An Empirical Analysis of Some Heuristic Features for Local Search in LPG

Alfonso Gerevini

Alessandro Saetti

Ivan Serina

Dipartimento di Elettronica per I'Automazione, Univegsdegli Studi di Brescia
Via Branze 38, 1-25123 Brescia, Italy

{gerevini,saetti,serina

Abstract

LPG is a planner that performed very well in the last Interna-
tional planning competition (2002). The system is based on a
stochastic local search procedure, and it incorporates several
heuristic features. In this paper we experimentally analyze
the most important of them with the goal of understanding
and evaluating their impact on the performance of the plan-
ner. In particular, we examine three heuristic functions for
evaluating the search neighborhood and some settings of the
“noise” parameter, that randomizes the next search step for
escaping from local minima. Moreover, we present and ana-
lyze additional heuristic techniques for restricting the search
neighborhood and for selecting the next inconsistency to han-
dle. The experimental results show that the use of such tech-
nigues significantly improves the performance of the planner.

Introduction

The results of the 3rd planning competition (Long & Fox
2003) showed thatpG is an efficient planner for PDDL2.1
domains (Gerevini & Serina 2002; Gerevini, Saetti, & Se-
rina 2003). The system is based on a stochastic local
search procedure, call®hlkplan, that is similar to the well-
known Walksat procedure for solving SAT problems (Sel-
man, Kautz, & Cohen 1994).

As in any local search scheme, the definition of the search
neighborhood (the set of possible successor states) and th
heuristic function for evaluating its elements are crucial fea-
tures for the effectiveness @falkplan. When the number
of the elements in the neighborhood is high, its evaluation
can be computationally expensive, and a technique for prun-
ing some elements can be very effective. Moreover, in an
iterative-repair approach, the strategy to select the next flaw
to handle (inconsistency irPG, unsatisfied clause iwalk-
sat) may also affect the performance of the search.

In order to escape from local minima, Wialkplan as in
Walksat, if every element in the neighborhood is worse than
the current state (according to an heuristic function), then
with some probability (called “noise”) an element of the
neighborhood is randomly chosen, instead of selecting the
best one. In general, the value of the noise can significantly
affect the performance of the search LG the noise value
can be either statically set by the user, or automatically set

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

€

}@ing.unibs.it

to an initial default value that is dynamically changed during
search.
This paper has two main contributions:

e we propose some techniques for effectively restricting the
search neighborhood af/alkplan, and for selecting the
next inconsistency to handle;

¢ we experimentally analyze the main heuristic features for
local search inLpG with the goal of understanding and
evaluating their impact on the performance of the planner.

In addition to the techniques for neighborhood restriction
and inconsistency selection, we analyze three heuristic func-
tions for evaluating the neighborhood elements, that we in-
troduced in previous work (Gerevini & Serina 1999; 2002;
Gerevini, Saetti, & Serina 2003), and the noise setting. We
focus our analysis on simpkrriPsdomains.

The second section gives the necessary background on
LPG andWalkplan; the third section presents the techniques
for the neighborhood restriction and the inconsistency selec-
tion; the fourth section presents and discusses the results of
our experimental analysis; finally the last section gives the
conclusions.

Background on LPG

In this section, we give an overview oPG's plan repre-
sentation, search space, search algorithm and main heuristic
features (Gerevini & Serina 1999; 2002; Gerevini, Saetti, &
Serina 2003).

Plan Representation: Linear Action Graphs

In our framework, plans are represented throwgttion
graphs (Gerevini & Serina 1999) that are particular sub-
graphs of planning graphs (Blum & Furst 1997). Given a
planning graply; for a planning problenil, anaction graph
(A-graph) forIl is a subgraph4 of G such that, ifa is an
action node ofG in A, then also the fact nodes ¢fcorre-
sponding to the preconditions and positive effects afe in

A, together with the edges connecting thena td\n action
graph can contain sonieconsistencied.e., action precon-
ditions that are nosupported or pairs of action nodes in-
volved inmutex relationg A precondition node at a level

!LpG considers only pairs of actions that glebally mutexi.e.
that hold at every level af (Gerevini, Saetti, & Serina 2003).

1 is supported in an action graph of G if in A there is an
action node (or a no-op node) at level 1 representing an
action with a positive effeaj.? An action graph without in-
consistencies represents a valid plan that we cadilation
graph

In the current version afPG, plans forsTrRiIPSproblems
are represented through a subclass of A-graphs datlealr
action graph with no-ops propagation (LA-grapHsp lin-
ear action grapt is an A-graph in which each action level

contains at most one action node and any number of no-op

nodes. Moreover, ifi is an action node ofd at a levell,
then, for any positive effeat of « and any level’ > [of

A, the no-op node of at a levell’ is in A, unless there is
another action node at a levél (I < I” < I’) that is mutex
with the no-op node. In any LA-graph, the only inconsis-

tencies that the search procedure needs to manage explicitlyg

are the unsupported preconditions. Although an LA-graph
cannot contain more than one action per level, a plan with
parallel actions (a partial order plan) can be derived from a

Walkplan(II, maz_steps, max_restarts, p)

Input A planning problenI, the maximum number of search
steps max_steps, the maximum number of search restarts
max_restarts, a noise factop (0 < p < 1).

Output A solution LA-graph forIT or fail

1. for i — 1 to max_restarts do
2. A — an initial LA-graph derived from the planning
graph ofll;
for j < 1to maz_steps do
if A is a solution LA-graptthen return A4;
o < an inconsistency it4;
N(o,.A) < neighborhood o4 for o;
if 34" € N(o,.A) such that the quality afl’ is
no worse than the quality od according toF/

Noarw

then A — A’;
9. else ifrandom < pthen
10. A — an element ofV (o, A) randomly chosen;
11. else A « best element iV (o, A);

solution graph by considering the causal dependencies and12. return fail

mutex relations between the actions in the graph. LA-graphs
offer some advantages with respect to A-graph that are dis-

cussed in (Gerevini, Saetti, & Serina 2003). All experiments

presented in this paper were conducted using this represen-

tation.

Stochastic Local Search: Walkplan

Given a planning problenil, LPG uses local search for
searching a solution LA-graph in the space of the LA-graphs

Figure 1: walkplan with restarts. random is a randomly
chosen value between 0 and 1.

Given a linear action grapi and an inconsistency in
A, theneighborhoodN (o, A) of A for ¢ is the set of LA-
graphs obtained frord by applying a graph modification
that resolvesr. At each step of the local search scheme,

for II. The general scheme consists of two main steps. First the elements of the neighborhood are evaluated according

we construct an initial LA-graph; then we iteratively apply
some graph modifications to transform the initial LA-graph
into a solution graph. In the current version.®fG, the de-
fault initial graph is the empty LA-graph with the “fixed-
point level” of the underlying planning graph as the last
level.

At each search steppG selects an inconsistency (unsup-
ported precondition) in the current LA-graph. As will be
shown, the strategy for selecting the next inconsistency to
handle can have a significant impact on the overall perfor-
mance. In the next sections we will present and analyze
some possible strategies that are implementes®®

In order to resolve the selected inconsistency, we can ei- isfiability problems (Selman, Kautz, & Cohen 1994).

to an heuristic function estimating their quality, and an ele-
ment with the best quality is then chosen as the next possi-
ble LA-graph (search state). Evaluating all elements in the
neighborhood can be computationally very expensive, be-
cause the neighborhood could contain many LA-graphs and
an accurate evaluation of each of them could require sig-
nificant CPU-time. For this reason, as we will show, it is
important that the evaluation of the neighborhood elements
is combined with a technique that reduces its size.

The default search strategy used InG is calledwalk-
plan (see Figure 1)Walkplan is similar toWalksat, a well-
known local search method for solving propositional sat-
In

ther add an action node that supports it, or we can remove an Walkplan the best element in the neighborhood is the LA-

action node that is connected to that fact node by a precondi-

tion edge. When we add an action node to a léviile LA-
graph is extended by one level, all action nodes filoane
shifted forward by one level, and the new action is inserted
at levell (a more detailed description is given in (Gerevini,
Saetti, & Serina 2003)).

2\We assume that the goal nodestbfi.e., the problem goals)
represent the preconditions of a special actigp;, which is the
last action in any valid plan; the fact nodes of the first level of
g (i.e., the initial facts of the problem) represent the effects of a
special actiorus.qr¢, Which is the first action in any valid plan.
astart @Ndaenq belong to any A-graph of.

3In order to handle domains involving time and numerical vari-
ables (levels 2 and 3 afbDL2.1), LPG uses some extensions of
LA-graphs that, however, will not be considered in this paper.

graph which has thiewest decrease of qualityith respect

to the current LA-graph, i.e., it does not consider possible
improvements. Given an LA-grapi and an inconsistency
o, if there is a modification fos that does not decrease the
quality of A, then the resulting LA-graph is chosen as the
next LA-graph; otherwise, with a probability one of the
graphs inN (o, .A) is randomly chosen, and with probabil-
ity 1 — p the next LA-graph is the best elementif(c, .A)
according to araction evaluation functiorty (an element
with the lowest evaluation). As iwalksat, p is callednoise
factor, and its value may have a significant impact on the
search. WherV (o, A) contains more than one graph with
the best evaluation,PG chooses randomly one of them. Fi-
nally, if after a certain number of search stepskstep3

a solution LA-graph is not reached, the current LA-graph is

reinitialized, and the search is repeated up to a user-defined Heuristic function Eg:

maximum number of timesifax restarts. Ep(a, A = MAX H(f, A)+ |Threats(a, A)|
f€Pre(a)
Heuristic Evaluation of the Search Neighborhood Ex(a, A = MAX H(f,A-a)

. : . U A
The neighborhood evaluation function has two parts evalu- Jetnsup(a)

ating: the search cost of an LA-graph in the neighborhood Where Pre(a) is the set of the preconditions ef and
(i.e., the number of search steps required to reach a solution H(f,.A) is theheuristic cost of supporting, which is re-
graph); the quality (or execution cost) of the (partial) plan cursively defined in the following way:

represented by the LA-graph. In this section we focus on 0 if fis supported

the first part. At the end of the section we briefly describe , g , L

how execution cost is evaluated. H(f,A) = { H([',A) if a’ is no-op with preconditiorf
In the design of a neighborhood evaluation function, there MAX H(f',A)+ |Threats(a, A)| + 1

is an important tradeoff to consider between accuracy of fr€Pre(al)

the evaluation and the computational cost of the evaluation. Where f L
An accurate evaluation of the elements in the neighborhood al = ARGMIN {Ey(d', A)'}

could lead to a valid plan within few search steps. How- . fa’eds) . .
ever, when the neighborhood contains many elements, the andAy is the set of action nodes of the underlying planning

evaluation could slow down the search excessively. On the ?ratph %t thel I?vels pl)lreciﬁdlhrfgthatt_havef X a? one their Ef't g
other hand, a less accurate evaluation of the neighborhood fzgt n(')s Zz.tepmq;rgg g ' coens%ltjarrli Icefllofheoagtr']otrjgsgtpg(l)er eél
is faster to compute, but since it is less informative it could fi ; ' y considering actl v
lead to a valid plan only after many search steps. We de- precedingf whose addition would support it. Among these

. . : : : tions, we choose the one with the best evaluatidh gc-
veloped three evaluation functions trying to identify an ap- actions,) . X)
propriate balance between informativeness and efficiency of g:ordmg to the basic action evaluatlpn functlﬂ_@. H(f, A) .
their computation:Ey, Ex and E,.. In the rest of this sec- > recursively computed by Sl!mm'”gf”?e h'gheSt, heuristic
tion we describe each of them, while in the section about the cozt tor:‘ suppol;tmg fa precontdgqﬁ ofa d'ltr'] A]SHgAj’n“ﬁl))t
experimental results we analyze their impact on the perfor- and the number ot supported precondition acf a
mance oMalkplan. For eacht € {Eo, Ex, By}, E(a, A)i become unsupported by adding to A (|Threatga’, A)|).

is the evaluation of the LA-graph derived from the current The last term "+1” takes account of the insertionadf to

H H M " tf-
graph.4 by adding the action to it (also called the “cost of suppor -
addinga to A"). Similarly, £(a, A)" is the cost of removing FE, (Gerevini, Saetti, & Serina 2003) was de_S|gned toim-
o from A. prove the accuracy ofy. It was used by PG in the 3rd

The simplest function that we consider was proposed in planning comgetitio_n. In thehevaluatiﬁn of th? adﬁ_iti\c/;;hgf a
o . ! : new actiona, F, estimates the search cost of achie
(Gerevini & Serina 1999) and is defined as follows. preconditions of: (Pre(a)) in the context of the current LA-

Heuristic function Ey: graph, %/vhiIeEH cczjnsiders the maximum 0\(/jerfthe search
i costs of its preconditions. Moreover, instead of just count-
Eo(a, A)* = |P(a, A)| + |Threats(a, A)| ing the number of action preconditions hthat would be-
Ey(a, A)" = |Unsup(a, A)| come unsupported when addiadThreatga, A)), E,. esti-

. . mates the search cost of re-achieving such conditions after
where Threatga, A) is the set of supported precondition {he addition ofa. More precisely, inZ, the search costs
facts in A that become unsupported by addingto .A; are estimated by computing a relaxed piarfor achieving
P(a, A) is the set of the precondition facts @that are not Pre(a) and Threatga, .A), and counting the number of ac-
supported in4; Unsugia, A) is the set of supported precon- ions inr,.. In addition, Z, counts the number of the action
dition facts in.A that become unsupported by removing preconditions ind that are subverted by an actiehin T,
from A. , _ o (Threatga’, A)). E, is formally defined as follows.

While computingEy in the context of LA-graphs is quite o i
fast, a more accurate evaluation could be more effective. In Heuristic function E-:
fact, it can be the case that, although the insertion of a new Ex(a, A)" = |7 (a, A)| + X0 cr(a,a):
actiona; leads to fewer new unsupported preconditions than ’
those introduced by an alternative actignthe unsupported Er(a, A)" = [m(a, A)"[+ >0 en(a,)
preconditions ofa; are more difficult to satisfy (support) \;here

than those of:; in the context of the current partial plan. o . L .
J P b e 7w(a, A)" is an estimate of a minimal set of actions form-

For this reason, subsequently we proposed two alternative, = - i
more informative functionsEy (Gerevini & Serina 2002) ing & relaxed plan achievirfgre(a) andThreatga, A);

Threats(a’, A)|
Threats(a’, A)]

andE,; (Gerevini, Saetti, & Serina 2003). e 7(a, A)" is an estimate of a minimal set of actions form-
FEy is a refinement ofZ, in which, instead of just count- ing a relaxed plan achievirignsuga, A).
ing the number of the unsupported preconditions: @nd The plans ofE,; are relaxed because their validity do not

those inUnsua, A), we estimate the search cost of achiev- consider the negative effects of the actions. However, neg-
ing them. More preciselyyy is defined as follows. ative effects are considered in the heuristic selection of the

RelaxedPlan(G, I(1), A)

Input A set of goal facts @), the set of facts that are true after
executing the actions of the current LA-graph up to l1é\é[1)),
a possibly empty set of actiondy;

Output An estimated minimal set of actions required to achieve
G.

1. G —G—I(l); Acts — A;
2. F UaEActs Add(a’)'
3.whileG—-F #1

4. g+ afactinG — F;

5. bestact — Bestaction(g);

6. Rplan «— RelaxedPlan(Pre(bestact), I(l), Acts);

7. Acts — Rplan U {bestact};

8. F — Upcaur Add(a);

9. return Acts.

Figure 2: Algorithm for computing a relaxed plan achieving
a set of action preconditions from the st#té).

actions forming a relaxed plan (more details below). The
initial statel () of the (relaxed) problem of achieving either
Pre(a) or Unsufa, A) is the state obtained by applying the
actions inA up to levell—1 (ordered according to their cor-
responding levels). The initial state from which we achieve
Threatga, A) is the state obtained by applyingo I(1).

n(a, A)* and 7(a, A)" are computed by an algorithm
calledRelaxedPlan (see Figure 2). For(a,.A)?, Relaxed-
Plan is run twice, first to achievere(a) and then to achieve
Threatda, A). The set of actions identified by the first run
is given as input to the second run, so that the relaxed sub-
plan for Threatga, .4) can reuse the actions in the subplan
for Pre(a).

RelaxedPlan constructs a plan through a backward pro-
cess from the input goal sét to the input initial state. The
action chosen to achieve a (sub)ggaBestaction(g)is de-
termined by considering for each faftan estimate of the
minimum number of actions required to achigirom (1)
(Num_acts(f,1)). A detailed description of this reachabil-
ity information and of its computation is given in (Gerevini,
Saetti, & Serina 2003). EssentialBgestaction(g)s an ac-
tion o’ such that

e gisan effect of:’ and all preconditions af’ are reachable
from I(1);

reachability of the preconditions ef requires a mini-
mum number of actions, estimated as the maximum of
Num_acts(p, 1) for each preconditiop of o’;
the negative effects af’ subvert a minimum number of
supported precondition nodes. (T hreats(a’, A)).
More formally,Bestaction(g)s defined as

whereF' is the set of positive effects of the actions currently
in the relaxed planActg, and A, is the set of actions with
the effecty and with all preconditions reachable from the ini-
tial state. For a more detailed descriptiorBefstactionRe-

ARGMIN

ARGMIN MAX Num_acts(p,l) + |Threats(a’, A)|
a’€Ay

pEPre(a’)—F

laxedPlan and E;, the interested reader may see (Gerevini,
Saetti, & Serina 2003).

Finally, we briefly describe the heuristic evaluation of the
execution cost associated with the plan represented by an
LA-graph in the search neighborhood. The action evaluation
function is a normalized linear combination of the search
cost and the execution cost, that orriPsdomains is de-
fined as the number of actions in the plan.Hfthe execu-
tion cost is modeled by a “+1” term, while if§ we do not
have this term; inF'y it is modeled by a term equal to the
maximum depth of the tree of action nodes identifieddy
finally, in E it is modeled by a term equal to the number
of the actions in the relaxed plan (Gerevini, Saetti, & Serina
2003).

Additional Heuristic Features

In this section we propose some additional heuristic features
that have a significant impact on the performancerds. In

particular, we present techniques for restricting the search
neighborhood and selecting the nextinconsistency to handle.

Neighborhood Restriction

In general, the effectiveness of a heuristic function evalu-
ating the elements in the search neighborhood can be sig-
nificantly affected by the size of the neighborhood. If this
is too large, an accurate evaluation might require too much
time, and a less accurate (but computationally more effi-
cient) function could perform better. Sine#G's basic
search neighborhood can be very large, we considered some
alternative restricted neighborhoods, and we compared the
performance of,, Fy and E,. using them. The results of
this experiment are presented in the next section. In this sec-
tion, first we overview the basic neighborhoodLefs, and
then we present some techniques to restrict it.

The basic neighborhood¥ (p,.4) of an LA-graph.A for
an unsupported precondition nogds the set of the LA-
graphs that can be derived frarhby adding an action node
supportingp, or by removing the action node with precon-
dition p. Suppose thap is a precondition node at a level
[of A. In order to supporp we can add an actiom with
positive effectp to anylevel I’ < [, provided thajp can be
propagated td by adding a no-op fop to the levels between
" andl. (The propagation is not possible if at any of such
intermediate levels there is an action node that is mutex with
the no-op ofp.) In the basic definition ofV(p, A) for LA-
graphs, we have an LA-graph for each of these graph modifi-
cations. MoreoverN (p, .A) contains the LA-graph obtained
by removing the action node of whighis a preconditior.
Figure 3 gives a simple example df(p, A) assuming that
p is a precondition of: at level 5, and that’ is the only
possible action supportingat a level lower than 5.

“Since at any level there can be at most one action node (plus
any number of no-ops), when we remove an action node, the cor-
responding action level becomes “empty” (i.e., it contains only no-
ops). If the LA-graph contains adjacent empty levels, and in order
to supportp a certain action node can be added to any of these
levels, thenV (p, .A) contains only one of the resulting graphs.

A
[o]

AI / A/ 12
Level 6 Level 6
Level 5

Level4

Level 3

Figure 3: An example o (p, A). Every white box repre-
sents a no-op, and every grey box represents a plan action.
A’ is derived fromA by removinga; A” by insertinga’ (the

only action with effectp) into level 5; A" by insertinga’

into level 4. A4’ introduces an inconsistency, since the neg-
ative effect—r of a’ blocks the propagation of from level

3. a’ cannot be inserted into level 3, because actiaould
block the propagation af.

While any restriction of the basic neighborhood makes its
evaluation faster, clearly not every restriction can speed up
the search of a solution graph. In particular, we would like to
remove from the neighborhood only the bad elements (those
requiring more search steps to reach a solution graph).

In order to select the elements forming a restricted search
neighborhood| PG pre-evaluates the candidate elements of
the basic neighborhood using the same method uség. in
to select the actions forming a relaxed plan. Specifically, if
A’ is the LA-graph derived by adding an actiehto a level
[of A, the quality of A’ is defined as the maximum over

Nume_acts(q,1) + |Threats(a’, A)|

for every unsupported preconditioanof a’. Clearly, this
evaluation is much faster to compute th&p, but it is also
less accurate.

We considered four strategies for determining the number
of the elements forming the restricted neighborholNdR;,
NR,%, NR4, andNR;,. They differ from the basic neighbor-
hood because they contain only a subset of the LA-graphs

obtained by adding an action node to the current LA-graph.
NR;, NR,, andNRy4 exploit reachability information that is
available when the heuristic evaluation functior®is; NR;,

is a simpler technique that can be used in combination with
any of the heuristic functions that we have described.

In NR;, N(p,.A) contains only the: best pre-evaluated
elements. Note that if there are many candidate elements
of good quality according to the pre-evaluation, it could be
the case thallR, removes elements that actually have better
quality according to the heuristic evaluation function.

In NR, ¢, the search neighborhood contains only those el-
ements, whose pre-evaluation is worse than the best element
by a factor less than or equal % (k is an input param-
eter for bothNR, andNR,¢). NR,¢, was designed to re-
move from the neighborhood only those elements that the
pre-evaluation considers significantly bad, and so to reduce
the probability of erroneously removing elements that the
heuristic evaluation function would consider of good qual-
ity.

In NRy4, for each actiom with effectp, N(p, .A) contains
only one LA-graph (while the basic neighborhood contains
an LA-graph for any level where can be added anplcan
be propagated up to the level of the inconsistency). The
best level where adding is decided according to the pre-
evaluation above. If there is more than one element with the
best evaluationNR4 chooses the one wheteis put at the
highest levelNRy is the restriction used byrG in the third
IPC.

NRy, is a simplified version oNR, in which the best level
where we add: is just thelastlevel wherea can be added,
i.e. the same level of the unsupported precondition

Finally, we considered a fifth strategy in which we com-
bine all three restriction techniques that use reachability in-
formation. We call such a stratediR,;;.

Inconsistency Selection

In partial-order causal-linkrocL) planning, the choice of
the next inconsistency to repair at each search step can
significantly affect the performance of the search process
(e.g., (Gerevini, Schubert 1996; Pollack, Joslin, & Paolucci
1997)). Although the search methods 16fG and PocCL-
planners are radically different (and hence we cannot di-
rectly import results frompocL planning into our frame-
work), preliminary experimental tests showed that this is the
case also forpaG: if we change the basic random selection
strategy ofwalkplan, the performance of the planner can be
significantly differenf Thus, we designed some alterna-
tive strategies with the aim of improving the performance
of the random strategy (indicated wiky...,4). In this sec-
tion we introduce two of ther);; y, andX;.,—, and in the
next section we evaluate their performance with respect to
the default random strategy.

Yiifo is a simple standard strategy that handles the incon-
sistencies according to a last-in first-out disciplirg..,

5The random selection of the next inconsistency to handle in
Walkplan is the analogue of the random selection of the next un-
satisfied clause to handle Walksat (Selman, Kautz, & Cohen
1994).

prefers the inconsistency at thawest levelt of the cur-
rent LA-graph; if more than one of such inconsistencies are
present at level, then;.,,_ chooses randomly one of them.
The rationale o¥;.,_ is related to the definition of the eval-
uation functionE, for which it was initially designed. As
we have seenf,(a, A)' is defined using a relaxed plan
m, for achieving the preconditions af from the state/ (1),
whereI(l) is the state obtained by executing the actions at
the levels preceding the levibf the selected inconsistency
starting from the initial state. Moreover, the actions form-
ing . are selected using reachability information for their
preconditions that are dynamically computed fré(h). By
removing the inconsistency at the earliest ldvef the cur-
rent LA-graph, we guarantee thA{) is the states reached

by the actions at the levels precedihg On the contrary,

if we randomly select an inconsistency at any leiyednd
there are other inconsistencies beférehen I(I) can be
only anestimateof s. Such an estimate could change in

Experimental results Ranked results

Problems | 7' T 7" Problems | 7/ | 7”7 | T
pfilel 95 121 87 pfilel 2 3 1
pfile2 43 191 130 pfile2 1 3 2
pfile3 65 69 28 pfile3 2 3 1
pfile4 1351 6912 282 pfiled 2 3 1
pfile5 1283 1162 1032 pfile5 3 2 1
T 2 2.8 1.2

Figure 4: An example of data for Friedman'’s test analyzing
three hypothetical options of an heuristic featu®:, 7"
and7"”.

is more accurate than Wilcoxon'’s test (Ury 1976), that Long
and Fox used to compare the performanceaifs of plan-
ners (Long & Fox 2003).

Experimental results are organized in tables as shown in
Figure 4. Every row represents a test problem, and every col-

the next LA-graphs of the search (because some actions areumn represents an option of the feature under consideration;
added/removed to deal with inconsistencies at levels before in each table entry there is either CPU-time or plan quality

I). Hence, the evaluation of, (a,A)* at a certain search

for a single run oL.PG. The procedure of Friedman'’s test is

step could change radically at a next search step. This could the following:

lead £, combined with>,.,,,s to make incorrect evaluations
more often than whe#®'; is combined with2;.,,_. For sim-
ilar reasons, we conjecture that alsp and Fy can benefit
from the use o, . In this paper we will restrict the ex-
perimental analysis of;.,,_ by considering onhye .. ¥, _

is the inconsistency selection strategy used.bg in the
third IPC.

Experimental Results

In this section we present some experimental results il-
lustrating the performance of the heuristic features for
LPG described in the previous sections. We will use
the test problems of the 3rd IPC (Long & Fox 2003).
For lack of space we will show the experimental results
for only the 102 problems of the T&PS domain vari-
ants Depots , DriverLog , Rovers , Satellite and
Zenotravel).5 Similar experimental results were ob-
tained for the temporal domain variants of the 3rd IPC.

LPG is an incremental planner, in the sense that it pro-

duces a sequence of valid plans, each of which improves

the quality of the previous ones. We testads in terms of
both the CPU-time required to find a solutiarPG-speed)

and the quality of the best plan computed by the incremental

process using five CPU-minuteseG-quality).’
We compare different options of an heuristic feature using
Friedman'’s statistical test (Friedman 1937). Note that when

there are more than two options to compare, Friedman’s test

5These domains are described agww.dur.ac.uk/
d.p.long/competition.html . We have not considered the
Freecell ~domain because currentlyG solves the problems
of this domain only by using the alternative best-search mode
(Gerevini, Saetti, & Serina 2003).

"Since Walkplan is a stochastic procedure, we ranc five

times for problem tested. The tests were conducted on a PllIl Intel

866 MHz with 512 Mbytes of RAM. In every run theaxsteps
parameter ofWalkplan was set to 500, and it was automatically
increased by 10% at each search restart.

1. change every value in each row to its rank, assignitg
the lowest value andl - j to the highest value, whereis
the number of the columns ands the number of PG's
runs for each problem tested (in Figurg 4= 1, while in
our experimentg = 5);

2. calculate the mean rani for every columry;
3. estimate the critical valug?: ,
5 12 _ N-(k+1)
= = . N - ——— |
Xe= N k- (k+ 1) Z " 2

where N is the number of the rows, aridis the number
of the columns (for simplicity here we assurhe- 1);

if x% is 95% statistically meaningful according to the
X3 _, distribution, the different options of the feature are
statistically different and the comparison is meaningful.
The differenceD between two generic heuristic features
7' and7"” corresponding to columnsandg, respectively,

is meaningful whefr, — 7,| > D, with

k-(k+1)

6-N
where Z is the normal distribution, and = 0.05 is the
overall error probability (Siegel, Castellan 1988).

Figure 4 shows an example with only five problems (one
run of LPG for each problem), and three options of an hy-
pothetical heuristic feature that we want to compare. The
table on the right shows the ranks corresponding to the ex-
perimental results of the left table and the mean-vatues
these ranks for any column. Singé= 5, k = 3, we have:

XF = 1/5-[(10 — 10)* + (14 — 10)* + (6 — 10)*] = 6.4.

Sincex% = 6.4, we can derive that the comparison is mean-
ingful, and hence at least one of the options am@ng7 "

4.

D=

=D

Y% value is statistically meaningful with respect to the_,
distribution, if the area subtended by tyé_, distribution from
X% to co is lower than 5% of the overall area.

Results usindNoNR Eo Ey E. Er_T
Problems Solved 72.5% | 86.3% | 99.0% | 87.3%
Speed Mean Rank 12.5 8.4 10.2 11.0
Quality Mean Rank | 12.1 11.0 8.9 10.0

CPU-time: Friedman(Eo, Ex, Ex, Ex_1)

N
é@b@D

Plan Quality: Friedman(Eo, Ex, Ex, Ex_T)

& 5 BB

AN 4

=1.9

D =13

Table 1: Results of Friedman’'s test on the performance
of Walkplan using four evaluation functionsty, Ey, Er,

and E._r) without neighborhood restriction: percentage of
problems solved, CPU-time and plan quality ranks.

and7"”, corresponding to columns ¢ andr, respectively,
is statistically different from the others. We have

D =239

Since|rF,—T,| = 1.6 > 1.5, 7" is statistically different from
T'". SinceF, is lower than7,, we can derive tha¥ " is
statistically better thaff”’. Since|r, —7,| = 0.8 < 1.5and
|7, — 7r] = 0.8 < 1.5, there is no basis for distinguishing
T’ and7”, and similarly for7’ and7"”.

The first observation that we derived from our experimen-
tal results is that the fourth step of Friedman'’s test procedure
is satisfied for every heuristic feature analyzed in this paper.

Observation 1 The noise value, the heuristic evaluation of
the search neighborhood, the neighborhood restriction and
the inconsistency selection are statistically meaningful fea-
tures for the performance ofG.

Heuristic Evaluation of the Search Neighborhood

In this section we comment on the performanceraé with
different heuristic evaluations of the search neighborhood:
Ey, Ey, E., and E,; without considering the terms count-
ing the threats K._r). E._r is tested in order to show
the importance considering the threats in the evaluation of
E,. Note that this is an important difference in the con-
struction of the relaxed plans computed 3G and those
computed byF (Hoffmann & Nebel 2001) and the first ver-
sion of SAPA (Do & Kambhampati 20019.

FEy andE; are more accurate thdn,. On the other hand,
as expected, we observed that is the fastest to compute,
FEy is slower thanFy, andE; is the slowest one.

The last version o6APA (Do & Kambhampati 2003) consid-
ers static mutex relations in order to improve the makespan of the
relaxed plan, and to check if the relaxed plan is a valid plan for the
planning problem.

Heuristic | Speed Mean Rank| Quality Mean Rank
Function | NoNR NRy, NoNR NRy,
Ey 25.2 27.1 22.7 25.2
En 17.7 20.6 20.3 25.1
Er 215 135 16.3 17.4
Er_r 233 15.2 18.5 18.7

Table 2: Mean ranks of CPU-time and plan quality using
different heuristic evaluations of the search neighborhood
with/out neighborhood restrictioNR.,/NoNR).

Table 1 shows the performance of different neighborhood
evaluation functions in terms of both CPU-time and plan
quality when no restriction is imposed on the neighborhood.
The graphs in each table should be interpreted as follows.
An edge connecting an optidh to another optiori7”’ in-
dicates thatZ” performs statistically better thaf’. For in-
stance, in Table £y performs better that, in terms of
CPU-time. If an edge connects a cluster of options to a cer-
tain option7, as in Table 3, it means that any option in the
cluster is statistically better thah. Each graph is annotated
with the corresponding-value.

Observation 2 Without any restriction of the search neigh-
borhood, in terms of CPU-timelyy; is statistically better
than bothE, and E._7, and E; is statistically better only
than Ej.

The fact thatF,, does not perform better thatiy is some-
what disappointing. It shows that without restricting the
search neighborhood, a more accurate but computationally
more expensive function does not pay off.

Observation 3 A complete examination of the search
neighborhood usindy,. can be too expensive.

The previous observation suggests that the use of an accu-
rate evaluation should be combined with a restriction of the
search neighborhood. In fact, if we combine the us&pf
with a restriction of the search neighborhood, we obtain a
different picture. In particular, if we use the simple restric-
tion NRy, introduced in the previous section, we have that
Walkplan with E,. performs more efficiently than with any
other evaluation function (see Table 2).

Regarding plan quality, as expected, the most accurate
heuristic evaluation functiong, andE,._r) performs bet-
ter than the other evaluation functions. Moreover, the results
of Friedman’s test show tht, _r is worse thar,. (see the
mean ranks of tables 1 and 2), which demonstrates the im-
portance of taking threats into account.

Observation 4 Without any restriction of the search neigh-
borhood, in terms of plan quality, is statistically better
than bothEy and Ey, while E._r is better thank.

The results of Friedman'’s test distinguish the performance
of different options for an heuristic feature qualitatively, but
they do not show how much they differ. In order to give
an idea of the performance gap, we report the CPU-Time
of LPG-speed and the plan quality aPG-quality for the
Depots domain (see Figure 5). The resultsigfc-speed
andLPG-quality correspond to median values over five runs.
Figure 5 shows that the performance of the four evaluation

Milliseconds DepOtS'St”ps Results USingE() Ny Nio Noo Nso Ndyn
1e+06 T T T Problems Solved 2% | 59.8% | 68.6% | 64.7% | 72.5%
CPU-time Mean Rank| 19.1 14.5 11.9 10.0 9.5
I Quality Mean Rank 19.1 12.9 11.5 11.2 10.3
100000F -
L CPU-time: Friedman¥o, N1o, N20, N50; Nayn)
] D Daa D
[dyn 0
N o>
D =23

1000
L Plan Quality: Friedmari{o, N1o, N2o, N50, Nayn)

© 0 O b

E, (Speed) (7 solved) - x - -

Ey (Speed) (14 solved)—— 1
E,. (Speed) (22 solved)--3--

EﬁI r (Speed) (lglsolved)fA” 1

10 | |
0 5 10 15 20 25

Depots-Strips

Number of actions
350

--%-- Ep (QlIJaIity) @ solved)I
—+— Epy (Quality) (14 solved)
300 |- 3 Ex (Quality) (22 solved)
---A-- Er_p (Quality) (19 solved)

*

Table 3: Results of Friedman'’s test on the performance of
Walkplan using E with different noise settings (0%, 10%,
20%, 50% and dynamic noise): percentage of problems

solved, CPU-time and plan quality ranks.

Results usingz .. Ng Nio Nag Nso Nayn

Problems Solved | 93.1% | 97.1% | 94.1% | 71.6% | 98.0%
7 CPU-time Rank 9.7 10.5 13.7 20.9 10.2

Quality Rank 11.3 11.2 13.1 18.9 10.5

CPU-time: Friedman(No, N1o, N2o, N50, Nayn)

25 L - - - - — — — =
D =26
Figure 5: Performance afPG using four heuristic evalua- Plan Q“a"ty; Friedman(No, N1o, N2o, Nso, Nayn)
tion functions with the neighborhood restrictibiR;: CPU- v D
time (logarithmic scale) and plan quality for tiepots ! \
domain. L s
D =1.9

functions considered is significantly different. In particular,

E is the only function that allowedrG to solve all prob- Table 4: Results of Friedman'’s test on the performance of
lems of the domain. MoreoverpG with E,. required very Walkplan using E, with different noise settings (0%, 10%,
low CPU-time and generated the plans with the best quality 209%, 50% and dynamic): percentage of problems solved,
for nearly every problem of this domain. CPU-time and plan quality ranks.

Noise Value for Walkplan

It is well known that the performance of a stochastic local noise value and it considers the variance of the number of
search procedure (lik¢valkplan) can depend on the value inconsistencies in the lastvisited LA-graphs. The idea is

of its noise parameter, that is used for escaping from local that a low variance indicates the presence of a local mini-
minima (Selman, Kautz, & Cohen 1994). In this section we mum; in this case, the noise value is increased to facilities
empirically analyze the performance Whlkplan using dif- escaping from the minimum. The variance is checked every
ferent noise values, including the special case in which the ¢ search step (in our tests we useg 25). If it is less than
noise is set to zero. Since the impact of the noise value may one, the noise value is increased by a certain factor (we used
also depend on which heuristic function is used to evaluate 1.5). However, it can increase only up to a maximum value

the neighborhood, the experimental analysis for the noise that depends on which neighborhood evaluation function is
parameter was conducted using two heuristic functions: the ysed!© If the variance is greater than one, the noise value is

simplest function £y) and the most accurate ong,). set to its initial default value.

Tables 3 and 4 show the results of Friedman’s test for
Ey and E, respectively, using different static values for ¥Such maximum values were empirically determined by ob-
the noise, as well asdynamic valugN,,,) that is defined serving the performance of each evaluation function using various
in the following way. The search process starts with a low noise values for all test problems considered in this paper.

CPU-Time Mean Rank
60

3 T T
', --% -- Speed Mean Rank using,
‘---A-- Speed Mean Rank usirig,

S5 e-- Speed Mean Rank usirng, (Dynamic Noise)

Results using? . NoNR | NRy, NRy4 NRy, NRy o NR,;;
Problems Solved 92.2% | 99% | 98% | 96.1% | 98.0% | 99.0%
CPU-time Mean Rank| 21.3 12,9 | 13.2 14.8 17.7 13.0
Quality Mean Rank 17.1 18.6 | 14.9 13.9 16.0 12.5

-“©-- Speed Mean Rank using, (Dynamic Noise)

50 .
*,

45 A -

X

a0 SRS

SRR <
3B -
30 E
25 - -

(RN}
T i ! ! ! !

0% 20% 40% 60% 80%

20

100%

Noise
Plan Quality Mean Rank

60y T T
[--3%-- Quality Mean Rank using
' ---A-- Quality Mean Rank using’,,
5. @-- Quality Mean Rank using, (Dynamic Noise)
~-©-- Quality Mean Rank using (Dynamic Noise)
50 .

VI S IR

40 ’,,A -

T et
,’A“

30 _
,‘A//

7 SE -

\@ fLA,,,O
20 I I I I
0% 20% 40% 60% 80% 100%

Noise

Figure 6: Performance af/alkplan using E, and F,. with

CPU-time: FriedmamM{oNR NRy,, NR4,NRg,NRy o ,NR, ;)

\ >
(wee) (wea) (wra) | (e (R —(none)
D

- - - - - - - - — 4

=3.3

Quality: Friedman{oNR NRz,, NRa ,NRy; ,NRy o7 ,NR,;;)

) () () () fuow) [
AY.4 el

D =22

Table 5: Results of Friedman’s test on the performance of
Walkplan using E; with the neighborhood restriction tech-
nigues NoNR NR;, NR4, NR;, NR.% andNR,;;): percent-
age of problems solved, CPU-time and plan quality ranks.

values analyzed, in terms of both CPU-time and plan qual-
ity.

Observation 8 The performance af/alkplan usingE,; with

0% of noise is not statistically different from the perfor-
mance with low noise values, in terms of both CPU-time and
plan quality.

The reason whyvalkplan using E; performs better with
low noise values seems mainly related to the very good ac-

different noise settings. The X-axis represents the noise set- curacy of the neighborhood evaluation@f. In particular,
ting as percentage; the Y-axis represents the CPU-time meanwe experimentally observed that, whilg, can often lead

rank (upper plot) and plan quality mean rank (bottom plot).

Observation 5 Using Ey, the dynamic noise performs sta-
tistically better than low noise values, and slightly better
than high noise values, in terms of both CPU-time and plan
quality.

Observation 6 Using E,, low noise values and the dy-
namic noise perform statistically better than high noise val-
ues, in terms of both CPU-time and plan quality.

to local minima, £, rarely does sé! Hence, a high value
of the noise when using’; can often “destruct” the search
towards the solution graph. On the contrary, when using
Ey, performing random choices among the elements of the
neighborhood is more often useful to abandon portions of
the search space containing local minima.

Figure 6 shows the performancewtélkplan using £y and
E . for different noise values in terms of the mean ranks for
both the CPU-time and the plan quality. Up to a noise value
of about 30%,E . works better thar,.

The reason why the dynamic noise performs better than with Neighborhood Restriction

the other static noise settings can be intuitively explained by As we have seen, the effectivenesgifcan be improved by
the fact that this method tends to make random choices only restricting the search neighborhood uskB;.. In this sec-

when needed, i.e., only when the search has reached (or istion we focus orE,, and we analyze the relative importance

near to) a local minimum. A high value of the noise set-
ting facilitates escaping from local minima, but obviously it
could affect negatively the performance by introducing un-
supported preconditions that are difficult to achieve in the
context of the current LA-graph, as well as many threats.
This determines an increment of the total CPU-time and
slows down the incremental process for finding good quality
plans.

Observation 7 The performance afalkplan using Ey with
0% of noise is statistically worse than with the other noise

of the neighborhood restriction options that we introduced in
the previous section.

Table 5 shows the results of Friedman’s test\i@ikplan
with no neighborhood restrictiodNENR), NRy,, NR4, NR,
NR,o, andNR,;. ForNR; we usedk = 10, and forNRyq
we usedk = 300.

1Hoffmann observed a similar behavior for the relaxed-plan
heuristic used byrF, that he tested on different domains (Hoff-
mann 2001). Moreover, the heuristics I0fG and FF, as well as
their search spaces, are different.

Results £ with NR4) Yrand 2 n— Slifo
Problems Solved 97.1% 98.0% 94.1%
Speed Mean Rank 9.2 6.0 8.8
Quality Mean Rank 8.4 6.3 9.3

CPU-time: FriedmarX,and, 2;.,— Ziifo)

- — = = =

D=14

- — = = =

|
lev) | rand Ylifo

Table 6: Results of Friedman'’s test on the performance of
Walkplan using E; with NR4 and one of the inconsistency
selection strategie€S, qnq, Zje,— and X ¢,: percentage of
problems solved, CPU-time and plan quality ranks.

Observation 9 In terms of CPU-timeWwalkplan with any
of the neighborhood restrictions analyzed performs statis-
tically better than with no restriction.

An accurate evaluation of every neighborhood element using
E. is computationally expensive. For this reasafajkplan

with a restricted neighborhood visits a portion of the search
space that can be significantly larger than the portion visited
with no restriction in the same amount of CPU-time. This
makesFE, more effective in terms of both CPU-time and
plan quality.

Observation 10 NR,;; is statistically the best neighbor-
hood restriction among those considered, in terms of both
CPU-time and plan quality.

The removal of some neighborhood elements can be
harmful for the local search process, because it can elimi-
nate the only elements that could take the search away from
a local minimum in which it is trapped\R, andNR,¢, ap-
pear to be more sensitive to this negative side effect than the
other restrictions considered.

NR;, performs badly in terms of plan quality. We believe
that the reason for this behavior is thdlR;, does not pre-
evaluate the neighborhood elements. The restrictidRyf
is fast to compute, but it can easily exclude LA-graphs from
which, within the same CPU-time, could reach a solution of
better quality.

Inconsistency Selection

In this section we present results concerning a comparison
of three inconsistency selection strategiesVatkplan. For
lack of space we consider only the useff. The results
that we obtained using the other neighborhood evaluation
functions are similar.

Table 6 shows the results of Friedman’s test ¥y, -,
Y rand, andXy; ¢,, from which we can derive the following
observation.

Observation 11 Walkplan with £, andX;.,,- performs sta-
tistically better than withE, and eitherX,,,q, or iy,
both in terms of CPU-time and plan quality.

Conclusions

We have proposed some techniques for restricting the search
neighborhood o¥alkplan, and for selecting the next incon-
sistency to handle. These techniques have been experimen-
tally evaluated together with some options for other impor-
tant heuristic features afPG (the noise value and the neigh-
borhood evaluation function).

Our analysis is based on Friedman’s statistical test, and it
shows that the features investigated are very useful for im-
proving the search in terms of required CPU-time or quality
of the solutions. In particular, restricting the search neigh-
borhood using any of the techniques that we have proposed
is essential to exploit an accurate neighborhood evaluation
function like E.. Moreover, the analysis identifies options
for the noise setting and the inconsistency selection that per-
form better than others\(,,, andX.,_, respectively).

References

Blum, A., and Furst, M. Fast planning through planning graph
analysis.Artificial Intelligence 90:281-300. 1997.

Do, M., and Kambhampati, S. Sapa: A domain-independent
heuristic metric temporal planner. Rroc. of ECP-012001.

Do, M., and Kambhampati, S. Sapa: A scalable multi-objective
heuristic metric temporal planner. JAIR 20:155-194. 2003.

Friedman, M. The use of ranks to avoid the assumptions of nor-
mality implicit in the analysis of variance. JASA 32:675-701.
1937.

Gerevini, A., Saetti, A., and Serina, |. Planning through stochastic
local search and temporal action graphs in LPG. JAIR 20:239-
290. 2003.

Gerevini, A., and Schubert, L. Accelerating partial-order plan-
ners: some techniques for effective search control and pruning.
JAIR 5:95-137. 1996.

Gerevini, A., and Serina, |. Fast planning through greedy action
graphs. InProc. of AAAI-99 1999.

Gerevini, A., and Serina, |I. LPG: A planner based on local search
for planning graphs with action costs. Rmoc. of AIPS-022002.
Hoffmann, J., and Nebel, B. The FF planning system: Fast plan
generation through heuristic search. JAIR:14:253-302. 2001.
Hoffmann, J. Local search topology in planning benchmarks: an
empirical analysis. IfProc. of IJCAI-01 2002.

Long, D., and Fox, M. The 3rd international planning competi-
tion: Results and analysis. JAIR 20:1-59. 2003.

Pollack, M.E. and Joslin, D. and Paolucci, M. Flaw Selection
Strategies for Partial-Order Planning. JAIR 6:223—-262. 1997.
Selman, B.; Kautz, H.; and Cohen, B. Noise strategies for im-
proving local search. IRroc. of AAAI-941994.

Siegel, S.; Castellan J. Nonparametric Statistics for the Behav-
ioral Sciences McGraw Hill. 1988.

Ury, H., K. A comparison of four procedures for multiple compar-

ison among means - pairwise contrast for arbitrary sample sizes.
Tecnometrics 18:89-97. 1976.

