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Abstract

The problem of optimal policy formulation for teams of
resource-limited agents in stochastic environments is com-
posed of two strongly-coupled subproblems: a resource allo-
cation problem and a policy optimization problem. We show
how to combine the two problems into a single constrained
optimization problem that yields optimal resource allocations
and policies that are optimal under these allocations. We
model the system as a multiagent Markov decision process
(MDP), with social welfare of the group as the optimization
criterion. The straightforward approach of modeling both the
resource allocation and the actual operation of the agents as
a multiagent MDP on the joint state and action spaces of all
agents is not feasible, because of the exponential increase in
the size of the state space. As an alternative, we describe
a technique that exploits problem structure by recognizing
that agents are only loosely-coupled via the shared resource
constraints. This allows us to formulate a constrained policy
optimization problem that yields optimal policies among the
class of realizable ones given the shared resource limitations.
Although our complexity analysis shows the constrained opti-
mization problem to be NP-complete, our results demonstrate
that, by exploiting problem structure and via a reduction to a
mixed integer program, we are able to solve problems orders
of magnitude larger than what is possible using a traditional
multiagent MDP formulation.

Introduction
We address the problem of finding optimal policies for
teams of resource-limited autonomous agents that operate in
stochastic environments. While various aspects of this prob-
lem have received significant amounts of attention, there
has been limited focus on addressing the combined prob-
lem of deciding how the limited shared resources should
be distributed between the agents and what policies they
should adopt, such that the social welfare of the team is
maximized. Notice that in this problem formulation, fig-
uring out the value of a particular allocation requires one to
solve a stochastic policy optimization problem. Hence, the
resource allocation and the policy optimization problems are
very closely coupled.

A straightforward approach to solving this problem is
to formulate both the resource allocation process and the
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actual operation of the agents as a large multiagent MDP
(Boutilier 1999) on the joint state and action spaces of
all agents. However, this method suffers from an expo-
nential increase in the size of the state space, and thus
very quickly becomes infeasible for teams of reasonable
size. A common way of addressing this problem of large
state spaces in MDPs is based on problem decomposi-
tion (Boutilier, Brafman, & Geib 1997; Dean & Lin 1995;
Meuleauet al. 1998; Singh & Cohn 1998), where a global
MDP is decomposed into several independent or loosely-
coupled sub-MDPs. These sub-MDPs are usually solved in-
dependently and the resulting policies are then combined to
yield a (perhaps suboptimal) solution to the original global
MDP.

In this work, we focus on domains where the agents oper-
ate mostly independently, but their policy optimization prob-
lems are coupled via the resources that they share. Such
loose coupling of the agents makes these problems very well
suited for the decomposition solution methods mentioned
above. However, the existing methods either do not allow
one to completely avoid the explicit enumeration of the joint
states and actions (Singh & Cohn 1998) or provide only ap-
proximate solutions (Meuleauet al. 1998) to the global pol-
icy optimization problems.

We present a method that does not sacrifice optimality
and, by fully exploiting the structure of the problem, makes
it possible to solve problems orders of magnitude larger
than what is possible using traditional multiagent MDP tech-
niques. Unlike the standard decomposition techniques, we
do not divide the problem into subproblems and then recom-
bine the solutions. Instead, we formulate one policy opti-
mization problem with constraints that ensure that the poli-
cies do not over-consume the shared resources.

The main contributions of this work are that we for-
mally analyze the complexity of this constrained optimiza-
tion problem and give a reduction of the problem to a mixed
integer linear program (MILP), which allows us to capitalize
on efficient methods of solving MILPs.

We begin by giving a very broad, high-level description of
the problem and presenting a simple example of a domain
where such problems arise. We then present a formal de-
scription of our model and the problem formulation as well
as an analysis of the complexity of this optimization prob-
lem and the structure of the solutions. The last sections of
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Figure 1: A resource allocation and stochastic planning
problem. Once the shared operationalization resources are
distributed among the agents (a), they proceed to execute
the best realizable policies (b).

the paper describe our method for solving this problem and
present some empirical results.

Motivating Example

Imagine a group of agents that are operating autonomously
– for example, a group of rovers performing a scientific mis-
sion on a remote planet. There is a clear need for coordina-
tion and task allocation among the agents in order for them
to perform their mission efficiently. For instance, if the mis-
sion involves taking measurements of the soil in one location
and doing a video survey of another area, it might be ben-
eficial to assign one rover to do soil sampling, and another
to do the video survey. However, the agents typically need
different equipment to carry out different tasks, and while
it is sometimes feasible to design and build an agent for a
certain task, often if is more effective to create a general-
purpose agent that can be outfitted with different equipment
depending on the task at hand. In particular, in our rover ex-
ample, there might be a base station that is used as a central-
ized location to store consumable execution resources (fuel,
energy, etc), as well as equipment (video cameras, extra bat-
teries, etc.) that can be used to outfit the rovers for various
tasks. It is certainly natural to assume that these resources
are limited. Thus, a problem of efficient allocation of the
shared resources arises.

However, the resource allocation problem is complicated
by the fact that it is often hard to calculate the exact utility
of a particular assignment of the resources. Indeed, agents
operating in complex environments are not able to perfectly
and deterministically reason about the effects of their ac-
tions, and therefore it is necessary to adopt a model that
allows one to express the uncertainty of the agents’ interac-
tions with the environment. In fact, an agent that adopts a de-
terministic model of the environment and does not have con-
tingency plans might find itself acting rather poorly. For in-
stance, it has been estimated that the 1997 Mars Pathfinder,
which did not take the uncertainty of the environment into
account, spent between 40% to 75% of its time doing noth-
ing due to plan failures (Bresinaet al. 2002). Therefore, in
order to determine the value of a particular resource alloca-
tion for agents operating under uncertainty, it is necessary to
solve a stochastic optimization problem.

General Problem Description

More generally, it is often the case that an agent has many
capabilities that are all in principle available to it, but not
all combinations are realizable within the architectural lim-
itations, because choosing to enable some of the capabili-
ties might usurp resources needed to enable others. In other
words, a particular policy might not beoperationalbecause
the agent’s architecture does not support the combination of
capabilities required for that policy. If this is the case, we
say that the agent exhibitsoperationalizationconstraints.

At a high level, we model the situation described above
as follows (illustrated in Figure 1). The agents have a set
of actions that are potentially executable, but each action re-
quires a certain combination of resources. The amount of
these shared resources is limited. Furthermore, each agent
has constraints as to what resources it can make use of (for
example, what equipment it can be outfitted with). In our
model, execution begins with a distribution of the shared
resources among the agents (Figure 1a). Any resulting re-
source allocation must obey the constraints that no shared
resource is over-utilized, i.e., the amount of all resources that
are assigned to the agents does not exceed the total available
amount. Furthermore, the assignment must satisfy the lo-
cal constraints of the agents as to the resources that they can
use. For example, it is useless (and thus essentially invalid)
to assign to an agent more equipment than it can carry. Once
the shared resources are distributed among the agents, they
should use these resources to carry out their policies (Figure
1b) in such a way that the social welfare of the group (sum
of individual rewards) is maximized.

The Model

Before we describe our world model in more detail, let us
note that although it is very easy to adapt our model and
solution algorithms to a scenario that involves consumable
execution resources (e.g., fuel, time) in addition to discrete
operationalization resources (e.g., equipment to outfit the
agents), we do not model the former in this paper for the
ease of exposition. It turns out that including such continu-
ous consumable resources in the model does not add to the
complexity of the problem, but introduces some subtleties to
the optimization and has an effect on the structure of the op-
timal policies (Dolgov & Durfee 2003). We briefly describe
how such constraints can be incorporated into our model at
the end of the subsequent section that presents our solution
method.

The stochastic properties of the environments in the prob-
lems that we address in this work lead us to adopt the
Markov model as the underlying formalism. In particular,
we use the stationary, discrete-time Markov model with fi-
nite state and action spaces (Puterman 1994). The choice is
due to the fact that MDPs provide a well-studied and sim-
ple, yet a very expressive, model of the world. This sec-
tion briefly describes standard unconstrained Markov deci-
sion processes and discusses the assumptions that are spe-
cific to the problems that we focus on in this work.



Markov Decision Processes
A classical unconstrained single-agent MDP can be defined
as a tuple〈S,A,P,R〉, where:

• S = {i} is a finite set of states.

• A = {a} is a finite set of actions.

• P = [piaj ] : S × A × S → [0, 1] defines the transition
function. The probability that the agent goes to statej if
it executes actiona in statei is piaj .

• R = [ria] : S × A → < defines the rewards. The agent
gets a reward ofria for executing actiona in statei.

A policy is defined as a procedure for selecting an action
in each state. A policy is said to bestationary if it does
not depend on time, but only on the current state, i.e., the
same procedure for selecting an action is performed every
time the agent encounters a particular state. Adeterministic
policy always chooses the same action for a state, as opposed
to a randomizedpolicy, which chooses actions according to
some probability distribution over the set of actions. The
termpureis used to refer to stationary deterministic policies.

A randomized Markov policyπ, can be described as a
mapping of states to probability distributions over actions,
or equivalently, as a mapping of state-action pairs to prob-
ability values: π = [πia] : S × A → [0, 1]; πia defines
the probability of executing actiona, given that the agent is
in statei. We assume that an agent must execute an action
(a noop is considered a trivial action) in every state, thus∑

a πia = 1.
A pure policy can be viewed as a degenerate case of a

randomized policy, for which there is only one action for
each state that has a nonzero probability of being executed
(that probability is obviously 1).

Clearly, the total probability of transitioning out of a
state, given a particular action, cannot be greater than 1,
i.e.,

∑
j piaj ≤ 1. As discussed below, often we are actu-

ally interested in domains where there exist states for which∑
j piaj < 1.
If, at time 0, the agent has an initial probability distribu-

tion α = [αi] over the state space, and the system obeys
the Markov assumption (namely that the transition probabil-
ities depend only on the current state and the chosen action),
the system’s trajectory (defined as a sequence of probability
distributions on states) will be as follows:

ρt+1 = P̃ρt, ρ0 = α, (1)

whereρt = [ρt
i] is the probability distribution of the system

at timet (ρt
i is the probability of being in statei at timet),

andP̃ = [p̃ij ] is the transition probability matrix implied by
the policy (̃pij =

∑
a piajπia).

Assumptions
Typically, Markov decision problems are divided into two
categories:finite-horizonproblems, where the total num-
ber of steps that the agent spends in the system is finite and
is known a priori, andinfinite-horizonproblems, where the
agent is assumed to stay in the system forever (see, for ex-
ample, (Puterman 1994)).

In this work we focus on dynamic real-time domains,
where agents have tasks to accomplish. This leads us to
make a slightly different (although, certainly, not novel) as-
sumption about how much time the agent spends executing
its policy. We assume that there is no predefined number of
steps that the agent spends in the system, but that optimal
policies always yieldtransientMarkov processes (Kallen-
berg 1983). A policy is said to yield a transient Markov
process if the agent executing that policy will eventually
leave the corresponding Markov chain, after spending a fi-
nite number of time steps in it. Given a finite state space,
this assumption implies that the Markov chain correspond-
ing to the optimal policy has no recurrent states (states that
have a nonzero probability of being visited infinitely many
times) or, in other words:limt→∞ ρi(t) = 0. This means
that there has to be some “leakage” of probability out of the
system, i.e., there have to exist some states{i} for which∑

j

∑
a pa

ij < 1.
We also assume that the rewards that an agent receives

while executing a policy are bounded. Given these assump-
tions about bounded rewards and the transient nature of our
problems, the most natural policy evaluation function to
adopt is the expected total reward:

V (π,α) =
T∑

t=0

∑
i

ρt
i

∑
a

πiaria, (2)

whereT is the number of steps during which the agent ac-
cumulates utility. For a transient system with bounded re-
wards, the above sum converges for anyT .

If the system obeys the Markov assumption and, as a re-
sult, follows the trajectory in (eq. 1), the value of a policy
can be expressed in terms of the initial probability distribu-
tion, transition probabilities, and rewards as follows:

V (π,α) =
∞∑
t

Rρ(t) =
∞∑
t

RP̃tα, (3)

which, under our assumptions, becomes:

V (π,α) = R(I− P̃)−1α (4)

It is clear that the value of a policy depends on the ini-
tial state probability distributionα. Moreover, in general,
the relative order of two policies can change depending
on the initial probability distributions, i.e.,∃π,π′,α,α′ :
V (π,α) > V (π′,α), andV (π,α′) < V (π′,α′). How-
ever, often, there exist policies that are optimal foranyinitial
probability distribution, i.e.,V (π∗,α) ≥ V (π,α) ∀π,α.
These policies are the ones that are commonly called “opti-
mal” in the unconstrained MDP literature and are typically
computed via dynamic programming, based on Bellman op-
timality equations (Bellman 1957). We refer to these poli-
cies asuniformly optimal(using the terminology from (Alt-
man 1999)). These uniformly optimal policiesπ∗ always
produce a history of states that is at least as good as a his-
tory produced by any other policy, regardless of the initial
conditions. Therefore, if uniformly optimal policies exist,
it is sufficient to compute a single uniformly optimal pol-
icy and use it for all instances of the problem with arbitrary
initial probability distributions.



However, as it turns out, uniformly optimal policies do
not always exist for constrained problems that involve lim-
ited resources (we will prove this statement below). We are,
therefore, interested in finding optimal policies for a given
initial probability distributionα.

Let us note that, although in this work we focus on tran-
sient systems with the total expected reward optimization
criterion, our model, the complexity results, and the solu-
tion algorithm can be easily adapted to other commonly-
used Markov models (finite horizon, infinite horizon with
discounted or per-unit rewards).

Problem Description

Multi-Agent Markov Decision Processes

Let us now consider a multiagent environment with a set ofn
agentsM = {m} (|M| = n), each of whom has its own set
of statesSm = {im} and actionsAm = {am}. Without any
loss of generality, we can assume that the state and action
spaces are equal (Sm = Sm′ , Am = Am′ ∀m,m′ ∈
M). In general, for a multiagent MDP, we have to de-
fine a new state space that is the cross-product of the state
spaces of all agents:S(M) = Sn, and a new action space
that is the cross-product of the actions spaces of all agents:
A(M) = An. The transition and reward functions are
defined on the new state and action space, i.e.,P(M) :
Sn×An×Sn → [0, 1], andR(M) : Sn×An → <. How-
ever, there is a large subclass of multiagent domains where
the agents’ rewards and transition functions are independent
of each other, i.e., such problems are completely separable
if there are no shared resources involved. In this paper we
assume that once the shared resources are distributed, the
agents operate completely independently of each other. In
other words, each agent has its own independent reward and
transition functions defined onS andA.

Under the above independence assumptions, ajoint policy
of the group is simply the set of single-agent policies of all
agents, i.e.,π(M) = [πm] = [πm

ia].

Problem Formulation

We can now define the problem of multiagent policy op-
timization under limited shared resources. Let us say that
there are several shared resources, and that every action of
each agent requires some subset of these resources. Fur-
thermore, all resources have costs associated with them and
agents have upper bounds on the costs of resources that can
be allocated to them. For example, a problem might involve
shared equipment (e.g., tools) that enables agents to execute
various actions, but each unit of equipment has some costs
associated with it (e.g., weight), and the agents have upper
bounds on how much weight they can carry.

Under these conditions, we can formulate
the multiagent optimization problem as a tuple
〈S,A,P,R,C, Ĉ,Q, Q̂,α〉, where:

• S = {i} is a finite set of states.

• A = {a} is a finite set of actions.

• P = [Pm] = [pm
iaj ] : S × A × S → [0, 1] defines the

transition function for agentm. The probability that agent
m goes to statej if it executes actiona in statei is pm

iaj .

• R = [Rm] = [rm
ia] : S × A → < defines the rewards

that agentm receives. Agentm gets a reward ofrm
ia for

executing actiona in statei.

• C = [Cm] = [cm
ak], wherecm

ak = {0, 1} defines action
resource requirements. If agentm needs resourcek to be
able to execute actiona, cm

ak = 1; otherwisecm
ak = 0.

• Ĉ = [ĉk] defines the total amounts of shared resources
that are available to the group, i.e., there areĉk units of
resourcek available to the agents.

• Q = [qkl] defines the costs (weight, money, etc) of each
resource. The cost of typel of a unit of resourcek is given
by qkl.

• Q̂ = [q̂m
l ] defines the upper bounds on how much of the

costs the agent can incur (e.g., how much weight the agent
can hold or how much money it can spend). Agentm
cannot exceed̂qm

l units of cost of typel.

• α = [αm] = [αm
i ] is the initial probability distribution.

The probability that agentm starts in statei is αm
i .

Without any loss of generality, we assume that the action
spaceA and the state spaceS are the same for all agents.

The goal of the optimization problem is to find a joint
policy π(M) that yields the highest expected reward, under
the conditions that the shared resources are not over-utilized,
and that no agent is assigned more resources than it can hold.
In other words, we have to solve the following (abstract)
math program:

max V (π,α)

∣∣∣∣∣∣∣∣
∑
m

θ
( ∑

a

cm
ak

∑
i

πm
ia

)
≤ ĉk,

∑
k

qklθ
( ∑

a

cm
ak

∑
i

πm
ia

)
≤ q̂m

l ,
(5)

whereθ is a “step” function of a non-negative argument, de-
fined as:

θ(z) =
{

0 z = 0
1 z > 0

The first constraint in (eq. 5) means that the total amounts
of resources that are needed by all agents do not exceed the
total amounts that are available. Indeed,

∑
i πm

ia is greater
than zero only if agentm plans to use actiona with nonzero
probability. Thus,

∑
a cm

ak

∑
i πia is greater than zero when

the agent plans to use actions that require resourcek, in
which case

θ
( ∑

a

cm
ak

∑
i

πm
ia

)
= 1,

and the first summation over all agentsm gives the total re-
quirements for resourcek, which should not exceed̂ck. The
second constraint is analogous to the first one and has the
meaning that the cost of typel of the resources assigned to
agentm does not exceed its cost boundsq̂m

l .
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Figure 2: Uniformly-optimal policies do not always exist for
constrained problems. Transition probabilities, rewards, and
action costs are shown on the diagram.

Problem Properties
Policy Structure
In this section we show some properties of the optimal poli-
cies. We begin by demonstrating that uniformly-optimal
policies (optimal for any initial distribution) do not always
exist for constrained problems. This result is well known for
classical constrained MDPs (Altman 1999; Puterman 1994)
where constraints are imposed on the total expected costs
that are proportional to the expected number of times the
corresponding actions are executed. We now establish this
result for problems with operationalization constraints (eq.
5) for which the costs are incurred by the agents when they
include an action in their policy, regardless of how many
times the action is actually executed (the costs are inter-
preted as the amounts of the shared resources that are re-
quired to enable the action).

Proposition 1 There do not always exist uniformly-optimal
solutions to problem (eq. 5).

Proof: We show the correctness of the above statement by
presenting an example (Figure 2) for which no uniformly-
optimal policy exists. Let us consider a problem with two
identical agents (m = {1, 2}), three states{s1, s2, s3},
two actions{a1, a2}, and two shared resource types (k =
{1, 2}). The rewards (r), transition probabilities (p), and
action costs (c) for all actions are shown in Figure 2. The
resource costs (requirements) for actiona1 are[1, 0], i.e., it
needs the first resource and does not use the second one. Ac-
tion a2 is exactly the opposite. Statess1 ands2 are “good”,
because the agents can receive positive rewards (r = 1)
there, and states3 is “bad”, since the reward there is neg-
ative (r = −1).

The obvious unconstrained optimal policy for both agents
is to execute actiona1 in states1, actiona2 in states2 and
either action (or a probabilistic mixture of the two) in state
s3. However, in order for both agents to be able to execute
this policy, they each need to have one unit of each of the
resource types.

Let us now assume that there is only one unit of each re-
source available (̂c = [1, 1]), and let us show that there does
not exist a policy that is optimal for all initial probability
distributionsα.

Consider the situation where the first agent starts in state
s1 and the second agent starts in states2, i.e., α1 =
[1, 0], α2 = [0, 1]. Then, the obvious unique optimal

joint policy that satisfies the resource constraints isπ1 =
[(1, 0), (1, 0), (1, 0)] andπ2 = [(0, 1), (0, 1), (0, 1)].1 The
resource cost of this joint policy is[1, 1], which satisfies
the constraints on the total use of the shared resources.
The value (total expected reward) of that policy is zero
(V (α,π) = 0), since each agent, on average, receives the
positive reward (+1) five times before it transitions to state
s3, where its expected payoff is -5, yielding a total expected
value of zero. This policy is clearly the unique optimum for
the given initial conditions, because any other policy would
either not satisfy the constraints or yield a lower (negative)
payoff.

If we consider a problem with the reversed initial condi-
tionsα′ where the first agent starts in states2 and the second
agents starts in states1, the policy described above would
immediately take both agents to states3 and would yield a
total expected reward of−10. However, clearly, there also
exists a policy that yields a zero expected reward for this
initial distribution. Thus, our policyπ is the unique opti-
mal solution to the problem with the initial distributionα
and is a suboptimal solution to the problem with the initial
distributionα′.

We have therefore constructed an example for which no
uniformly-optimal policy exists.�

Complexity
In this section we study the computational complexity of the
multiagent optimization problem introduced earlier (eq. 5).
We begin by defining the corresponding decision problem,
which we label M-OPER-CMDP (a multiagent constrained
MDP with operationalization constraints):

Given an instance of a multiagent MDP
with shared operationalization resources
〈S,A,P,R,C, Ĉ,Q, Q̂,α〉 and a rational num-
ber V , does there exist a multiagent policyπ, whose
expected total reward, givenα, equals or exceedsV ?

The following result characterizes the complexity of this de-
cision problem. It assumes that pure (stationary determin-
istic history-independent) policies are optimal for this class
of problems. This can be shown via the same arguments as
in the case of standard unconstrained MDPs, but we omit
the proof here in the interest of space. Intuitively, there is
no need to use randomized policies, because including an
action in a policy incurs the same resource costs, regardless
of the probability of executing that action (or the expected
number of times the action will be executed).

Theorem 1 M-OPER-CMDPis NP-complete.

Proof: The presence of M-OPER-CMDP in NP is obvious.
Clearly, one can always guess a pure joint policy, verify that
it satisfies the shared resource constraints, and calculate its
expected total reward in polynomial time (the latter can be
done by solving the standard system of linear Markov equa-
tions on the values of all states (Puterman 1994)).

1Here and below we use round parentheses as a notational con-
venience to group the values that refer to one state, i.e.,π =
[(π11, π12), (π21, π22), (π31, π32)].
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Figure 3: Reduction to of KNAPSACK to M-OPER-CMDP.
All transitions are deterministic.

In order to show NP-completeness of M-OPER-CMDP,
we will reduce KNAPSACK to a single-agent instance of M-
OPER-CMDP. Recall that KNAPSACK asks whether, for a
given set of itemsu ∈ U , each of which has a costt(u)
and a valuev(u), there exists a subsetU ′ ⊆ U such that the
total value of all items inU ′ is no less than some constant
W , and the total cost of the items is no greater than another
constantB, i.e.,

∑
u∈U ′ t(u) ≤ B and

∑
u∈U ′ v(u) ≥ W .

KNAPSACK is known to be NP-complete (Garey & John-
son 1979). Therefore, if we show that any instance of
KNAPSACK can be reduced to M-OPER-CMDP, we would
show that M-OPER-CMDP is also NP-complete. The reduc-
tion is illustrated in Figure 3 and proceeds as follows.

Given an instance of KNAPSACK with|U | = m, let
us number all items asui, i ∈ [1,m] as a notational con-
venience. For such an instance of KNAPSACK, we cre-
ate a MDP withm + 1 states{s1, s2, . . . sm+1}, m actions
{a1, . . . am}, m resource types[cak] = [ca1, . . . cam], and a
single cost typeqk. For every itemui in KNAPSACK, we
define an actionai with rewardv(ui) and the following re-
source requirements. Actionai only needs resourcei, i.e.,
cik = 1 ⇐⇒ k = i. We set the cost of resourcei to be the
costt(ui) of item i in the KNAPSACK problem. We also
define a “null” actiona0 with zero resource requirements
and zero reward.

Furthermore, we define a deterministic transition function
on these states as follows. Every statesi, i ∈ [1,m] has
two transitions from it – corresponding to actionsai anda0.
Both actions lead to statesi+1 with certainty, butai gives the
agent a reward ofv(ui), while actiona0 gives a reward of
zero. Statesm+1 is absorbing and has no transitions leading
from it.

In order to complete the construction of M-OPER-CMDP,
we set the initial distributionα = [1, 0, . . .], so that the agent
starts in states1 with probability 1. We also define the de-
cision parameterV = W and the total amount of the single
cost q̂ = B. We make the constraints on the total amounts
of various resources non-binding by settingĉk = ∞.

The above construction basically allows the agent to
choose actionai or a0 at every statesi. Choosing action
ai is equivalent to putting itemui into the knapsack, while
actiona0 corresponds to the choice of not includingui in the
knapsack. Therefore, it is clear that there exists a policy that
has the expected payoff no less thanV = W and uses no
more than̂q = B of the shared resource if and only if there
exists a solution to the original instance of KNAPSACK.�

Note that we have formulated and proven Theorem 1 for
transient processes, because we focus on such processes in
this work. However, the result also holds for MDPs with

a finite-horizon, or an infinite horizon with total discounted
reward. Indeed, the complexity proofs for all of these flavors
of MDPs are almost identical and can be done via minor
variations of the above reduction.

Solution Method
In this section we present a method for solving the opti-
mization program (eq. 5), which is based on a reduction
of the problem to a mixed integer program. However, be-
fore we describe our algorithm, let us briefly review the
standard linear programming approach (D’Epenoux 1963;
Kallenberg 1983) to solving Markov decision processes,
which serves as the basis for our method.

A common method for finding a solution to a transient
single-agent unconstrained MDP is by solving the following
linear program:

max
∑

i

∑
a

xiaria

subject to the constraints:∑
a

xja −
∑

i

∑
a

xiapiaj = αj , xia ≥ 0,

or, equivalently:2

max
∑

i

∑
a

xiaria

∣∣∣∣ ∑
i

∑
a

(δij − piaj)xia = αj , (6)

whereδij is the Kronecker delta, defined asδij = 1 ⇐⇒
i = j. The optimization variablesx = [xia] are often re-
ferred to as theoccupancy measureof a policy, andxia can
be interpreted as the expected number of times actiona is
executed in statei. The constraints in (eq. 6) just repre-
sent the conservation of probability and have nothing to do
with external constraints imposed on the problem. That is,
the expected number of times that statej is visited less the
expected number of times thatj is entered across all state-
action pairs should equal the expected number of times of
starting in statej (i.e., initial probability of being inj).

A policy π can be computed fromx simply as:

πia =
xia∑
a xia

=
xia

xi
(7)

Under our independence assumptions, we can analo-
gously construct a linear program for an unconstrained mul-
tiagent MDP with the total expected reward as the optimiza-
tion criterion:

max
∑
m

∑
i

∑
a

xm
iarm

ia

∣∣∣∣ ∑
i

∑
a

(δij − pm
iaj)x

m
ia = αm

j ,

(8)
wherexm

ia is the expected number of times agentm executes
actiona in statei. A solution to this LP yields optimal poli-
cies for the unconstrained multiagent problem. It is easy to
see that the above LP is completely separable and could have
been written as|M| single-agent LPs. We, however, are in-
terested in solving the constrained optimization problem that

2From now on we will omit thexia ≥ 0 constraint for brevity.



we have earlier written in an abstract form as (eq. 5). Let us
now rewrite the program (eq. 5) in the occupancy measure
coordinatesx. Adding the constraints from (eq. 5) to (eq. 8),
and noticing thatθ(

∑
a cm

ak

∑
i πm

ia) = θ(
∑

a cm
ak

∑
i xm

ia),
we get the following optimization problem inx:

max
∑
m

∑
i

∑
a

xm
iarm

ia

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i

∑
a

(δij − pm
iaj)x

m
ia = αm

j ,

∑
m

θ
( ∑

a

cm
ak

∑
i

xm
ia

)
≤ ĉk,

∑
k

qklθ
( ∑

a

cm
ak

∑
i

xm
ia

)
≤ q̂m

l ,

(9)
If we could solve this math program, we would be done.

The big problem with this program is, of course, that it in-
volves the “step” functionθ, which makes the constraints
nonlinear (and actually discontinuous at zero). Conse-
quently, our goal is to rewrite the program (eq. 9) in a more
manageable form. However, we can abandon the idea of try-
ing to write it as a linear program, because LPs are solvable
in polynomial time, and we have shown that our problem is
NP-complete. Instead, we are going to reformulate the prob-
lem as a mixed integer linear program (also NP-complete).
The ability to formulate the constrained policy optimization
problem as a MILP allows us to make use of a wide variety
of highly optimized algorithms and tools for solving integer
programs.

First, to simplify the following discussion, let us define

sm
k =

∑
a

cm
ak

∑
i

xm
ia,

which has the interpretation of the total expected number of
times agentm plans to use actions that need resource of type
k in its policy.

Let us augment the original optimization variablesx with
a set of binary variables∆ = [∆m

k ], where∆m
k = θ(sm

k ). In
other words,∆m

k is an indicator variable that shows whether
agentm needs resourcek for its policy. Using∆, we can
rewrite the resource constraints in (eq. 9) as∑

m

∆m
k ≤ ĉk,

∑
k

qkl∆m
k ≤ q̂m

l , (10)

which are linear in∆. This, in itself, does not buy us any-
thing, because we have simply renamed the nonlinear parts
of the constraints. However, if we could “synchronize”x
and ∆ to preserve their intended interpretation via a lin-
ear function, we would have a linear mixed integer program,
which is the goal that we have set forth in this section. The
problem is, of course, that the relationship between∆m

k and
xm

ia is nonlinear:

∆m
k =

{
0, if sm

k =
∑

a cm
ak

∑
i xm

ia = 0
1, if sm

k =
∑

a cm
ak

∑
i xm

ia > 0
(11)

Note that this is exactly the step function that we wanted to
get rid of in the first place. However, we can capture the
essence of the relationship betweenx and∆ with a linear
function as follows.

First, we need to normalize our occupancy measure (x)
such thatsm

k =
∑

a cm
ak

∑
i xia ∈ [0, 1]. Let us define a new

normalized occupancy measurey as:

ym
ia =

xm
ia

X
, (12)

whereX ≥ sup sm
k = sup

∑
a cm

ak

∑
i xm

ia is some con-
stant finite upper bound onsm

k , which exists for any transient
MDP and can be computed in polynomial time. Indeed, one
simple way to do this is to replace the expected reward in
the objective function in the standard unconstrained LP (eq.
6) with

∑
m

∑
i

∑
a xm

ia (sincecm
ak ≤ 1), solve this LP in

polynomial time and letX equal the resulting value of this
objective function.

Given the normalized occupancy measure, we can then
capture the essence of the relationship betweenx and∆ via
a linear constraint:∑

a

cm
ak

∑
i

ym
ia ≤ ∆m

k (13)

Clearly, if
∑

a cm
ak

∑
i ym

ia > 0, the above constraint forces
the corresponding∆m

k to be 1, which is in accordance with
(eq. 11). On the other hand, if

∑
a cm

ak

∑
i ym

ia = 0, the
above constraint will hold for both∆m

k = 0 and∆m
k = 1,

which does not quite satisfy (eq. 11). However, it turns out
that this is not a problem for the following reason. If some
∆m

k = 1, even if the corresponding
∑

a cm
ak

∑
i ym

ia = 0
(which is allowed by constraint (eq. 11)), the worst that
can happen is that the constraint (eq. 10) on the shared
resources becomes unnecessarily broken. This might seem
problematic but, in fact, it is not, since the important thing is
that another (feasible) solution with the offending deltas cor-
rected always exists and has the same value of the objective
function. Basically, the above condition has no false posi-
tives, but can have false negatives, which are not lethal. This
means that any complete algorithm for solving MILPs will
always find the optimal deterministic policy that satisfies the
constraints (if one exists).

To summarize, the problem of finding optimal policies un-
der operationalization constraints can be formulated as the
following MILP:

max
∑
m

∑
i

∑
a

ym
iarm

ia

∣∣∣∣∣∣∣∣∣∣

∑
i

∑
a(δij − pm

iaj)y
m
ia = αm

j

X ,∑
m ∆m

k ≤ ĉk,∑
k qkl∆m

k ≤ q̂m
l ,∑

a cm
ak

∑
i ym

ia ≤ ∆m
k ,

ym
ia ≥ 0, ∆m

k ∈ {0, 1}
(14)

As mentioned earlier, even though solving such programs is,
in general, an NP-complete problem, there is a wide variety
of very efficient algorithms and tools for doing so (see, for
example, (Wolsey 1998) and references therein). Therefore,
one of the benefits of reducing the optimization problem to
MILP is that it allows us to make use of the existing highly
efficient tools.

When introducing our model, we indicated that it allows
for an easy addition of constraints on limited consumable
execution resources such as fuel, time, or energy. Such re-
sources are different from the operationalization resources
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Figure 4: Scalable test problem withn “segments”.

that are the main focus of this paper in that the consump-
tion of the execution resources depends on the frequency of
performing actions that utilize the resources (e.g., the more
often a rover executes the “move” action, the more fuel it
consumes). We can model such execution resources as fol-
lows. Let us say that whenever agentm performs action
a in statei, it consumeshm

ia units of an execution resource
(here, for simplicity, we assume that there is only one re-
source, but it is trivial to extend this formulation to the case
of several consumable resources). Clearly, the total expected
consumption of the resource is a linear function of the occu-
pancy measurex. Therefore, if we would like to bound the
total expected use of the resource, all we have to do is add
the following linear constraint to (eq. 14):∑

m

∑
i

∑
a

hm
iaxm

ia ≤ ĥ,

whereĥ is the upper bound on the expected resource con-
sumption. The ability to model linear constraints of this type
is a well-known advantage of the LP formulation of MDPs
(Altman 1999; Kallenberg 1983; Puterman 1994). Such lin-
ear constraints do not add to the complexity of the policy
optimization problem, but they do affect the properties of
optimal policies. In particular, unlike for the standard un-
constrained MDPs, for the problems with such constraints,
deterministic policies are no longer guaranteed to be opti-
mal, and uniformly-optimal policies do not always exist.

For some domains that involve resources whose over-
utilization can have dire consequences, it might not be suffi-
cient to bound theexpectedconsumption of a resource, and
more expressiverisk-sensitiveconstraints might be required
(Ross & Chen 1988; Sobel 1985). In particular, it might
be desirable to bound theprobability that the resource con-
sumption exceeds a given upper bound (Dolgov & Durfee
2003; 2004).

Empirical Evaluation and Discussion
We have implemented the MILP reduction from the previ-
ous section and have run it on a series of test problems to see
how it behaves. Our main goals, besides performing an em-
pirical validation of the method, have been to see how well
the algorithm scales, and also how it behaves as resource
constraints are tightened or relaxed. We have also been in-
terested in performing a preliminary investigation of search-
based methods as an alternative to the MILP approach.
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Figure 5: (a) Value of optimal policies for the test problem;
(b) Value of policies produced by the MILP approach (solid
lines) and the greedy heuristic (dashed lines).

We have run two sets of experiments on two different sets
of problems. One involves a scalable single-agent problem,
for which it is possible to analytically compute the optimal
policies. The experiments that we have performed on this
set were meant to serve as a sanity check for our method,
and a rough indication of how the algorithm performs un-
der various constraint levels. We also used the single-agent
problem as for our investigation of search based techniques,
which we briefly report on in the next section.

The second set of experiments that we have performed
were done on a multiagent problem, and the main goals
there were to see how the method scales with the number
of agents.

Validation
As a test problem for our single-agent experiments, we
chose a simple problem that was easily scalable and had
optimal policies whose meaning was intuitively clear. The
problem is shown in Figure 4. It is composed ofn two-
state segments and a sink state. Thus, the problem con-
sists of 2n + 1 states, which are numbered as shown in
the figure. There aren + 1 actions, numbered froma0

to an. Action a0 is a noop that does not require any re-
sources and can be interpreted as doing nothing. In each
statesi, i ∈ [1, n] (upper row), the agent can choose to
execute the noopa0 and go to the next statesi+1 without
getting any reward. Alternatively, the agent can execute ac-
tion ai that “matches” the current state, in which case it has
an equal probability of either going to statesn+i (lower row)
or staying insi, receiving a reward ofi in both cases. How-
ever, if the agent executes any other “non-matching” action
in statesi, i ∈ [1, n], it goes to the sink states0 with cer-
tainty and incurs a large penalty of−100. The only avail-
able action in statessi, i ∈ [n+1, 2n−2] (lower row) is the
noopao, which yields a reward of zero and takes the agent
to si−n+1. There is one resource cost, and each actionai

requiresi units of it.
For this problem the optimal policy, its value, and its re-

source requirements are intuitively clear and are computable
analytically. In fact, this problem is equivalent to a knap-
sack problem where the value-to-cost ratio of all items is the
same. In our experiments we varied the size of the problem
(n) and the amount of the resource that was available to the
agent (γ). The latter was measured as the fraction of the re-
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Figure 6: Running time of the MILP method (a), and a com-
parison to an optimistic estimate of the running time of the
traditional “flat” multiagent MDP defined on the joint state
and action spaces of all agents (b).

source amount required by the optimal unconstrained policy.
Figure 5a shows the value of the optimal policy as a function
of γ andn. As expected, the MILP method produced the op-
timal policies; their values are shown in solid lines on Figure
5b. We also timed the algorithm for various constraint levels
(different values ofγ) and observed that the running time for
highly-constrained as well as for weakly-constrained prob-
lems was significantly lower than for constraint levels in the
middle range. Noting this, we constructed our multiagent
test cases to have moderate constraint levels, i.e., to be the
“most difficult” for our MILP method.

Scalability

For our multiagent experiments, we created the following
simple model of the rover domain, described in this paper’s
introduction. A team ofn rovers operates in anN -by-N grid
world, and their task is to conduct experiments to maximize
the expected scientific gain. The experiments can only be
carried out at certain locations randomly placed throughout
the grid. Each successfully executed experiment produces
a reward, but requires a certain set of tools (determined
by cm

ak). In our experiments, we limited the total amounts
of tools ĉk available to the team to half of what would be
needed for the optimal unconstrained policy, to represent a
difficult constraint level. There is only one resource cost
in this problem – each tool has a weight (specified byqk),
which is correlated with the payoff of the experiments that
this tool is needed to perform; more valuable experiments re-
quire heavier tools. To avoid symmetry between the agents
in our experiments, each agent was given a different load
capacity (̂qm) that determined how many tools the agent can
carry. The big agents with high load capacities are more ex-
pensive to operate, i.e., they have higher per-move penalties
than the light agents with low load capacities. The agents’
movement through the grid world has a stochastic compo-
nent to it, and the agents also have a small probability of
breaking down at each step.

We conducted the majority of our experiments on a 10-
by-10 grid for various numbers of agents. Our main concern
was how the solution algorithm would scale as we increased
the number of agents. Figure 6a shows the running time of
the MILP method (using CPLEX 8.1 on a Pentium 4 PC) for

various team sizes. The plot shows that in under 30 seconds,
we could compute optimal policies for teams of 15 agents. It
is interesting to contrast this result to what could have been
obtained by using a traditional multiagent MDP formulated
on the joint state and action spaces of all agents. It is easy
to see that for this problem with 100 states, 9 actions, and
15 agents, the joint transition matrix defined on the cross-
products of the state and action spaces of all agents, would
require on the order of1074 values. Thus, it is not even
possible to write down a problem of that size as a traditional
multiagent MDP, let alone solve it. In fact, if we assume that
for a problem with only one rover the traditional approach
works a million times faster than our MILP method, and
that the traditional approach scales linearly with the prob-
lem size, we can plot the running time for the two methods.
Figure 6b present such a comparison graph on a logarith-
mic time scale, and serves as an indication of the benefits of
exploiting problem structure in multiagent MDPs.

Conclusions and Future Work
We have demonstrated that it can be very beneficial to “fac-
tor out” the shared resources out of the problem description
and treat the resource limitations as constraints imposed on
the policy optimization problem. As our analysis shows, the
savings for loosely-coupled agents can be tremendous.

Of course, there are many other ways of exploiting prob-
lem structure, such as abstraction (Dearden & Boutilier
1997; Boutilier, Dearden, & Goldszmidt 1995) and factor-
ization (Boutilier, Dean, & Hanks 1999). It appears that
it could be very beneficial to combine such methods with
our constrained optimization approach. However, this would
involve overcoming several challenges, the most important
of which is probably the following. Just like the majority
of methods for solving unconstrained MDPs, the existing
methods that work with compact problem representations
rely on Bellman’s principle of optimality, which states that
the optimal action for each state is independent of the op-
timal actions chosen for other states. However, this prin-
ciple no longer holds when global constraints are imposed
on agents’ policies. Indeed, enabling an optimal action for
one state might consume limited resources, making the op-
timal action for another state infeasible. Overcoming such
difficulties in an attempt to combine compact MDP repre-
sentations and our constrained optimization ideas is one of
the directions of our future work.

As mentioned earlier, we were also interested in explor-
ing the possibility of using search-based methods as an al-
ternative to the MILP approach. To this end, we compared
our MILP method to a very simple heuristic search method,
which worked as follows. It first solved the unconstrained
problem and then sequentially replaced some actions with
the noop to reduce the cost of the policy. The actions to be
replaced were chosen randomly. We ran the two methods
on our single-agent test problem (Figure 4). As can be seen
from Figure 5b, which shows the values of the policies pro-
duced by the two methods, the greedy heuristic works very
well for this test problem. This should not be surprising,
given the analogy of this problem to knapsack, and the fact
that all actions have the same reward-to-cost ratio. The fact
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that this elementary heuristic approach works well on some
problems at a fraction of the time required for the MILP
method suggests that exploring search-based approaches for
this optimization problem might be worthwhile. Of course,
this particular heuristic method turns out to have been well
matched to this problem only by good fortune. It can do
very poorly for a variation of the problem where the role
of the noop and the other actions in the upper-row states
si, i ∈ [1, n] is reversed. There, the noop leads to the sink
states0, incurring a penalty of−100 and the other “non-
matching” actions lead to the next statesi+1 with no reward.
For this problem, the heuristic almost always produces the
worst possible policy (as depicted in Figure 7). A systematic
investigation of heuristic search-based methods is required
before any claims can be made about the trade-offs and ben-
efits of using such methods. This is another direction of our
future work.
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