected inconsistency, we can ei-
ther add an action node that supports it, or we can remove an
action node that is connected to that fact node by a precondi-
tion edge. When we add an action node to a levell, the LA-
graph is extended by one level, all action nodes froml are
shifted forward by one level, and the new action is inserted
at levell (a more detailed description is given in (Gerevini,
Saetti, & Serina 2003)).

2We assume that the goal nodes ofG (i.e., the problem goals)
represent the preconditions of a special actionaend, which is the
last action in any valid plan; the fact nodes of the first level of
G (i.e., the initial facts of the problem) represent the effects of a
special actionastart, which is the first action in any valid plan.
astart andaend belong to any A-graph ofG.

3In order to handle domains involving time and numerical vari-
ables (levels 2 and 3 ofPDDL2.1), LPG uses some extensions of
LA-graphs that, however, will not be considered in this paper.

Walkplan(Π, max steps, max restarts, p)

Input: A planning problemΠ, the maximum number of search
steps max steps, the maximum number of search restarts
max restarts, a noise factorp (0 ≤ p ≤ 1).

Output: A solution LA-graph forΠ or fail .

1. for i← 1 to max restarts do
2. A ← an initial LA-graph derived from the planning

graph ofΠ;
3. for j ← 1 to max steps do
4. if A is a solution LA-graphthen return A;
5. σ ← an inconsistency inA;
6. N(σ,A)← neighborhood ofA for σ;
7. if ∃A′ ∈ N(σ,A) such that the quality ofA′ is

no worse than the quality ofA according toE
8. thenA ← A′;
9. else ifrandom < p then
10. A ← an element ofN(σ,A) randomly chosen;
11. elseA ← best element inN(σ,A);
12. return fail .

Figure 1: Walkplan with restarts. random is a randomly
chosen value between 0 and 1.

Given a linear action graphA and an inconsistencyσ in
A, theneighborhoodN(σ,A) of A for σ is the set of LA-
graphs obtained fromA by applying a graph modification
that resolvesσ. At each step of the local search scheme,
the elements of the neighborhood are evaluated according
to an heuristic function estimating their quality, and an ele-
ment with the best quality is then chosen as the next possi-
ble LA-graph (search state). Evaluating all elements in the
neighborhood can be computationally very expensive, be-
cause the neighborhood could contain many LA-graphs and
an accurate evaluation of each of them could require sig-
nificant CPU-time. For this reason, as we will show, it is
important that the evaluation of the neighborhood elements
is combined with a technique that reduces its size.

The default search strategy used byLPG is calledWalk-
plan (see Figure 1).Walkplan is similar toWalksat, a well-
known local search method for solving propositional sat-
isfiability problems (Selman, Kautz, & Cohen 1994). In
Walkplan the best element in the neighborhood is the LA-
graph which has thelowest decrease of qualitywith respect
to the current LA-graph, i.e., it does not consider possible
improvements. Given an LA-graphA and an inconsistency
σ, if there is a modification forσ that does not decrease the
quality of A, then the resulting LA-graph is chosen as the
next LA-graph; otherwise, with a probabilityp one of the
graphs inN(σ,A) is randomly chosen, and with probabil-
ity 1 − p the next LA-graph is the best element inN(σ,A)
according to anaction evaluation functionE (an element
with the lowest evaluation). As inWalksat, p is callednoise
factor, and its value may have a significant impact on the
search. WhenN(σ,A) contains more than one graph with
the best evaluation,LPG chooses randomly one of them. Fi-
nally, if after a certain number of search steps (maxsteps)
a solution LA-graph is not reached, the current LA-graph is



reinitialized, and the search is repeated up to a user-defined
maximum number of times (maxrestarts).

Heuristic Evaluation of the Search Neighborhood

The neighborhood evaluation function has two parts evalu-
ating: the search cost of an LA-graph in the neighborhood
(i.e., the number of search steps required to reach a solution
graph); the quality (or execution cost) of the (partial) plan
represented by the LA-graph. In this section we focus on
the first part. At the end of the section we briefly describe
how execution cost is evaluated.

In the design of a neighborhood evaluation function, there
is an important tradeoff to consider between accuracy of
the evaluation and the computational cost of the evaluation.
An accurate evaluation of the elements in the neighborhood
could lead to a valid plan within few search steps. How-
ever, when the neighborhood contains many elements, the
evaluation could slow down the search excessively. On the
other hand, a less accurate evaluation of the neighborhood
is faster to compute, but since it is less informative it could
lead to a valid plan only after many search steps. We de-
veloped three evaluation functions trying to identify an ap-
propriate balance between informativeness and efficiency of
their computation:E0, EH andEπ. In the rest of this sec-
tion we describe each of them, while in the section about the
experimental results we analyze their impact on the perfor-
mance ofWalkplan. For eachE ∈ {E0, EH , Eπ}, E(a,A)i

is the evaluation of the LA-graph derived from the current
graphA by adding the actiona to it (also called the “cost of
addinga toA”). Similarly, E(a,A)r is the cost of removing
a fromA.

The simplest function that we consider was proposed in
(Gerevini & Serina 1999) and is defined as follows.

Heuristic function E0:

E0(a,A)i = |P (a,A)|+ |Threats(a,A)|

E0(a,A)r = |Unsup(a,A)|

where Threats(a,A) is the set of supported precondition
facts in A that become unsupported by addinga to A;
P (a,A) is the set of the precondition facts ofa that are not
supported inA; Unsup(a,A) is the set of supported precon-
dition facts inA that become unsupported by removinga
fromA.

While computingE0 in the context of LA-graphs is quite
fast, a more accurate evaluation could be more effective. In
fact, it can be the case that, although the insertion of a new
actionai leads to fewer new unsupported preconditions than
those introduced by an alternative actionaj , the unsupported
preconditions ofai are more difficult to satisfy (support)
than those ofaj in the context of the current partial plan.
For this reason, subsequently we proposed two alternative,
more informative functions,EH (Gerevini & Serina 2002)
andEπ (Gerevini, Saetti, & Serina 2003).

EH is a refinement ofE0 in which, instead of just count-
ing the number of the unsupported preconditions ofa and
those inUnsup(a,A), we estimate the search cost of achiev-
ing them. More precisely,EH is defined as follows.

Heuristic function EH :
EH(a,A)i = MAX

f∈Pre(a)
H(f,A) + |Threats(a,A)|

EH(a,A)r = MAX
f∈Unsup(a,A)

H(f,A− a)

where Pre(a) is the set of the preconditions ofa and
H(f,A) is theheuristic cost of supportingf , which is re-
cursively defined in the following way:

H(f,A) =


0 if f is supported

H(f ′,A) if af is no-op with preconditionf ′

MAX
f ′∈Pre(af )

H(f ′,A) + |Threats(af ,A)|+ 1

where
af = ARGMIN

{a′∈Af}

{
E0(a′,A)i

}
andAf is the set of action nodes of the underlying planning
graph at the levels precedingf that havef as one their ef-
fect nodes. Informally, the heuristic cost of an unsupported
fact f is determined by considering all the actions at a level
precedingf whose addition would support it. Among these
actions, we choose the one with the best evaluation (af ) ac-
cording to the basic action evaluation functionE0. H(f,A)
is recursively computed by summing the highest heuristic
cost of supporting a preconditionf ′ of af in A (H(f ′,A))
and the number of supported precondition facts inA that
become unsupported by addingaf to A (|Threats(af ,A)|).
The last term “+1” takes account of the insertion ofaf to
supportf .

Eπ (Gerevini, Saetti, & Serina 2003) was designed to im-
prove the accuracy ofEH . It was used byLPG in the 3rd
planning competition. In the evaluation of the addition of a
new actiona, Eπ estimates the search cost of achievingall
preconditions ofa (Pre(a)) in the context of the current LA-
graph, whileEH considers the maximum over the search
costs of its preconditions. Moreover, instead of just count-
ing the number of action preconditions inA that would be-
come unsupported when addinga (Threats(a,A)), Eπ esti-
mates the search cost of re-achieving such conditions after
the addition ofa. More precisely, inEπ the search costs
are estimated by computing a relaxed planπr for achieving
Pre(a) andThreats(a,A), and counting the number of ac-
tions inπr. In addition,Eπ counts the number of the action
preconditions inA that are subverted by an actiona′ in πr

(Threats(a′,A)). Eπ is formally defined as follows.

Heuristic function Eπ:
Eπ(a,A)i = |π(a,A)i|+

∑
a′∈π(a,A)i |Threats(a′,A)|

Eπ(a,A)r = |π(a,A)r|+
∑

a′∈π(a,A)r |Threats(a′,A)|

where
• π(a,A)i is an estimate of a minimal set of actions form-

ing a relaxed plan achievingPre(a) andThreats(a,A);
• π(a,A)r is an estimate of a minimal set of actions form-

ing a relaxed plan achievingUnsup(a,A).
The plans ofEπ are relaxed because their validity do not

consider the negative effects of the actions. However, neg-
ative effects are considered in the heuristic selection of the



RelaxedPlan(G, I(l), A)

Input: A set of goal facts (G), the set of facts that are true after
executing the actions of the current LA-graph up to levell (I(l)),
a possibly empty set of actions (A);

Output: An estimated minimal set of actions required to achieve
G.

1. G←G−I(l); Acts← A;
2. F ←

⋃
a∈Acts Add(a);

3. while G− F 6= ∅
4. g ← a fact inG− F ;
5. bestact← Bestaction(g);
6. Rplan← RelaxedPlan(Pre(bestact), I(l), Acts);
7. Acts← Rplan ∪ {bestact};
8. F ←

⋃
a∈Acts Add(a);

9. return Acts.

Figure 2: Algorithm for computing a relaxed plan achieving
a set of action preconditions from the stateI(l).

actions forming a relaxed plan (more details below). The
initial stateI(l) of the (relaxed) problem of achieving either
Pre(a) or Unsup(a,A) is the state obtained by applying the
actions inA up to levell−1 (ordered according to their cor-
responding levels). The initial state from which we achieve
Threats(a,A) is the state obtained by applyinga to I(l).

π(a,A)i and π(a,A)r are computed by an algorithm
calledRelaxedPlan (see Figure 2). Forπ(a,A)i, Relaxed-
Plan is run twice, first to achievePre(a) and then to achieve
Threats(a,A). The set of actions identified by the first run
is given as input to the second run, so that the relaxed sub-
plan for Threats(a,A) can reuse the actions in the subplan
for Pre(a).

RelaxedPlan constructs a plan through a backward pro-
cess from the input goal setG to the input initial state. The
action chosen to achieve a (sub)goalg, Bestaction(g), is de-
termined by considering for each factf an estimate of the
minimum number of actions required to achievef from I(l)
(Num acts(f, l)). A detailed description of this reachabil-
ity information and of its computation is given in (Gerevini,
Saetti, & Serina 2003). Essentially,Bestaction(g)is an ac-
tion a′ such that

• g is an effect ofa′ and all preconditions ofa′ are reachable
from I(l);

• reachability of the preconditions ofa′ requires a mini-
mum number of actions, estimated as the maximum of
Num acts(p, l) for each preconditionp of a′;

• the negative effects ofa′ subvert a minimum number of
supported precondition nodes inA (Threats(a′,A)).

More formally,Bestaction(g)is defined as

ARGMIN
{a′∈Ag}

{
MAX

p∈Pre(a′)−F
Num acts(p, l) + |Threats(a′,A)|

}
,

whereF is the set of positive effects of the actions currently
in the relaxed plan (Acts), andAg is the set of actions with
the effectg and with all preconditions reachable from the ini-
tial state. For a more detailed description ofBestaction, Re-

laxedPlan andEπ, the interested reader may see (Gerevini,
Saetti, & Serina 2003).

Finally, we briefly describe the heuristic evaluation of the
execution cost associated with the plan represented by an
LA-graph in the search neighborhood. The action evaluation
function is a normalized linear combination of the search
cost and the execution cost, that forSTRIPSdomains is de-
fined as the number of actions in the plan. InEi

0 the execu-
tion cost is modeled by a “+1” term, while inEr

0 we do not
have this term; inEH it is modeled by a term equal to the
maximum depth of the tree of action nodes identified byH;
finally, in Eπ it is modeled by a term equal to the number
of the actions in the relaxed plan (Gerevini, Saetti, & Serina
2003).

Additional Heuristic Features
In this section we propose some additional heuristic features
that have a significant impact on the performance ofLPG. In
particular, we present techniques for restricting the search
neighborhood and selecting the next inconsistency to handle.

Neighborhood Restriction

In general, the effectiveness of a heuristic function evalu-
ating the elements in the search neighborhood can be sig-
nificantly affected by the size of the neighborhood. If this
is too large, an accurate evaluation might require too much
time, and a less accurate (but computationally more effi-
cient) function could perform better. SinceLPG’s basic
search neighborhood can be very large, we considered some
alternative restricted neighborhoods, and we compared the
performance ofE0, EH andEπ using them. The results of
this experiment are presented in the next section. In this sec-
tion, first we overview the basic neighborhood ofLPG, and
then we present some techniques to restrict it.

The basic neighborhoodN(p,A) of an LA-graphA for
an unsupported precondition nodep is the set of the LA-
graphs that can be derived fromA by adding an action node
supportingp, or by removing the action node with precon-
dition p. Suppose thatp is a precondition node at a level
l of A. In order to supportp we can add an actiona with
positive effectp to any level l′ ≤ l, provided thatp can be
propagated tol by adding a no-op forp to the levels between
l′ and l. (The propagation is not possible if at any of such
intermediate levels there is an action node that is mutex with
the no-op ofp.) In the basic definition ofN(p,A) for LA-
graphs, we have an LA-graph for each of these graph modifi-
cations. Moreover,N(p,A) contains the LA-graph obtained
by removing the action node of whichp is a precondition.4

Figure 3 gives a simple example ofN(p,A) assuming that
p is a precondition ofa at level 5, and thata′ is the only
possible action supportingp at a level lower than 5.

4Since at any level there can be at most one action node (plus
any number of no-ops), when we remove an action node, the cor-
responding action level becomes “empty” (i.e., it contains only no-
ops). If the LA-graph contains adjacent empty levels, and in order
to supportp a certain action node can be added to any of these
levels, thenN(p,A) contains only one of the resulting graphs.
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Figure 3: An example ofN(p,A). Every white box repre-
sents a no-op, and every grey box represents a plan action.
A′ is derived fromA by removinga; A′′ by insertinga′ (the
only action with effectp) into level 5;A′′′ by insertinga′

into level 4.A′′′ introduces an inconsistency, since the neg-
ative effect¬r of a′ blocks the propagation ofr from level
3. a′ cannot be inserted into level 3, because actionc would
block the propagation ofp.

While any restriction of the basic neighborhood makes its
evaluation faster, clearly not every restriction can speed up
the search of a solution graph. In particular, we would like to
remove from the neighborhood only the bad elements (those
requiring more search steps to reach a solution graph).

In order to select the elements forming a restricted search
neighborhood,LPG pre-evaluates the candidate elements of
the basic neighborhood using the same method used inEπ

to select the actions forming a relaxed plan. Specifically, if
A′ is the LA-graph derived by adding an actiona′ to a level
l of A, the quality ofA′ is defined as the maximum over

Num acts(q, l) + |Threats(a′,A)|
for every unsupported preconditionq of a′. Clearly, this
evaluation is much faster to compute thanEπ, but it is also
less accurate.

We considered four strategies for determining the number
of the elements forming the restricted neighborhood:NRk,
NRk%, NRA, andNRL. They differ from the basic neighbor-
hood because they contain only a subset of the LA-graphs

obtained by adding an action node to the current LA-graph.
NRk, NRk% andNRA exploit reachability information that is
available when the heuristic evaluation function isEπ; NRL

is a simpler technique that can be used in combination with
any of the heuristic functions that we have described.

In NRk, N(p,A) contains only thek best pre-evaluated
elements. Note that if there are many candidate elements
of good quality according to the pre-evaluation, it could be
the case thatNRk removes elements that actually have better
quality according to the heuristic evaluation function.

In NRk%, the search neighborhood contains only those el-
ements, whose pre-evaluation is worse than the best element
by a factor less than or equal tok% (k is an input param-
eter for bothNRk andNRk%). NRk% was designed to re-
move from the neighborhood only those elements that the
pre-evaluation considers significantly bad, and so to reduce
the probability of erroneously removing elements that the
heuristic evaluation function would consider of good qual-
ity.

In NRA, for each actiona with effectp, N(p,A) contains
only one LA-graph (while the basic neighborhood contains
an LA-graph for any level wherea can be added andp can
be propagated up to the level of the inconsistency). The
best level where addinga is decided according to the pre-
evaluation above. If there is more than one element with the
best evaluation,NRA chooses the one wherea is put at the
highest level.NRA is the restriction used byLPG in the third
IPC.

NRL is a simplified version ofNRA in which the best level
where we adda is just thelast level wherea can be added,
i.e. the same level of the unsupported preconditionp.

Finally, we considered a fifth strategy in which we com-
bine all three restriction techniques that use reachability in-
formation. We call such a strategyNRall.

Inconsistency Selection
In partial-order causal-link (POCL) planning, the choice of
the next inconsistency to repair at each search step can
significantly affect the performance of the search process
(e.g., (Gerevini, Schubert 1996; Pollack, Joslin, & Paolucci
1997)). Although the search methods ofLPG and POCL-
planners are radically different (and hence we cannot di-
rectly import results fromPOCL planning into our frame-
work), preliminary experimental tests showed that this is the
case also forLPG: if we change the basic random selection
strategy ofWalkplan, the performance of the planner can be
significantly different.5 Thus, we designed some alterna-
tive strategies with the aim of improving the performance
of the random strategy (indicated withΣrand). In this sec-
tion we introduce two of them,Σlifo andΣlev−, and in the
next section we evaluate their performance with respect to
the default random strategy.

Σlifo is a simple standard strategy that handles the incon-
sistencies according to a last-in first-out discipline.Σlev−

5The random selection of the next inconsistency to handle in
Walkplan is the analogue of the random selection of the next un-
satisfied clause to handle inWalksat (Selman, Kautz, & Cohen
1994).



prefers the inconsistency at thelowest levelt of the cur-
rent LA-graph; if more than one of such inconsistencies are
present at levelt, thenΣlev− chooses randomly one of them.
The rationale ofΣlev− is related to the definition of the eval-
uation functionEπ, for which it was initially designed. As
we have seen,Eπ(a,A)i is defined using a relaxed plan
πr for achieving the preconditions ofa from the stateI(l),
whereI(l) is the state obtained by executing the actions at
the levels preceding the levell of the selected inconsistency
starting from the initial state. Moreover, the actions form-
ing πr are selected using reachability information for their
preconditions that are dynamically computed fromI(l). By
removing the inconsistency at the earliest levell of the cur-
rent LA-graph, we guarantee thatI(l) is the states reached
by the actions at the levels precedingl. On the contrary,
if we randomly select an inconsistency at any levell, and
there are other inconsistencies beforel, then I(l) can be
only an estimateof s. Such an estimate could change in
the next LA-graphs of the search (because some actions are
added/removed to deal with inconsistencies at levels before
l). Hence, the evaluation ofEπ(a,A)i at a certain search
step could change radically at a next search step. This could
leadEπ combined withΣrand to make incorrect evaluations
more often than whenEπ is combined withΣlev−. For sim-
ilar reasons, we conjecture that alsoE0 andEH can benefit
from the use ofΣlev−. In this paper we will restrict the ex-
perimental analysis ofΣlev− by considering onlyEπ. Σlev−
is the inconsistency selection strategy used byLPG in the
third IPC.

Experimental Results
In this section we present some experimental results il-
lustrating the performance of the heuristic features for
LPG described in the previous sections. We will use
the test problems of the 3rd IPC (Long & Fox 2003).
For lack of space we will show the experimental results
for only the 102 problems of the STRIPS domain vari-
ants (Depots , DriverLog , Rovers , Satellite and
Zenotravel ).6 Similar experimental results were ob-
tained for the temporal domain variants of the 3rd IPC.

LPG is an incremental planner, in the sense that it pro-
duces a sequence of valid plans, each of which improves
the quality of the previous ones. We testedLPG in terms of
both the CPU-time required to find a solution (LPG-speed)
and the quality of the best plan computed by the incremental
process using five CPU-minutes (LPG-quality).7

We compare different options of an heuristic feature using
Friedman’s statistical test (Friedman 1937). Note that when
there are more than two options to compare, Friedman’s test

6These domains are described atwww.dur.ac.uk/
d.p.long/competition.html . We have not considered the
Freecell domain because currentlyLPG solves the problems
of this domain only by using the alternative best-search mode
(Gerevini, Saetti, & Serina 2003).

7SinceWalkplan is a stochastic procedure, we ranLPG five
times for problem tested. The tests were conducted on a PIII Intel
866 MHz with 512 Mbytes of RAM. In every run themaxsteps
parameter ofWalkplan was set to 500, and it was automatically
increased by 10% at each search restart.

Experimental results

Problems T ′ T ′′ T ′′′

pfile1 95 121 87

pfile2 43 191 130

pfile3 65 69 28

pfile4 1351 6912 282

pfile5 1283 1162 1032

Ranked results

Problems T ′ T ′′ T ′′′

pfile1 2 3 1

pfile2 1 3 2

pfile3 2 3 1

pfile4 2 3 1

pfile5 3 2 1

ri 2 2.8 1.2

Figure 4: An example of data for Friedman’s test analyzing
three hypothetical options of an heuristic feature:T ′, T ′′

andT ′′′.

is more accurate than Wilcoxon’s test (Ury 1976), that Long
and Fox used to compare the performance ofpairs of plan-
ners (Long & Fox 2003).

Experimental results are organized in tables as shown in
Figure 4. Every row represents a test problem, and every col-
umn represents an option of the feature under consideration;
in each table entry there is either CPU-time or plan quality
for a single run ofLPG. The procedure of Friedman’s test is
the following:

1. change every value in each row to its rank, assigning1 to
the lowest value andk · j to the highest value, wherek is
the number of the columns andj is the number ofLPG’s
runs for each problem tested (in Figure 4j = 1, while in
our experimentsj = 5);

2. calculate the mean rankri for every columni;

3. estimate the critical valueχ2
F :

χ2
F =

12

N · k · (k + 1)
·
∑

i

[
ri ·N −

N · (k + 1)

2

]2

,

whereN is the number of the rows, andk is the number
of the columns (for simplicity here we assumej = 1);

4. if χ2
F is 95% statistically meaningful according to the

χ2
k−1 distribution, the different options of the feature are

statistically different and the comparison is meaningful.8

The differenceD between two generic heuristic features
T ′ andT ′′ corresponding to columnsp andq, respectively,
is meaningful when|rp − rq| ≥ D, with

D = Z α
k·(k−1)

·
√

k · (k + 1)

6 ·N ,

whereZ is the normal distribution, andα = 0.05 is the
overall error probability (Siegel, Castellan 1988).

Figure 4 shows an example with only five problems (one
run of LPG for each problem), and three options of an hy-
pothetical heuristic feature that we want to compare. The
table on the right shows the ranks corresponding to the ex-
perimental results of the left table and the mean-valuesr of
these ranks for any column. SinceN = 5, k = 3, we have:

χ2
F = 1/5 ·

[
(10− 10)2 + (14− 10)2 + (6− 10)2

]
= 6.4.

Sinceχ2
F = 6.4, we can derive that the comparison is mean-

ingful, and hence at least one of the options amongT ′, T ′′

8χ2
F value is statistically meaningful with respect to theχ2

k−1

distribution, if the area subtended by theχ2
k−1 distribution from

χ2
F to∞ is lower than 5% of the overall area.



Results usingNoNR E0 EH Eπ Eπ−T

Problems Solved 72.5% 86.3% 99.0% 87.3%

Speed Mean Rank 12.5 8.4 10.2 11.0

Quality Mean Rank 12.1 11.0 8.9 10.0

CPU-time: Friedman(E0, EH , Eπ, Eπ−T )

E0Eπ−TEH Eπ

D = 1.9

Plan Quality: Friedman(E0, EH , Eπ, Eπ−T )

Eπ Eπ−T E0EH

D = 1.3

Table 1: Results of Friedman’s test on the performance
of Walkplan using four evaluation functions (E0, EH , Eπ,
andEπ−T ) without neighborhood restriction: percentage of
problems solved, CPU-time and plan quality ranks.

andT ′′′, corresponding to columnsp, q andr, respectively,
is statistically different from the others. We have

D = 2.395 ·
√

3 · 4
6 · 5

= 1.5.

Since|rq−rr| = 1.6 > 1.5, T ′′ is statistically different from
T ′′′. Sincerq is lower thanrq, we can derive thatT ′′′ is
statistically better thanT ′′. Since|rp− rq| = 0.8 < 1.5 and
|rp − rr| = 0.8 < 1.5, there is no basis for distinguishing
T ′ andT ′′, and similarly forT ′ andT ′′′.

The first observation that we derived from our experimen-
tal results is that the fourth step of Friedman’s test procedure
is satisfied for every heuristic feature analyzed in this paper.

Observation 1 The noise value, the heuristic evaluation of
the search neighborhood, the neighborhood restriction and
the inconsistency selection are statistically meaningful fea-
tures for the performance ofLPG.

Heuristic Evaluation of the Search Neighborhood
In this section we comment on the performance ofLPG with
different heuristic evaluations of the search neighborhood:
E0, EH , Eπ, andEπ without considering the terms count-
ing the threats (Eπ−T ). Eπ−T is tested in order to show
the importance considering the threats in the evaluation of
Eπ. Note that this is an important difference in the con-
struction of the relaxed plans computed byLPG and those
computed byFF (Hoffmann & Nebel 2001) and the first ver-
sion ofSAPA (Do & Kambhampati 2001).9

EH andEπ are more accurate thanE0. On the other hand,
as expected, we observed thatE0 is the fastest to compute,
EH is slower thanE0, andEπ is the slowest one.

9The last version ofSAPA (Do & Kambhampati 2003) consid-
ers static mutex relations in order to improve the makespan of the
relaxed plan, and to check if the relaxed plan is a valid plan for the
planning problem.

Heuristic Speed Mean Rank Quality Mean Rank

Function NoNR NRL NoNR NRL

E0 25.2 27.1 22.7 25.2

EH 17.7 20.6 20.3 25.1

Eπ 21.5 13.5 16.3 17.4

Eπ−T 23.3 15.2 18.5 18.7

Table 2: Mean ranks of CPU-time and plan quality using
different heuristic evaluations of the search neighborhood
with/out neighborhood restriction (NRL/NoNR).

Table 1 shows the performance of different neighborhood
evaluation functions in terms of both CPU-time and plan
quality when no restriction is imposed on the neighborhood.
The graphs in each table should be interpreted as follows.
An edge connecting an optionT to another optionT ′ in-
dicates thatT performs statistically better thanT ′. For in-
stance, in Table 1EH performs better thanE0 in terms of
CPU-time. If an edge connects a cluster of options to a cer-
tain optionT , as in Table 3, it means that any option in the
cluster is statistically better thanT . Each graph is annotated
with the correspondingD-value.

Observation 2 Without any restriction of the search neigh-
borhood, in terms of CPU-time,EH is statistically better
than bothE0 andEπ−T , andEπ is statistically better only
thanE0.

The fact thatEπ does not perform better thanEH is some-
what disappointing. It shows that without restricting the
search neighborhood, a more accurate but computationally
more expensive function does not pay off.

Observation 3 A complete examination of the search
neighborhood usingEπ can be too expensive.

The previous observation suggests that the use of an accu-
rate evaluation should be combined with a restriction of the
search neighborhood. In fact, if we combine the use ofEπ

with a restriction of the search neighborhood, we obtain a
different picture. In particular, if we use the simple restric-
tion NRL introduced in the previous section, we have that
Walkplan with Eπ performs more efficiently than with any
other evaluation function (see Table 2).

Regarding plan quality, as expected, the most accurate
heuristic evaluation functions (Eπ andEπ−T ) performs bet-
ter than the other evaluation functions. Moreover, the results
of Friedman’s test show thatEπ−T is worse thanEπ (see the
mean ranks of tables 1 and 2), which demonstrates the im-
portance of taking threats into account.

Observation 4 Without any restriction of the search neigh-
borhood, in terms of plan quality,Eπ is statistically better
than bothEH andE0, whileEπ−T is better thanE0.

The results of Friedman’s test distinguish the performance
of different options for an heuristic feature qualitatively, but
they do not show how much they differ. In order to give
an idea of the performance gap, we report the CPU-Time
of LPG-speed and the plan quality ofLPG-quality for the
Depots domain (see Figure 5). The results ofLPG-speed
andLPG-quality correspond to median values over five runs.
Figure 5 shows that the performance of the four evaluation
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Figure 5: Performance ofLPG using four heuristic evalua-
tion functions with the neighborhood restrictionNRL: CPU-
time (logarithmic scale) and plan quality for theDepots
domain.

functions considered is significantly different. In particular,
Eπ is the only function that allowedLPG to solve all prob-
lems of the domain. Moreover,LPG with Eπ required very
low CPU-time and generated the plans with the best quality
for nearly every problem of this domain.

Noise Value for Walkplan
It is well known that the performance of a stochastic local
search procedure (likeWalkplan) can depend on the value
of its noise parameter, that is used for escaping from local
minima (Selman, Kautz, & Cohen 1994). In this section we
empirically analyze the performance ofWalkplan using dif-
ferent noise values, including the special case in which the
noise is set to zero. Since the impact of the noise value may
also depend on which heuristic function is used to evaluate
the neighborhood, the experimental analysis for the noise
parameter was conducted using two heuristic functions: the
simplest function (E0) and the most accurate one (Eπ).

Tables 3 and 4 show the results of Friedman’s test for
E0 and Eπ, respectively, using different static values for
the noise, as well as adynamic value(Ndyn) that is defined
in the following way. The search process starts with a low

Results usingE0 N0 N10 N20 N50 Ndyn

Problems Solved 2% 59.8% 68.6% 64.7% 72.5%

CPU-time Mean Rank 19.1 14.5 11.9 10.0 9.5

Quality Mean Rank 19.1 12.9 11.5 11.2 10.3

CPU-time: Friedman(N0, N10, N20, N50, Ndyn)

Ndyn N20N50 N10 N0

D = 2.3

Plan Quality: Friedman(N0, N10, N20, N50, Ndyn)

N50 N20Ndyn N0N10

D = 1.9

Table 3: Results of Friedman’s test on the performance of
Walkplan usingE0 with different noise settings (0%, 10%,
20%, 50% and dynamic noise): percentage of problems
solved, CPU-time and plan quality ranks.

Results usingEπ N0 N10 N20 N50 Ndyn

Problems Solved 93.1% 97.1% 94.1% 71.6% 98.0%

CPU-time Rank 9.7 10.5 13.7 20.9 10.2

Quality Rank 11.3 11.2 13.1 18.9 10.5

CPU-time: Friedman(N0, N10, N20, N50, Ndyn)

N20N0 Ndyn N10 N50

D = 2.6

Plan Quality: Friedman(N0, N10, N20, N50, Ndyn)

Ndyn N0N10 N50N20

D = 1.9

Table 4: Results of Friedman’s test on the performance of
Walkplan usingEπ with different noise settings (0%, 10%,
20%, 50% and dynamic): percentage of problems solved,
CPU-time and plan quality ranks.

noise value and it considers the variance of the number of
inconsistencies in the lastt visited LA-graphs. The idea is
that a low variance indicates the presence of a local mini-
mum; in this case, the noise value is increased to facilities
escaping from the minimum. The variance is checked every
t search step (in our tests we usedt = 25). If it is less than
one, the noise value is increased by a certain factor (we used
1.5). However, it can increase only up to a maximum value
that depends on which neighborhood evaluation function is
used.10 If the variance is greater than one, the noise value is
set to its initial default value.

10Such maximum values were empirically determined by ob-
serving the performance of each evaluation function using various
noise values for all test problems considered in this paper.
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Figure 6: Performance ofWalkplan usingE0 andEπ with
different noise settings. The X-axis represents the noise set-
ting as percentage; the Y-axis represents the CPU-time mean
rank (upper plot) and plan quality mean rank (bottom plot).

Observation 5 UsingE0, the dynamic noise performs sta-
tistically better than low noise values, and slightly better
than high noise values, in terms of both CPU-time and plan
quality.

Observation 6 Using Eπ, low noise values and the dy-
namic noise perform statistically better than high noise val-
ues, in terms of both CPU-time and plan quality.

The reason why the dynamic noise performs better than with
the other static noise settings can be intuitively explained by
the fact that this method tends to make random choices only
when needed, i.e., only when the search has reached (or is
near to) a local minimum. A high value of the noise set-
ting facilitates escaping from local minima, but obviously it
could affect negatively the performance by introducing un-
supported preconditions that are difficult to achieve in the
context of the current LA-graph, as well as many threats.
This determines an increment of the total CPU-time and
slows down the incremental process for finding good quality
plans.

Observation 7 The performance ofWalkplan usingE0 with
0% of noise is statistically worse than with the other noise

Results usingEπ NoNR NRL NRA NRk NRk% NRall

Problems Solved 92.2% 99% 98% 96.1% 98.0% 99.0%

CPU-time Mean Rank 21.3 12.9 13.2 14.8 17.7 13.0

Quality Mean Rank 17.1 18.6 14.9 13.9 16.0 12.5

CPU-time: Friedman(NoNR, NRL, NRA,NRk,NRk%,NRall)

NoNRNRk NRk%NRallNRL NRA

D = 3.3

Quality: Friedman(NoNR, NRL, NRA,NRk,NRk%,NRall)

NRall NRk NoNRNRk%NRA NRL

D = 2.2

Table 5: Results of Friedman’s test on the performance of
Walkplan usingEπ with the neighborhood restriction tech-
niques (NoNR, NRL, NRA, NRk, NRk% andNRall): percent-
age of problems solved, CPU-time and plan quality ranks.

values analyzed, in terms of both CPU-time and plan qual-
ity.

Observation 8 The performance ofWalkplan usingEπ with
0% of noise is not statistically different from the perfor-
mance with low noise values, in terms of both CPU-time and
plan quality.

The reason whyWalkplan usingEπ performs better with
low noise values seems mainly related to the very good ac-
curacy of the neighborhood evaluation ofEπ. In particular,
we experimentally observed that, whileE0 can often lead
to local minima,Eπ rarely does so.11 Hence, a high value
of the noise when usingEπ can often “destruct” the search
towards the solution graph. On the contrary, when using
E0, performing random choices among the elements of the
neighborhood is more often useful to abandon portions of
the search space containing local minima.

Figure 6 shows the performance ofWalkplan usingE0 and
Eπ for different noise values in terms of the mean ranks for
both the CPU-time and the plan quality. Up to a noise value
of about 30%,Eπ works better thanE0.

Neighborhood Restriction
As we have seen, the effectiveness ofEπ can be improved by
restricting the search neighborhood usingNRL. In this sec-
tion we focus onEπ, and we analyze the relative importance
of the neighborhood restriction options that we introduced in
the previous section.

Table 5 shows the results of Friedman’s test forWalkplan
with no neighborhood restriction (NoNR), NRL, NRA, NRk,
NRk%, andNRall. ForNRk we usedk = 10, and forNRk%

we usedk = 300.
11Hoffmann observed a similar behavior for the relaxed-plan

heuristic used byFF, that he tested on different domains (Hoff-
mann 2001). Moreover, the heuristics ofLPG and FF, as well as
their search spaces, are different.



Results (Eπ with NRA) Σrand Σlev− Σlifo

Problems Solved 97.1% 98.0% 94.1%

Speed Mean Rank 9.2 6.0 8.8

Quality Mean Rank 8.4 6.3 9.3

CPU-time: Friedman(Σrand, Σlev− , Σlifo)

Σlev− Σlifo Σrand

D = 1.4

Plan Quality: Friedman(Σrand, Σlev− , Σlifo)

Σlev− Σrand Σlifo

D = 0.9

Table 6: Results of Friedman’s test on the performance of
Walkplan usingEπ with NRA and one of the inconsistency
selection strategiesΣrand, Σlev− andΣlifo: percentage of
problems solved, CPU-time and plan quality ranks.

Observation 9 In terms of CPU-time,Walkplan with any
of the neighborhood restrictions analyzed performs statis-
tically better than with no restriction.

An accurate evaluation of every neighborhood element using
Eπ is computationally expensive. For this reason,Walkplan
with a restricted neighborhood visits a portion of the search
space that can be significantly larger than the portion visited
with no restriction in the same amount of CPU-time. This
makesEπ more effective in terms of both CPU-time and
plan quality.

Observation 10 NRall is statistically the best neighbor-
hood restriction among those considered, in terms of both
CPU-time and plan quality.

The removal of some neighborhood elements can be
harmful for the local search process, because it can elimi-
nate the only elements that could take the search away from
a local minimum in which it is trapped.NRk andNRk% ap-
pear to be more sensitive to this negative side effect than the
other restrictions considered.

NRL performs badly in terms of plan quality. We believe
that the reason for this behavior is thatNRL does not pre-
evaluate the neighborhood elements. The restriction ofNRL

is fast to compute, but it can easily exclude LA-graphs from
which, within the same CPU-time, could reach a solution of
better quality.

Inconsistency Selection

In this section we present results concerning a comparison
of three inconsistency selection strategies forWalkplan. For
lack of space we consider only the use ofEπ. The results
that we obtained using the other neighborhood evaluation
functions are similar.

Table 6 shows the results of Friedman’s test forΣlev− ,
Σrand, andΣlifo, from which we can derive the following
observation.

Observation 11 Walkplan withEπ andΣlev− performs sta-
tistically better than withEπ and eitherΣrand, or Σlifo,
both in terms of CPU-time and plan quality.

Conclusions
We have proposed some techniques for restricting the search
neighborhood ofWalkplan, and for selecting the next incon-
sistency to handle. These techniques have been experimen-
tally evaluated together with some options for other impor-
tant heuristic features ofLPG (the noise value and the neigh-
borhood evaluation function).

Our analysis is based on Friedman’s statistical test, and it
shows that the features investigated are very useful for im-
proving the search in terms of required CPU-time or quality
of the solutions. In particular, restricting the search neigh-
borhood using any of the techniques that we have proposed
is essential to exploit an accurate neighborhood evaluation
function likeEπ. Moreover, the analysis identifies options
for the noise setting and the inconsistency selection that per-
form better than others (Ndyn andΣlev−, respectively).
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