
Learning Domain-Specific Control Knowledge from Random Walks

Alan Fern and SungWook Yoon and Robert Givan
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{afern, sy, givan}@purdue.edu

Abstract

We describe and evaluate a system for learning domain-
specific control knowledge. In particular, given a planning
domain, the goal is to output a control policy that performs
well on “long random walk” problem distributions. The sys-
tem is based on viewing planning domains as very large
Markov decision processes and then applying a recent vari-
ant of approximate policy iteration that is bootstrapped with
a new technique based on random walks. We evaluate the sys-
tem on the AIPS-2000 planning domains (among others) and
show that often the learned policies perform well on problems
drawn from the long–random-walk distribution. In addition,
we show that these policies often perform well on the original
problem distributions from the domains involved. Our eval-
uation also uncovers limitations of our current system that
point to future challenges.

Introduction
The most effective current planners utilize domain-specific
control knowledge. For example, TL-Plan (Bacchus & Ka-
banza 2000) and SHOP (Nau et al. 1999) use such knowl-
edge to dramatically prune the search space, often resulting
in polynomial-time planning performance. Attaining this
efficiency, however, requires effective control knowledge
for each planning domain, typically provided by a human.
Given a means for automatically producing good control
knowledge, we can achieve domain-specific planning per-
formance with a domain-independent system. In this work,
we take a step in that direction, limiting our attention to con-
trol knowledge in the form of reactive policies that quickly
select actions for any current state and goal condition, and
avoiding any dependence on human-provided “small prob-
lems” for learning.

We present and evaluate a new system that takes a plan-
ning domain as input and learns a control policy that is tuned
to perform well on the “long random walk” (LRW) problem
distribution. This distribution randomly generates a prob-
lem (i.e. an initial-state and goal) by selecting an initial state
from the given planning domain and then executing a “long”
sequence of random actions, taking the goal condition to be
a subset of properties from the resulting state.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We are not aware of prior work that explicitly consid-
ers learning control knowledge for the LRW distribution;
however, this learning problem is interesting for a num-
ber of reasons. First, the LRW-performance goal suggests
an automatic and domain-independent strategy for “boot-
strapping” the learning process by using random-walk prob-
lems of gradually increasing walk length. As we discuss
in the related-work section below, nearly all existing sys-
tems for learning control knowledge require human-assisted
bootstrapping. Second, policies that perform well on the
LRW distribution clearly capture much domain knowledge
that can be leveraged in various ways. For example, in this
work we show that such policies often perform well on the
problem distributions from recent AIPS planning competi-
tions. Such policies can also serve as macro actions for
achieving subgoals, perhaps suggested by landmark analysis
(Porteous, Sebastia, & Hoffmann 2001; Zhu & Givan 2003),
though we do not explore that direction here.

Techniques for finding and improving control policies
have been the predominant focus of Markov-decision-
process (MDP) research. In this work, we show how to
leverage our recent work in that area to solve some famil-
iar AI planning domains. Though here we focus on solving
deterministic STRIPS/ADL domains, our system is appli-
cable to arbitrary MDPs, giving it a number of advantages
over many existing control-knowledge learners. First, our
system, without modification, addresses both stochastic and
deterministic domains as well as domains with general re-
ward structure (where reward is not concentrated in a “goal
region”). Second, our system is not tied to a particular do-
main representation (e.g. STRIPS, ADL, PSTRIPS) or plan-
ner. We only require the availability of an action simulator
for the planning domain. Rather than exploit the domain
representation deductively, we exploit the state- and action-
space structure inductively using a learning algorithm. Fi-
nally, the MDP formalism provides a natural way to leverage
planning heuristics (if available) and, thus, can take advan-
tage of recent progress in domain-independent heuristics for
STRIPS/ADL domains (of course, only when the problem
is specified in STRIPS/ADL, or such a specification can be
learned).

Our system is based on recent work (Fern, Yoon, & Gi-
van 2003) that introduces a variant of approximate policy
iteration (API) for solving very large “relational” MDPs by



iteratively improving policies starting from an initial (often
poor) policy. In that work, API was applied to MDPs rep-
resenting the blocks world and a simplified logistics world
(with no planes), and produced state-of-the-art control poli-
cies. However, there remain significant challenges for in-
corporating API into a fully automatic system for learning
policies in a wider range of domains, such as the full corpus
of AIPS benchmarks. In particular, for non-trivial planning
domains API requires some form of bootstrapping. Previ-
ously, for the blocks world and simplified logistics world,
we were able to bootstrap API, without human assistance,
by using the domain-independent FF heuristic (Hoffmann
& Nebel 2001). This approach, however, is limited both
by the heuristic’s ability to provide useful “bootstrapping”
guidance, which can vary widely across domains, as well as
by the learner’s ability to capture the improved policy indi-
cated by its training set at each iteration.

Here, we continue to use the previous underlying learn-
ing method, and do not yet address its weaknesses (which
do show up in some of our experiments). Instead, we de-
scribe a novel and automatic bootstrapping technique for
guiding API toward policies for the LRW problem distri-
bution, to supplement the bootstrapping guidance provided
by the heuristic, if any. Intuitively, the idea is to initially
use API to find policies for short-random-walk distributions,
and to incrementally increase the walk length during iter-
ative policy improvement until API uncovers a policy that
works well for long walks. Our primary goal in this paper
is to demonstrate that, with this idea, our resulting system is
able to find good control policies in a wide range of planning
benchmarks.

Our empirical results on familiar planning domains, in-
cluding the AIPS-2000 benchmarks, show that our system
can often learn good policies for the LRW distribution. In
addition, these same policies often perform as well and
sometimes better than FF on the planning-competition prob-
lem distributions, for which FF is known to be well suited.
Our results also suggest that, in the domains where we do
not find good policies, the primary reason is that our current
policy language is unable to express a good policy. This sug-
gests an immediate direction, orthogonal to bootstrapping,
for further improving our system by adding expressiveness
to the policy representation and improving the correspond-
ing learner.

To our knowledge this is the first thorough empirical com-
parison of a control-knowledge learner to a state-of-the-art
planner on this corpus1. These results demonstrate that we
are able to automatically find reactive policies that compete
with established domain-independent techniques and point
to a promising and much different direction for advancing
domain-independent planning.

Problem Setup
Planning Domains. Our system represents a planning do-
main using an action-simulator model D = 〈S, A, T, C, I〉,
where S and A are finite sets of states and actions, respec-
tively. The third component T is a (possibly stochastic) “ac-

1Testing many problem instances from each of many domains.

tion simulation” algorithm, that, given state s and action a,
returns a next state t. The fourth component C is an action-
cost function that maps S × A to real-numbers, and I is a
randomized “initial state” algorithm, that returns a state in
S. Throughout this section, we assume a fixed planning do-
main D of the form above.

The learning component of our system assumes that the
sets S and A are represented, in the usual way, by specifying
a set of objects O, a set of state predicates P , and a set of
action types Y . A state fact is a state predicate applied to
the correct number of objects and a state in S is a set of state
facts. The actions in A are action types applied to objects.

While our system is not tied to any particular action rep-
resentation, or to deterministic actions in general, from here
forward in this paper, we focus on applying our system to de-
terministic STRIPS/ADL planning domains with goal-based
reward. In this setting, T corresponds to a deterministic in-
terpreter for STRIPS/ADL action definitions, C will always
return one, and I corresponds to a legal-state generator, e.g.
from a planning competition. Goals are generated by ran-
dom walks from initial states drawn from I .

Policy Selection. A planning problem for D is a pair
〈s, g〉, where s is a state and g is a set of state facts called
the goal condition. A policy is a mapping from planning
problems to actions. We say a policy is efficient if it can be
evaluated in polynomial time in the size of its input problem.
Given an initial problem 〈s0, g〉 and an efficient policy π, we
can quickly generate a sequence of states (s0, s1, s2, . . .) by
iteratively applying π, where si+1 = T (si, π(〈si, g〉)). We
say that π solves 〈s0, g〉 iff there is an i such that g ⊆ si.
When π solves 〈so, g〉, we define the solution length to be
the smallest i such that g ⊆ si.

Given a distribution P over planning problems, the suc-
cess ratio SR(π, D,P) of π is the probability that π solves
a problem drawn from P . Treating P as a random variable,
the average length AL(π, D,P) of π is the conditional ex-
pectation of the solution length of π onP given that π solves
P . For a given D and P , we are interested in selecting
an efficient policy π with “high” SR(π, D,P) and “low”
AL(π, D,P). Such a policy represents an efficient domain-
specific planner for D that performs well relative to P .

Random Walk Distributions. For state s and set of state
predicates G, let s|G denote the set of facts in s that are
applications of a predicate in G. For planning domain D
and set of goal predicates G ⊆ P , we define the n-step
random-walk problem distribution RWn(D, G) by the fol-
lowing stochastic algorithm: First, draw a random state s0

from the initial state distribution I . Second, starting at s0

take n uniformly random actions2 to produce the state se-
quence (s0, s1, . . . , sn). At each uniformly random action
selection, we assume that an extra “no-op” action (that does
not change the state) is selected with some fixed probabil-
ity, for reasons explained below. Finally, return the planning
problem 〈s0, sn|G〉 as the output. We will sometimes ab-
breviate RWn(D, G) by RWn when D and G are clear in

2In practice, we only select random actions from the set of ap-
plicable actions in a state si, provided our simulator makes it pos-
sible to identify this set.



context.
Intuitively, to perform well on this distribution a policy

must be able to achieve facts involving the goal predicates
that typically result after an n-step random walk from an
initial state. By restricting the set of goal predicates G
we can specify the types of facts that we are interested in
achieving—e.g. in the blocks world we may only be inter-
ested in achieving facts involving the “on” predicate.

The random-walk distributions provide a natural way to
span a range of problem difficulties. Since longer random
walks tend to take us “further” from an initial state, for small
n we typically expect that the planning problems generated
by RWn will become more difficult as n grows. However,
as n becomes large, the problems generated will require far
fewer than n steps to solve—i.e. there will be “more direct”
paths from an initial state to the end state of a long random
walk. Eventually, since S is finite, the problem difficulty
will stop increasing with n.

A question raised by this idea is whether, for large n, good
performance on RWn ensures good performance on other
problem distributions of interest in the domain. In some do-
mains, such as the simple blocks world3, good random-walk
performance does seem to yield good performance on other
distributions of interest. In other domains, such as the grid
world (with keys and locked doors), intuitively, a random
walk is very unlikely to uncover a problem that requires un-
locking a door.

We believe that good performance on long random walks
is often useful, but is only addressing one component of the
difficulty of many planning benchmarks. To successfully ad-
dress problems with other components of difficulty, a plan-
ner will need to deploy orthogonal technology such as land-
mark extraction for setting subgoals (Porteous, Sebastia, &
Hoffmann 2001; Zhu & Givan 2003). For example, in the
grid world, if orthogonal technology can set the subgoal of
possessing a key for the first door, a long random-walk pol-
icy could provide a useful macro for getting that key.

Here, we limit our focus to finding good policies for long
random walks, i.e. the problem of long random walk (LRW)
policy selection. In our experiments, we define “long” by
specifying a large walk length N . Theoretically, the inclu-
sion of the “no-op” action in the definition of RW ensures
that the induced random-walk Markov chain4 is aperiodic,
and thus that the distribution over states reached by increas-
ingly long random walks converges to a stationary distribu-
tion5. ThusRW∗ = limn→∞RWn is well-defined, and we
take good performance onRW∗ to be our goal.

3In the blocks world with G = P and large n, RWn gener-
ates various pairs of random block configurations, typically pairing
states that are far apart—clearly, a policy that performs well on this
distribution has captured significant information about the blocks
world.

4We don’t formalize this chain here, for space reasons, but var-
ious formalizations work well.

5The Markov chain may not be irreducible, so the same station-
ary distribution may not be reached from all initial states; however,
we are only considering one initial state, described by I .

Learning from Random Walks
Our system utilizes a combination of machine learning and
simulation, and is based on our recent work (Fern, Yoon,
& Givan 2003) on approximate policy iteration (API) for
relational Markov decision processes (MDPs). Below, we
first give an overview of policy iteration in our setting, de-
scribe our approximate form of policy iteration, and review
the challenges of applying API to LRW policy selection. We
then describe “random-walk bootstrapping” for API.

Policy Iteration. Starting with an initial policy, (ex-
act) policy iteration (Howard 1960) iterates a policy im-
provement operator that guarantees reaching a fixed point
that is a guaranteed optimal policy. Given a policy π
and a planning domain D, exact policy improvement re-
quires two steps. First, we calculate the Q-cost function
Qπ

D
(〈s, g〉, a), which here is the number of steps required

to achieve goal g after taking action a in state s and then
following π.6 Second, we compute a new improved pol-
icy π′ by greedily choosing, for problem 〈s, g〉, the action
a that maximizes Qπ

D
(〈s, g〉, a). The policy π′ is given by

π′(〈s, g〉) = argmin
a∈A

Qπ
D

(〈s, g〉, a). Clearly, since exact
policy improvement requires enumerating all planning prob-
lems 〈s, g〉, it is impractical for STRIPS/ADL domains.

Approximate Policy Improvement. API (Bertsekas &
Tsitsiklis 1996) heuristically approximates policy iteration
by iterating an approximate, rather than exact, policy im-
provement operator. This operator uses simulation to es-
timate sample Qπ

D
values, and the generalization ability

of machine learning to approximate π′ given this sam-
ple; thus avoiding enumerating all planning problems. As
a result, API can be applied to domains with very large
state spaces, although it is not guaranteed to converge due
to the possibility of unsound generalization. In practice,
API often does “converge” usefully, e.g. (Tesauro 1992;
Tsitsiklis & Van Roy 1996).

Given a policy π, a planning domain D, a heuristic
function H from states to real numbers, and a problem
distribution P , an approximate policy improvement op-
erator IMPROVEPOLICY(π, D, H,P) returns an approxi-
mately improved policy π̂. In our STRIPS/ADL setting,
this means that the success ratio and average length of π̂
will (approximately) be better (or no worse) than that of π.7

The input heuristic function H is used to provide additional
guidance toward improvement when the policy cannot reach
the goal at all: rather than minimizing average length, the
method attempts to minimize average length plus heuris-
tic value at the horizon (if the goal is reached before the
horizon, the heuristic contribution will be zero). However,
H may be the constant zero function when no heuristic is
available. In our STRIPS/ADL experiments we use the FF
heuristic function (Hoffmann & Nebel 2001).

6To avoid infinite Q-costs we can either use discounting or a
finite-horizon bound on the number of steps.

7Our actual MDP formulation evaluates policies based on
finite-horizon cost. In practice and intuitively, this measure corre-
sponds well with success ratio and average length, but it is difficult
to determine the exact relationship among these measures without
additional assumptions.



Prior to our recent work (Fern, Yoon, & Givan 2003),
existing variants of API performed poorly in large rela-
tional domains such as common STRIPS/ADL benchmark
domains. Our contribution was to introduce a new IM-
PROVEPOLICY operator, that we use here, that is suited
to relational domains.8 As shown in Figure 1, our
IMPROVEPOLICY(π, D, H,P) operates in two steps. First,
in DRAWTRAININGSET(), we draw a set of planning prob-
lems from P and then for each problem 〈s, g〉 we use policy
rollout (Tesauro & Galperin 1996) to compute the Q-cost
Qπ

D
(〈s, g〉, a) for all (applicable) actions a, by applying ac-

tion a in s and then simulating π. If π does not reach the
goal within some (human-specified, problem-specific) hori-
zon, arriving instead in state s’, we approximate the Q-cost
by adding H(s′) to the horizon length. Using the Q-costs we
can determine π′(〈s, g〉) for each problem in our set. Sec-
ond, in LEARNPOLICY(), guided by the training data from
the first step, we use standard machine learning techniques
for cost-sensitive classification to search for a compactly
represented approximation π̂ to π′. For a detailed descrip-
tion of this API variant for general MDPs, see (Fern, Yoon,
& Givan 2003).

There are two issues that are critical to the success of IM-
PROVEPOLICY. The first issue, which this paper addresses,
is that IMPROVEPOLICY(π, D, H,P) can only yield im-
provement if its inputs provide enough guidance. In our set-
ting this may correspond to π occasionally reaching the goal
and/or H providing non-trivial goal-distance information for
problems drawn from P . We call this “bootstrapping” be-
cause, for many domains, it appears that once a (possibly
poor) policy is found that can reach the goal for a non-trivial
fraction of the problems drawn from P , API is quite effec-
tive at improving the policy. The problem is getting this first
somewhat successful policy.

For example, suppose P is uniform on 20-block blocks
world problems and that π is random and H is trivial. In
this case, IMPROVEPOLICY has no hope of finding a better
policy since the generated training set will essentially never
provide information about how to reach or move closer to
a goal. Because we are interested in solving large domains
such as this, providing “guiding inputs” to IMPROVEPOL-
ICY is critical. In (Fern, Yoon, & Givan 2003), we showed
that by using FF’s heuristic to “bootstrap” API, we were
able to use IMPROVEPOLICY to uncover good policies for
the blocks world, simplified logistics world (no planes), and
stochastic variants. This type of bootstrapping, however,
does not work well in many other benchmark domains, and
worked poorly in the blocks world with more than 10 blocks.
In this work, we contribute a new bootstrapping procedure,
based on random walks, for guiding API toward good poli-
cies for LRW distributions.

The second critical issue, which is not the focus of this

8The primary difficulty with previous variants was that the
operator IMPROVEPOLICY was based on learning approximate
cost-functions and STRIPS/ADL domains typically have extremely
complicated cost functions. Our operator that completely avoids
cost-function learning and instead learns policies directly in a com-
pact language. In relational domains, policies are often much sim-
pler than their cost functions.

paper, is that IMPROVEPOLICY is fundamentally limited by
the expressiveness of the policy language and the strength
of the learner (together, these represent the “bias” of the
learner). In particular, we must manage the conflicting tasks
of selecting a policy language that is expressive enough to
represent good policies, and building an effective learner for
that language with good generalization beyond the training
data. Since our goal is to have a fully-automated system, we
give a domain-independent specification of the language and
learner. As described in detail in the appendix, we specify
policies as decision lists of action-selection rules built from
the state predicates and action types provided by the plan-
ning domain, using a “taxonomic” knowledge representation
similar to description logic. We then use standard decision-
list learning to select such policies.

Indeed, our experimental results suggest that, in some
domains, a primary limiting factor for our current system
is an inadequately expressive combination of language and
learner. In particular, for some domains (e.g., Freecell), the
authors themselves cannot write a good policy in our current
policy language—indicating likely difficulty for the learner
to find one. This paper does not attempt to address this
weakness, since it is somewhat orthogonal to the issue of
bootstrapping; instead, we take a generic approach to learn-
ing, borrowed from our previous work. We plan future re-
search focused on this issue that is expected to improve our
system further. One reason to avoid redesigning the policy
language here is to ensure that we do not solve each domain
by providing hidden human assistance in the form of pol-
icy language customization (which resembles the feature-
engineering often necessary for cost-function–based API).

Random-Walk Bootstrapping. Given a planning do-
main D and set of goal predicates G, our system attempts
to find a good policy for RWN , where N is selected to
be large enough to adequately approximate RW∗, while
still allowing tractable completion of the learning. Naively,
given an initial policy π0 and a heuristic H , we could try
to apply API directly by computing a sequence of policies
πi+1 ← IMPROVEPOLICY(πi, D, H,RWN ). As already
discussed, this will not work in general, since we are inter-
ested in planning domains whereRW∗ produces extremely
large and difficult problems where we cannot assume the
availability of either a domain-independent π0 or domain-
independent H that are sufficient to bootstrap API.

However, for very small n (e.g. n = 1), RWn typically
generates easy problems, and it is likely that API, starting
with even a random initial policy, can reliably find a good
policy forRWn. Furthermore, we expect that if a policy πn

performs well on RWn, then it will also provide “reason-
ably good”, but perhaps not perfect, guidance on problems
drawn fromRWm when m is only “moderately larger” than
n. Thus, we expect to be able to find a good policy forRWm

by bootstrapping API with initial policy πn. This suggests a
natural iterative bootstrapping technique to find a good pol-
icy for large n (in particular, for n = N ).

The pseudo-code for our algorithm LRW-LEARN is given
in Figure 1. Intuitively, this is an “anytime” algorithm that
iterates through two stages: first, finding a “hard enough”
distribution for the current policy (by increasing n); and,



LRW-LEARN (D, G, H, π0, N)

// planning domain D, goal predicates G,
// heuristic function H , initial policy π0, max walk length N .

π ← π0; n← 1;

loop

if ŜRπ(n) > τ

// Find harder n-step distribution for π.
n← least i ∈ [n, N ] s.t. ŜRπ(i) < τ − δ, or N if none;

π ← IMPROVEPOLICY(π, D, H,RWn(D, G));

until satisfied with π or progress stops

Return π;

IMPROVEPOLICY (π, D, H,P)

T ← DRAWTRAININGSET(π,D, H,P); // Describes π′

π̂ ← LEARNPOLICY(T ); // Approximates π′

Return π̂;

Figure 1: Pseudo-code for LRW-LEARN. ŜRπ(n) estimates the
success ratio of π in planning domain D on problems drawn from
RWn(D, G) by drawing a set of problems and returning the frac-
tion solved by π. Constants τ and δ, and functions DRAWTRAIN-
INGSET and LEARNPOLICY are described in the text.

then, finding a good policy for the hard distribution using
API. The algorithm maintains a current policy π and current
walk length n (initially, n = 1). As long as the success ratio
of π on RWn is below the success threshold τ , which is a
constant close to one, we simply iterate steps of approximate
policy improvement. Once we achieve a success ratio of τ
with some policy π, the if-statement increases n until the
success ratio of π onRWn falls below τ−δ. That is, when π
performs well enough on the current n-step distribution we
move on to a distribution that is “slightly” harder. The con-
stant δ determines how much harder and is set small enough
so that π can likely be used to bootstrap policy improvement
on the harder distribution. (The simpler method of just in-
creasing n by 1 whenever success ratio τ is achieved will
also find good policies whenever this method does. This can
take much longer, as it may run API repeatedly on a training
sets for which we already have a good policy.)

Once n becomes equal to the maximum walk length N ,
we will have n = N for all future iterations. It is important
to note that even after we find a policy with a good success
ratio on RWN it may still be possible to improve on the
average length of the policy. Thus, we continue to iterate
policy improvement on this distribution until we are satisfied
with both the success ratio and average length of the current
policy.

Experiments
We perform experiments in seven familiar STRIPS/ADL
planning domains: Blocks World, Freecell, Logistics,
Schedule, Elevator, Gripper, and Briefcase. These domains
represent the union of the STRIPS/ADL domains from the
AIPS-2000 competition and those used to evaluate TL-Plan

RWn RW∗

it
er

.#

n SR AL SR AL

Blocks World

1 4 0.92 2.0 0 0
2 14 0.94 5.6 0.10 41.4
3 54 0.56 15.0 0.17 42.8
4 54 0.78 15.0 0.32 40.2
5 54 0.88 33.7 0.65 47.0
6 54 0.98 25.1 0.90 43.9
7 334 0.84 45.6 0.87 50.1
8 334 0.99 37.8 1 43.3

FF 0.96 49.0

Freecell

1 5 0.97 1.4 0.08 3.6
2 8 0.97 2.7 0.26 6.3
3 30 0.65 7.0 0.78 7.0
4 30 0.72 7.1 0.85 7.0
5 30 0.90 6.7 0.85 6.3
6 30 0.81 6.7 0.89 6.6
7 30 0.78 6.8 0.87 6.8
8 30 0.90 6.9 0.89 6.6
9 30 0.93 7.7 0.93 7.9

FF 1 5.4

Elevator

1 20 1 4.0 1 26
FF 1 23

Gripper

1 10 1 3.8 1 13
FF 1 13

RWn RW∗

it
er

.#

n SR AL SR AL

Logistics

1 5 0.86 3.1 0.25 11.3
2 45 0.86 6.5 0.28 7.2
3 45 0.81 6.9 0.31 8.4
4 45 0.86 6.8 0.28 8.9
5 45 0.76 6.1 0.28 7.8
6 45 0.76 5.9 0.32 8.4
7 45 0.86 6.2 0.39 9.1
8 45 0.76 6.9 0.31 11.0
9 45 0.70 6.1 0.19 7.8

10 45 0.81 6.1 0.25 7.6
· · · · · · · · · · · · · · · · · ·
43 45 0.74 6.4 0.25 9.0
44 45 0.90 6.9 0.39 9.3
45 45 0.92 6.6 0.38 9.4
46 70 ** ** ** **

FF 1 13

Schedule

1 1 0.93 1 0.1 14.3
2 5 0.89 1.59 0.1 14.4
3 5 1 1.68 1 13.0

FF 1 13

Briefcase

1 5 0.91 1.4 0 0
2 15 0.89 4.2 0.2 38
3 15 1 3.0 1 30

FF 1 28

Figure 2: Results for each iteration of LRW-LEARN in seven plan-
ning domains. For each iteration, we show the walk length n used
for learning, along with the success ratio (SR) and average length
(AL) of the learned policy on bothRWn andRW∗. The final pol-
icy shown in each domain performs above τ = 0.9 SR on walks
of length N = 10, 000, and further iteration does not improve the
performance. The exception is Logistics, where the large number
of iterations required exhausted the CPU time available at the time
of this submission. For each benchmark we also show the SR and
AL of FF on problems drawn fromRW∗.

in (Bacchus & Kabanza 2000), along with the Gripper do-
main.

LRW Experiments. Our first set of experiments eval-
uates the ability of LRW-LEARN to find good policies for
RW∗. We provided LRW-LEARN with the FF heuristic
function H and an initial policy π0 that corresponded to a
one-step–look-ahead greedy search based on the FF heuris-
tic. The maximum-walk-length parameter N was set to be
10,000 for all experiments, with τ equal to 0.9 and δ equal
to 0.1. In each iteration, DRAWTRAININGSET generates
a training set constructed from 100 problems. Recall that
in each iteration of LRW-LEARN we compute an (approx-
imately) improved policy and may also increase the walk



length n to find a harder problem distribution. We contin-
ued iterating LRW-LEARN until we observed no further im-
provement. The training time per iteration is approximately
five hours. Though the initial training period is signficant,
once a policy is learned it can be used to solve new prob-
lems very quickly, terminating in seconds with a solutions
when one is found, even for very large problems.

Figure 2 provides data for each iteration of LRW-LEARN
in each of the seven domains9. The first column, for each do-
main, indicates the iteration number (e.g. the Blocks World
was run for 8 iterations). The second column records the
walk length n used for learning in the corresponding itera-
tion. The third and fourth columns record the SR and AL of
the policy learned at the corresponding iteration as measured
on 100 problems drawn from RWn for the corresponding
value of n (i.e. the distribution used for learning). When
this SR exceeds τ , the next iteration seeks an increased walk
length n. The fifth and sixth columns record the SR and AL
of the same policy, but measured on 100 problems drawn
from the LRW target distribution RW∗, which in these ex-
periments is approximated byRWN for N = 10, 000.

So, for example, we see that in the Blocks World there are
a total of 8 iterations, where we learn at first for one iteration
with n = 4, one more iteration with n = 14, four iterations
with n = 54, and then two iterations with n = 334. At
this point we see that the resulting policy performs well on
RW∗. Further iterations with n = N , not shown, showed
no improvement over the policy found after iteration eight.
In other domains, we also observed no improvement after
iterating with n = N , and thus do not show those itera-
tions. We note that all domains except Logistics (see below)
achieve policies with good performance onRWN by learn-
ing on much shorter RWn distributions, indicating that we
have indeed selected a large enough value of N to capture
RW∗, as desired.

Comments on Figure 2 Results. For several domains,
our learner bootstraps very quickly from short random-walk
problems, finding a policy that works well even for much
longer random-walk problems. These include Schedule,
Briefcase, Gripper, and Elevator. Typically, large problems
in these domains have many somewhat independent sub-
problems with short solutions, so that short random walks
can generate instances of all the different typical subprob-
lems. In each of these domains, our best LRW policy is
found in a small number of iterations and performs compa-
rably to FF on RW∗. We note that FF is considered a very
good domain-independent planner for these domains, so we
consider this a successful result.

For two domains, Logistics10 and Freecell, our planner
is unable to find a policy with success ratio one on RW∗.
We believe that this is a direct result of the limited knowl-
edge representation we allowed for policies for the following

9Learning was conducted using the following domain sizes: 20
Blocks World, 8 card Freecell, 6 package Logistics, 10 person Ele-
vator, 8 part Schedule, and 10 object Briefcase, and 10 ball Gripper.

10In Logistics, the planner generates a long sequence of policies
with similar, oscillating success ratio that are elided from the table
with an ellipsis for space reasons.

π∗ FF
Domain Size SR AL SR AL

Blocks (20 blocks) 1 54 0.81 60
(50 blocks) 1 151 0.28 158

Freecell (8 cards) 0.36 15 1 10
(52 cards) 0 — 0.47 112

Logistics (6 packages) 0.87 6 1 6
(30 packages) 0 — 1 158

Elevator (30 people) 1 112 1 98

Schedule (50 parts) 1 174 1 212

Briefcase (10 objects) 1 30 1 29
(50 objects) 1 162 0 —

Gripper (40-60 balls) 1 150 1 150

Figure 3: Results on “standard” problem distributions for seven
benchmarks. Success ratio (SR) and average length (AL) are pro-
vided for both FF and our policy learned for the LRW problem
distribution. For a given domain, the same learned LRW policy is
used for each problem size shown.

reasons. First, we ourselves cannot write good policies for
these domains within our current policy language. Second,
the success ratio (not shown) for the sampling-based roll-
out policy11 π′ is substantially higher than that for the re-
sulting learned policy π̂ that becomes the policy of the next
iteration. This indicates that LEARNPOLICY is learning a
much weaker policy than the sampling-based policy gener-
ating its training data, indicating a weakness in either the
policy language or the learning algorithm (or possibly too
small a training set). For example, in the logistics domain,
at iteration eight, the training data for learning the iteration-
nine policy is generated by a sampling rollout policy that
achieves success ratio 0.97 on 100 training problems drawn
from the same RW45 distribution, but the learned iteration-
nine policy only achieves success ratio 0.70, as shown in the
figure at iteration nine. Because of these limitations, it is not
surprising that FF outperforms our learned policy onRW∗.

In the remaining domain, the Blocks World, the bootstrap-
ping provided by increasingly long random walks appears
particularly useful. The policies learned at each of the walk
lengths 4, 14, 54, and 334 are increasingly effective on target
LRW distributionRW∗. For walks of length 54 and 334, it
takes multiple iterations to master the provided level of diffi-
culty beyond the previous walk length. Finally, upon master-
ing walk length 334, the resulting policy appears to perform
well for any walk length. The learned policy is modestly
superior to FF onRW∗ in success ratio and average length.

Evaluation on the Original Problem Distributions.
Figure 3 shows results for our best learned LRW policy (de-
noted π∗)12 from each domain, in comparison to FF, on the

11The policy described by the training data generated by DRAW-
TRAININGSET, but only approximated by LEARNPOLICY, see
Figure 1.

12The policy, from each domain, with the highest performance
onRW∗, as shown in Figure 2.



original intended problem distributions for those domains.
Here we have attempted to select the largest problem sizes
previously used in evaluation of domain-specific planners
(either in AIPS-2000 or in (Bacchus & Kabanza 2000)), as
well as show a smaller problem size for those cases where
one of the planners we show performed poorly on the large
size. In each case, we use the problem generators provided
with the domains, and evaluate on 100 problems of each size
used (or 20 problems of similar sizes in the case of Gripper).

Overall, these results indicate that our learned, reactive
policies (learned in a domain-independent fashion) are com-
petitive with the domain-independent planner FF. On two
domains, Logistics and Freecell, FF substantially outper-
forms our learned policies on success ratio, for reasons dis-
cussed above, especially on large domain sizes. On two
other domains, Blocks World and Briefcase, our learned
policies substantially outperform FF on success ratio, espe-
cially on large domain sizes. On the other domains, the two
approaches perform quite similarly on success ratio, with
our approach superior in average length on Schedule but FF
superior in average length on Elevator.

Related Work
For a collection and survey of work on “learning for
planning” see (Minton 1993; Zimmerman & Kambham-
pati 2003). Two primary approaches are to learn domain-
specific control rules for guiding search-based planners
e.g. (Minton et al. 1989; Veloso et al. 1995; Estlin &
Mooney 1996; Huang, Selman, & Kautz 2000; Ambite,
Knoblock, & Minton 2000; Aler, Borrajo, & Isasi 2002),
and, more closely related, to learn domain-specific reactive
control policies (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002).

The ultimate goal of such systems is to allow for plan-
ning in large, difficult problems that are beyond the reach of
domain-independent planning technology. Clearly, learning
to achieve this goal requires some form of bootstrapping and
almost all previous systems have relied on the human for this
purpose. By far, the most common human-bootstrapping ap-
proach is “learning from small problems”. Here, the human
provides a small problem distribution to the learner, by limit-
ing the number of objects (e.g. using 2-5 blocks in the blocks
world), and control knowledge is learned for the small prob-
lems. For this approach to work, the human must ensure that
the small distribution is such that good control knowledge
for the small problems is also good for the large target dis-
tribution. In contrast, our approach can be applied without
human assistance directly to large planning domains. How-
ever, as already pointed out, our goal of performing well on
the LRW distribution may not always correspond well with
a particular target problem distribution.

Our bootstrapping approach is similar in spirit to the boot-
strapping framework of “learning from exercises”(Natarajan
1989; Reddy & Tadepalli 1997). Here, the learner is pro-
vided with planning problems, or “exercises”, in order of
increasing difficulty. After learning on easier problems, the
learner is able to use its new knowledge, or “skills”, in or-
der to bootstrap learning on the harder problems. This work,
however, has previously relied on a human to provide the

exercises, which typically requires insight into the planning
domain and the underlying form of control knowledge and
planner. Our work can be viewed as an automatic instanti-
ation of “learning from exercises”, specifically designed for
learning LRW policies.

Our random-walk bootstrapping is most similar to
the approach used in MICRO-HILLARY (Finkelstein &
Markovitch 1998), a macro-learning system for problem
solving. In that work, instead of generating problems via
random walks starting at an initial state, random walks were
generated “backwards” from goal states. This approach as-
sumes that actions are invertible or that we are given a set
of “backward actions”. When such assumptions hold, the
backward random-walk approach may be preferable when
we are provided with a goal distribution that does not match
well with the goals generated by forward random walks. Of
course, in other cases forward random walks may be prefer-
able. MICRO-HILLARY was empirically tested in the N×N
sliding-puzzle domain; however, as discussed in that work,
there remain challenges for applying the system to more
complex domains with parameterized actions and recursive
structure, such as familiar STRIPS/ADL domains. To the
best of our knowledge, the idea of learning from random
walks has not been previously explored in the context of
STRIPS/ADL planning domains.

Conclusion
Our evaluation demonstrates that, with random-walk boot-
strapping, our system is often able to select good con-
trol knowledge (i.e., a good policy) for familiar planning
benchmarks. The results point to an immediate direc-
tion for improvement—most significantly, extensions to
the policy language and corresponding learner are needed.
Our immediate goal is to show that with these extensions
we can succeed across an even wider range of planning
benchmarks—in particular, benchmarks where search-based
domain-independent planners fail. Policy-language exten-
sions that we are considering include various extensions
to the knowledge representation used to represent sets of
objects in the domain (in particular, for route-finding in
maps/grids), as well as non-reactive policies that incorpo-
rate search into decision-making.

Acknowledgements
We would like to thank Lin Zhu for originally suggesting
the idea of using random walks for bootstrapping. This
work was supported in part by NSF grants 9977981-IIS and
0093100-IIS.

Appendix: Policy Language
For single argument actions, useful rules often take the form
“apply action type a to any object in set C”; e.g., “unload
any object that is at its destination”. (Martin & Geffner
2000) introduced decision lists of such rules as a language
bias for learning policies. Here we use a similar rule form,
but generalized to handle multiple arguments.

Each action-section rule has the form: A : L1, L2, . . . Lm,
where A is an m-argument action type, and the Li are



literals. Literals have the form xi ∈ Ci(x1, . . . , xm),
where each xi is an action-argument variable and the Ci are
set expressions expressed in an enriched taxonomic syntax
(McAllester & Givan 1993), defined by

C ::= C0 | a-thing | ¬C | (R C) | C ∩ C | (min R)

R ::= R0 | R
−1 | R ∩ R | R∗.

Here, C0 is any one argument predicate, or one of the xi

variables, and R0 any binary predicate from the predicates
in P . One argument predicates denote the set of objects that
they are true of, (R C) denotes the image of the objects in
class C under the binary predicate R, (min R) denotes the
class of minimal elements under the binary predicate R, and
for the (natural) semantics of the other constructs shown,
please refer to (Yoon, Fern, & Givan 2002). A new predi-
cate symbol is included for each predicate in G, to represent
the desired goal state; e.g., gclear(x) represent that x is clear
in the goal. Given a planning problem 〈s, g〉 and a concept
C expressed in this syntax, it is straightforward to compute
the set of domain objects that are represented by C in 〈s, g〉,
in order to execute the policy. Predicates of three or more ar-
guments are represented with multiple introduced auxiliary
binary predicates.

For a particular planning problem we say that a rule al-
lows action A(o1, . . . om), where the oi are objects, iff each
literal is true when the variables are instantiated with the ob-
jects. That is, oi ∈ Ci(o1, . . . , om) is true for each i. Thus,
a rule places mutual constraints on the tuples of objects that
an action type can be applied to. Given a list of such rules
we say that an action is allowed by the list if it is allowed
by some rule in the list, and no previous rule allows any ac-
tions. Given a planning problem and a decision-list policy,
the policy selects the lexicographically least allowed action.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic
programming to learn and improve control knowledge. Ar-
tificial Intelligence 141(1-2):29–56.

Ambite, J. L.; Knoblock, C. A.; and Minton, S. 2000.
Learning plan rewriting rules. In Artificial Intelligence
Planning Systems, 3–12.

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116:123–191.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Estlin, T. A., and Mooney, R. J. 1996. Multi-strategy learn-
ing of search control for partial-order planning. In 13th
National Conference on Artificial Intelligence, 843–848.

Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. In 16th Con-
ference on Advances in Neural Information Processing.

Finkelstein, L., and Markovitch, S. 1998. A selective
macro-learning algorithm and its application to the NxN
sliding-tile puzzle. Journal of Artificial Intelligence Re-
search 8:223–263.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:263–302.
Howard, R. 1960. Dynamic Programming and Markov
Decision Processes. MIT Press.
Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning. In
17th International Conferebce on Machine Learning, 415–
422. Morgan Kaufmann, San Francisco, CA.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113(1-2):125–148.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In
Proceedings of the 7th International Conference on Knowl-
edge Representation and Reasoning.
McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first-order inference. Journal of the ACM 40:246–283.
Minton, S.; Carbonell, J.; Knoblock, C. A.; Kuokka, D. R.;
Etzioni, O.; and Gil, Y. 1989. Explanation-based learn-
ing: A problem solving perspective. Artificial Intelligence
40:63–118.
Minton, S., ed. 1993. Machine Learning Methods for Plan-
ning. Morgan Kaufmann Publishers.
Natarajan, B. K. 1989. On learning from exercises. In
Annual Workshop on Computational Learning Theory.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Interna-
tional Joint Conference on Artificial Intelligence, 968–973.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In 6th European Conference on Planning, 37–48.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In International Con-
ference on Machine Learning, 278–286.
Tesauro, G., and Galperin, G. R. 1996. On-line policy
improvement using monte-carlo search. In 9th Conference
on Advances in Neural Information Processing.
Tesauro, G. 1992. Practical issues in temporal difference
learning. Machine Learning 8:257–277.
Tsitsiklis, J. N., and Van Roy, B. 1996. Feature-based
methods for large scale dynamic programming. Machine
Learning 22:59–94.
Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence 7(1).
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In Proceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligence.
Zhu, L., and Givan, R. 2003. Landmark Extraction via
Planning Graph Propagation. In ICAPS Doctoral Consor-
tium.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. AI Magazine 24(2)(2):73–96.


