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Abstract

Branch-and-bound and branch-and-cut use search trees to
identify optimal solutions. In this paper, we introduce a linear
search strategy which we refer to as cut-and-solve and prove
optimality and completeness for this method. At each node
in the search path, a relaxed problem and a sparse problem
are solved and a constraint is added to the relaxed problem.
The sparse problems provide incumbent solutions. When the
constraining of the relaxed problem becomes tight enough, its
solution value becomes no better than the incumbent solution
value. At this point, the incumbent solution is declared to be
optimal. This strategy is easily adapted to be an anytime al-
gorithm as an incumbent solution is found at the root node
and continuously updated during the search.

Cut-and-solve enjoys two favorable properties. Its memory
requirements are nominal and, since there is no branching,
there are no “wrong” subtrees in which the search may get
lost. For these reasons, it may be potentially useful as an
alternative approach for problems that are difficult to solve
using search tree methods.
In this paper, we demonstrate the cut-and-solve strategy
by implementing it for the Asymmetric Traveling Sales-
man Problem (ATSP). We compare this implementation with
state-of-the-art ATSP solvers to validate the potential of this
novel search strategy. Our code is available at (Climer &
Zhang ).

Introduction
Life is full of optimization problems. We are constantly
searching for ways to minimize cost, time, energy, or some
other valuable resource, or maximize performance, profit,
production, or some other desirable goal, while satisfying
the constraints that are imposed on us. Optimization prob-
lems are interesting as there are frequently a very large
number of feasible solutions that satisfy the constraints; the
challenge lies in searching through this vast solution space
and identifying an optimal solution. When the number of
solutions is too large to explicitly look at each one, two
search strategies, branch-and-bound (Balas & Toth 1985)�
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and branch-and-cut (Hoffman & Padberg 1991), have been
found to be exceptionally useful.

Branch-and-bound uses a search tree to pinpoint an op-
timal solution. (Note there may be more than one optimal
solution.) If the entire tree were generated, every feasible
solution would be represented by at least one leaf node. The
search tree is traversed and a relaxed variation of the origi-
nal problem is solved at each node. When a solution to the
relaxed problem is also a solution to the original problem, it
is made the incumbent solution. As other solutions of this
type are found, the incumbent is updated as needed so as
to always retain the best solution found thus far. When the
search tree is exhausted, the current incumbent is returned
as an optimal solution.

If the number of solutions is too large to allow explicitly
looking at each one, then the search tree is also too large
to be completely explored. The power of branch-and-bound
comes from its pruning rules, which allow pruning of entire
subtrees while guaranteeing optimality. If the tree is pruned
to an adequately small size, the problem becomes tractable
and can be solved to optimality.

Branch-and-cut improves on branch-and-bound by in-
creasing the probability of pruning. At select nodes, cutting
planes (Hoffman & Padberg 1991) are added to tighten the
relaxed subproblem. These cutting planes remove a set of
solutions for the relaxed subproblem, however, in order to
ensure optimality, they are designed to never exclude any
solutions to the current unrelaxed subproblem.

While adding cutting planes can substantially increase the
amount of time spent at each node, these cuts can dramati-
cally reduce the size of the search tree and have been used
to solve a great number of problems that were previously
intractable.

In this paper, we introduce a linear search strategy that
we refer to as cut-and-solve and prove its optimality and
completeness. Being linear, there is no search tree, only a
search path that is directly traversed. In other words, there is
only one child for each node, so there is no need to choose
which child to traverse next. We search for a solution along
a predetermined path. At each node in the search path, two
relatively easy problems are solved. First, a relaxed solu-
tion is found. Then a sparse problem is solved. Instead of
searching for an optimal solution in the vast solution space
containing every feasible solution, a very sparse solution



space is searched. An incumbent solution is found at the first
node and modified as needed at subsequent nodes. When the
search terminates, the current incumbent solution is declared
to be an optimal solution.

In the next section, branch-and-bound and branch-and-
cut are discussed in greater detail. In the following section,
the cut-and-solve strategy is described and compared with
these prevalent techniques. Then we demonstrate how cut-
and-solve can be utilized by implementing an algorithm for
the Asymmetric Traveling Salesman Problem (ATSP). (The
ATSP is the NP-hard problem of finding a minimum-cost
Hamiltonian cycle for a set of cities in which the cost from
city � to city � may not necessarily be equal to the cost from
city � to city � .) We have quickly produced an implementa-
tion of this algorithm and compare it with branch-and-bound
and branch-and-cut ATSP solvers. Our tests show that cut-
and-solve is competitive with these state-of-the-art solvers.
This paper is concluded with a brief discussion.

Background
In this section, we define several terms and describe branch-
and-bound and branch-and-cut in greater detail, using the
Asymmetric Traveling Salesman Problem (ATSP) as an ex-
ample.

Branch-and-bound and branch-and-cut have been used to
solve a variety of optimization problems. However, to make
our discussion concrete, we will narrow our focus to Lin-
ear Programs (LPs). An LP is an optimization problem
that is subject to a set of linear constraints. LPs have been
used to model a wide variety of problems, including the
Traveling Salesman Problem (TSP) (Gutin & Punnen 2002;
Lawler et al. 1985), Constraint Satisfaction Problem (CSP)
(Dechter & Rossi 2000), and minimum cost flow problem
(Hillier & Lieberman 2001). Moreover, a wealth of prob-
lems can be cast as one of these more general problems.
The TSP has applications for a vast number of scheduling,
routing, and planning problems such as the no-wait flow-
shop, stacker crane, tilted drilling machine, computer disk
read head, robotic motion, and pay phone coin collection
problems (Johnson et al. 2002). Furthermore, the TSP can
be used to model surprisingly diverse problems, such as the
shortest common superstring problem, which is of interest
in genetics research. The CSP is used to model configura-
tion, design, diagnosis, spatio-temporal reasoning, resource
allocation, graphical interfaces, network optimization, and
scheduling problems (Dechter & Rossi 2000). Finally, the
minimum cost flow problem is a general problem that has
the shortest path, maximum flow, transportation, transship-
ment, and assignment problems as special cases (Hillier &
Lieberman 2001).

A general LP can be written in the following form:�	�	
 �������� 
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where the
� �

values are instance-specific constants, the set
of

� �
represents the decision variables, and the constraints

are linear equalities or inequalities composed of constants,

decision variables, and possibly some auxiliary variables. A
feasible solution is one that satisfies all of the constraints.
The set of all feasible solutions is the solution space, ./. ,
for the problem. The solution space is defined by the given
problem. (In contrast, the search space is defined by the al-
gorithm used to solve the problem.) For minimization prob-
lems, an optimal solution is a feasible solution with the least
value, as defined by the objective function (1).

For example, the ATSP can be defined as:021 .435�6 �7�8
 ��� 9: ��-;�< �= ;�< � � = � � =?>@ (3)
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for directed graph 6 � �H C 0 �
with vertex set H �� A/C ][] ]%C �^� , arc set

0 � � -� C � � N � C � �QA_C[][] ]`C �^� , and cost
matrix

� acbda
such that

� � =fe Z
and
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for all � and� in H . Each decision variable,

� � = , corresponds to an arc-� C � � in the graph. Constraints (7) requires that either an arc-� C � � is traversed (
� � = is equal to 1) or is not traversed (

� � = is
equal to 0). Constraints (4) and (5) require that each city is
entered exactly once and departed from exactly once. Con-
straints (6) are called subtour elimination constraints as they
require that no more than one cycle can exist in the solution.
Finally, the objective function (3) requires that the sum of
the costs of the traversed arcs is minimized. In this problem,
the solution space is the set of all permutations of the cities
and contains *� R A?�`j

discrete solutions.

Using bounds
Without loss of generality, we only discuss minimization
problems in the remainder of this paper.

An LP can be relaxed by relaxing one or more of the con-
straints. This relaxation is a lower-bounding modification
as an optimal solution for the relaxation cannot exceed the
optimal solution of the original problem. Furthermore, the
solution space of the relaxed problem contains all the solu-
tions from the solution space of the original problem, how-
ever, the converse is not necessarily true.

An LP can be tightened by tightening one or more of the
constraints or adding additional constraints. This tightening
is an upper-bounding modification as an optimal solution
for the tightened problem cannot have a smaller value than
the optimal solution of the original problem. Furthermore,
the solution space of the original problem contains all the
solutions from the solution space of the tightened problem,
however, the converse is not necessarily true.

We use subscripts � , � ,
$

to denote the original, relaxed,
and tightened problems, respectively. Thus, ./.lknmQ./.&o,m./.qp .



For example, the ATSP can be relaxed by relaxing the
integrality requirement of constraints (7). This can be ac-
complished by replacing constraints (7) with the following
constraints: Z L � � =ML A/CED � C �5F�H (8)

This relaxation is referred to as the Held-Karp relaxation
(Held & Karp 1970; 1971).

Another relaxation can be realized by completely omit-
ting constraints (6). This relaxation enforces integrality but
allows any number of subtours to exist in the solution. This
relaxed problem is simply the Assignment Problem (AP)
(Martello & Toth 1987). (The AP is the problem of finding a
minimum-cost matching on a bipartite graph constructed by
including all of the arcs and two nodes for each city, where
one node is used for the tail of all its outgoing arcs and one
is used for the head of all its incoming arcs.)

One way the ATSP can be tightened is by adding con-
straints that set the values of selected decision variables. For
example, adding

� � = �rA
forces the arc -� C � � to be included

in all solutions.

Branch-and-bound search
The branch-and-bound concept was perhaps first used by
Dantzig, Fulkerson, and Johnson (Dantzig, Fulkerson, &
Johnson 1954; 1959), and first approached in a systematic
manner by Eastman (Eastman 1958). At each level of the
tree, branching rules are used to generate and tighten each
child node. Every node inherits all of the tightening modifi-
cations of its ancestors. These tightened problems represent
subproblems of the parent problem and the tightening may
reduce the size of their individual solution spaces.

Since the original problem is too difficult to solve directly,
at each node a relaxation of the original problem is solved.
This relaxation may enlarge the size of the node’s solution
space. Thus, at the root node, a relaxation of the problem is
solved. At every other (non-leaf) node, a doubly-modified
problem is solved; one that is simultaneously tightened and
relaxed. The solution space of these doubly-modified prob-
lems contains extra solutions that are not in the solution
space of the original problem and is missing solutions from
the original problem.

Let us consider the Carpaneto, Dell’Amico, and Toth
(CDT) implementation of branch-and-bound search for the
ATSP (Carpaneto, Dell’Amico, & Toth 1995). For this al-
gorithm, the AP is used for the relaxation. The branching
rule dictates forced inclusions and exclusions of arcs. Arcs
that are not forced in this way are referred to as free arcs.
The branching rule selects the cycle in the AP solution that
has the fewest free arcs and each child forces the exclusion
of one of these free arcs. Furthermore, each child after the
first forces the inclusion of the arcs excluded by their elder
siblings. More formally, given a parent node, let s denote
its set of excluded arcs, t denote its set of included arcs, and� �vuSC[][] ]`Cw� kx� be the free arcs in the selected cycle. In this
case,

$
children would be generated with the y th child hav-

ing s{z � s}| � � z_� and t z � tG| � � u ] ][]~� z?� u � . Thus,
child y is tightened by adding the constraints that the deci-
sion variables for the arcs in s are equal to zero and those

for the arcs in t are equal to one. When child y is processed,
the AP is solved with these additional constraints. The solu-
tion space of this doubly-modified problem is missing all of
the tours containing an arc in s�z or missing any arc in t�z .
However, it is enlarged by the addition of all the AP solu-
tions that are not a single cycle, do not contain an arc in s z ,
and contain all of the arcs in t/z .

The CDT algorithm is experimentally compared with cut-
and-solve in the Results section of this paper.

Gomory cuts
In the late fifties, Gomory proposed a linear search strat-
egy in which cutting planes were systematically derived
and applied to a relaxed problem (Gomory 1958). An ex-
ample of a cutting plane follows. Assume we are given
three binary decision variables,

� u
,
���

,
���

, a constraintA Z � u�� A �/�c� � A?���c� L � Z
, and the integrality relaxation

(
Z L � � L A

is substituted for the binary constraints). It is
observed that the following cut could be added to the prob-
lem:

� u2� �c� � �c� L A
without removing any of the so-

lutions to the original problem. However, solutions would
be removed from the relaxed problem (such as

��u�� Z ]��
,� � � Z ]��/�

, and
� � � Z ]��

).
Although Gomory’s algorithm only requires solving a se-

ries of relaxed problems, it was found to be inefficient in
practice and fell into disuse.

Branch-and-cut search
Branch-and-cut search is essentially branch-and-bound
search with the addition of the application of cutting planes
at select nodes. These cutting planes tighten the relaxed
problem and increase the pruning potential. The number
of nodes at which cutting planes are applied is algorithm-
specific. Some algorithms only apply the cuts at the root
node, while others apply cuts at many or all of the nodes.
Concorde (Applegate et al. 2001; web) is a branch-

and-cut algorithm designed for solving the symmetric TSP
(STSP). (The STSP is a special case of the ATSP, where the
cost from city � to city � is equal to the cost from city � to
city � .) This code has been used to solve STSP instances
with as many as 15,112 cities (Applegate et al. web). This
success was made possible by the design of a number of
clever cutting planes custom tailored for this problem.

Branch-and-bound and branch-and-cut design
decisions
When designing an algorithm using branch-and-bound or
branch-and-cut, a number of policies must be determined.
These include determining a relaxation of the original prob-
lem and an algorithm for solving this relaxation, branching
rules, and a search strategy, which determines the order in
which the nodes are explored.

Since a relaxed problem is solved at every node, it must
be substantially easier to solve than the original problem.
However, it is desirable to use the tightest relaxation possible
in order to increase the potential for pruning.

Branching rules determine the stucture of the search tree.
They determine the depth and breadth of the tree. More-



over, branching rules tighten the subproblem. Thus, strong
branching rules can increase pruning potential.

Finally, a search strategy must be selected. Best-first
search selects the node with the best heuristic value to be
explored first. This strategy ensures that the least number
of nodes are explored for a given search tree and heuris-
tic. Unfortunately, identifying the best current node re-
quires storing all active nodes and even today’s vast mem-
ory capabilities can be quickly exhausted. For this reason,
depth-first search is commonly employed. While this strat-
egy solves the memory problem, it introduces a substantial
new problem. Heuristics used to guide the search can lead in
the wrong direction, resulting in large subtrees being fruit-
lessly explored. A wealth of research has been invested
in addressing this problem. Branching techniques (Balas
& Toth 1985), heuristics investigations (Pearl 1984), and
search techniques such as iterative deepening (Korf 1985),
iterative broadening (Ginsberg & Harvey 1992), and random
restarts (Gomes, Selman, & Kautz 1998) have been devel-
oped in an effort to combat this persistent problem.

Unfortunately, even when a combination of policies is
fine-tuned to get the best results, many problem instances
remain intractable. This is usually due to inadequate prun-
ing. On occasion, the difficulty is due to the complexity of
solving the relaxed problem or finding cutting planes. For
instance, the simplex method is commonly used for solving
the relaxation for mixed-integer linear programs, despite the
fact that it has exponential worst-case performance.

Cut-and-Solve Search Strategy
Unlike the cutting planes in branch-and-cut search, cut-and-
solve uses piercing cuts that intentionally cut out solutions
from the original solution space. We will use the term pierc-
ing cut to refer to a cut that removes at least one feasible
solution from the original problem solution space. The cut-
and-solve algorithm is presented in Algorithm 1.

Algorithm 1 cut and solve (LP)
1: lowerbound � R h
2: upperbound � h
3: while (lowerbound � upperbound) do
4: lowerbound � solve relaxed(LP)
5: if (lowerbound e upperbound) then
6: break
7: cut � select piercing cut(LP)
8: new solution � find optimal(cut)
9: if (new solution � upperbound) then

10: upperbound � new solution
11: add cut(LP, cut)
12: return upperbound

Each iteration of the while loop corresponds to one node
in the search path. First a relaxed problem is solved
(solve relaxed(LP)). Then a set of solutions are se-
lected (select piercing cut(LP)). Let ./.J���[� p ��� be
this set of solutions. ._. ��� � p ��� is selected in a way that it will
contain the optimal solution of the relaxed problem and at

least one feasible solution from the original solution space,./.&o .
Next, a sparse problem (find optimal(cut)) is

solved. This problem involves finding the best solution from./.&��� � p ��� that is also a feasible solution for the original prob-
lem. In other words, the best solution in ._.���� � p ���l�I./. o is
found. This problem tends to be relatively easy to solve as a
sparse solution space, as opposed to the vast solution space
of the original problem, is searched for the best solution. At
the root node, this solution is made the incumbent solution.
If later iterations find a solution that is better than the incum-
bent, this new solution becomes the incumbent.

Finally, a piercing cut is added to the LP. This piercing cut
excludes all of the solutions in ._. ��� � p ��� from the LP. Thus,
the piercing cut tightens the LP and reduces the size of its so-
lution space. Furthermore, since the solution of the relaxed
problem is in ./. ���[� p ��� , that solution cannot be returned by
solve relaxed(LP) on the next iteration.

At subsequent nodes, the process is repeated. The call
to solve relaxed(LP) is actually a doubly-modified
problem. The LP has been tightened by the piercing cuts
and a relaxation of this tightened problem is solved. The
incumbent solution is updated as needed after the call to
find optimal(cut). The piercing cuts accumulate
with each iteration. When the tightening due to these pierc-
ing cuts becomes constrictive enough, the solution to this
doubly-modified problem will become greater than or equal
to the incumbent solution value. When this occurs, the in-
cumbent solution is returned as optimal.

Theorem 1 When the cut-and-solve algorithm terminates,
the current incumbent solution must be an optimal solution.

Proof The current incumbent is the optimal solution for all
of the solutions contained in the piercing cuts. The solu-
tion space of the final doubly-modified problem contains all
of the solutions for the original problem except those in the
piercing cuts solution space. If the relaxation of this prob-
lem has a value that is greater than or equal to the incumbent
value, then the solution space of this doubly-modified prob-
lem cannot contain a solution that is better than the incum-
bent. ��

Termination of the algorithm is summarized in the follow-
ing theorem:

Theorem 2 If the solution space for the original problem,./. o , is finite and the relaxation algorithm and the algorithm
for selecting and solving the sparse problem are complete,
then the cut-and-solve algorithm is complete.

Proof The number of nodes in the search path must be finite
as a non-zero number of solutions are removed from ._. o at
each node. Therefore there are a finite number of complete
problems solved. ��

This algorithm is easily adapted to be an anytime algo-
rithm. Anytime algorithms allow the termination of an exe-
cution at any time and return the best approximate solution
that has been found thus far. If time constraints allow the
execution to run to completion, then the optimal solution is
returned. Since an incumbent solution is found at the first



node, there is an approximate solution available any time af-
ter the root node is solved, and this solution improves until
the optimum is found or the execution is terminated.

Cutting Traveling Salesmen Down to Size
We have implemented the cut-and-solve algorithm for solv-
ing real-world instances of the ATSP. The ATSP can be used
to model a host of planning and scheduling problems in ad-
dition to a number of diverse applications. Many of these
real-world applications are very difficult to solve using con-
ventional methods and as such are good candidates for this
alternative search strategy. Our code is available at (Climer
& Zhang ).

We use the Held-Karp lower bound for our relaxation as
it is quite tight for these types of instances (Johnson et al.
2002). A parameter, � , is set to a preselected value. Then
arcs with reduced costs less than � are selected and a sparse
graph composed of these arcs is solved. (A reduced cost
value is generated for each arc when the Held-Karp relax-
ation is calculated. This value represents a lower bound on
the increase of the Held-Karp value if the arc were forced
to be included in the optimal Held-Karp solution.) The best
tour in this sparse graph becomes our first incumbent solu-
tion. The original problem is then tightened by adding the
constraint that the sum of the decision variables for the se-
lected set of arcs is less than or equal to � R A

. This is our
piercing cut. If all of the arcs needed for an optimal solution
are present in the selected set of arcs, this solution will be
made the incumbent. Otherwise, at least one arc that is not
in this set is required for an optimal tour. This constraint is
represented by the piercing cut.

The process of solving the Held-Karp lower bound, solv-
ing a sparse problem, and adding a piercing cut to the prob-
lem repeats until the Held-Karp value of the deeply-cut
problem is greater than or equal to the incumbent solution.
At this point, the incumbent must be an optimal tour.

The worst-case complexities of solving the Held-Karp
lower bound (using the simplex method) and solving the
sparse problem are both exponential. However, in practice
these problems are usually relatively easy to solve. Selection
of an appropriate value for � is dependent on the distribution
of reduced cost values. In our current implementation, we
simply select a number of arcs,


f��� k , to be in the initial cut.
At the root node, the arcs are sorted by their reduced costs
and the


 ��� k lowest arcs are selected. � is set equal to the
maximum reduced cost in this set. At subsequent nodes, � is
used to determine the selected arcs. The choice of the value
for


 ��� k is dependent on the problem type and the number
of cities. We believe that determining � directly from the
reduced costs would enhance this implementation as a pri-
ori knowledge of the problem type would not be necessary
and � could be custom tailored to suit variations of instances
within a class of problems.

If a cut does not contain a single feasible solution, it can
be enlarged to do so. However, in our experiments this check
was of no apparent benefit. The problems were solved after
traversing no more than three nodes in all cases, so guaran-
teeing completeness was not of practical importance.

We use cplex (Ilog web) to solve both the relaxation
and the sparse problem. All of the parameters for this
solver were set to their default modes. For some of the
larger instances, this generic solver becomes bogged down
while solving the sparse problem. Performance could be im-
proved by the substitution of an algorithm designed specif-
ically for solving sparse ATSPs. We were unable to find
such code available. We are investigating three possible im-
plementations for this task: (1) adapting a Hamiltonian cir-
cuit enumerative algorithm to exploit ATSP properties, (2)
using a dynamic programming approach to the problem, or
(3) enhancing the cplex implementation by adding effec-
tive improvements such as the Padberg and Rinaldi shrink-
ing procedures, external pricing, cutting planes customized
for sparse ATSPs, heuristics for node selection, and heuris-
tics for determining advanced bases. However, despite the
crudeness of our implementation, it suffices to demonstrate
the potential of the cut-and-solve method. We compare our
solver with two branch-and-bound and two branch-and-cut
implementations in the next section.

Results
In this section, we compare our cut-and-solve implementa-
tion (CZ-c&s) with the four ATSP solvers that are com-
pared in The Traveling Salesman Problem and its Variations
(Gutin & Punnen 2002; Fischetti, Lodi, & Toth 2002). Our
testbed consists of all of the 27 ATSP instances in TSPLIB
(Reinelt web) and six instances of each of seven real-world
problem classes as introduced in (Cirasella et al. 2001) and
used for comparisons in (Fischetti, Lodi, & Toth 2002).

Our code was run using cplex version 8.1. In order to
identify subtours in the relaxed problem, we use Matthew
Levine’s implementation of the Nagamochi and Ibaraki min-
imum cut code (Levine 1997), which is available at (Levine
web).

In the experiments presented here, we found that the
search path was quite short. Typically only one or two sparse
problems and two or three relaxed problems were solved.
This result indicates that the set of arcs with small reduced
costs is likely to contain an optimal solution.

We make comparisons with two branch-and-bound imple-
mentations - the Carpaneto, Dell’Amico, and Toth (CDT)
and the Fischetti and Toth additive (FT-add) algorithms;
and two branch-and-cut implementations - the Fischetti and
Toth branch-and-cut (FT-b&c) and concorde algorithms.
Concorde (Applegate et al. 2001; web) is an award-

winning code used for solving symmetric TSPs (STSPs).
ATSP instances can be transformed into STSP instances us-
ing a 2-node transformation (Jonker & Volgenant 1983).
While the number of arcs after this transformation are in-
creased to �_� � R � � , the number of arcs that have neither a
zero nor infinite cost is � � R � , as in the original problem.
For consistency, we use the same transformation parameters
and set concorde’s random seed parameter and chunk size
as done in (Fischetti, Lodi, & Toth 2002).

We did not run the CDT, FT-add, and FT-b&c codes
on our machine as the code was not available. The com-
parisons are made by normalizing both the results in (Fis-
chetti, Lodi, & Toth 2002) and our computation times ac-



cording to David Johnson’s method (Johnson & McGeoch
2002) (see also (Johnson web)). The times are normalized
to approximate the results that might be expected if the code
were run on a Compaq ES40 with 500-Mhz Alpha proces-
sors and 2 Gigabytes of main memory. As described in
(Johnson & McGeoch 2002), these normalized time com-
parisons are subject to multiple sources of potential inaccu-
racy. Furthermore, low-level machine-specific code tuning
and other speedup techniques can compound this error. For
these reasons, it is suggested in (Johnson & McGeoch 2002)
that conclusions about relative performance with differences
less than an order of magnitude may be questionable.

A substantial normalization error appears in our compar-
isons. Tables 1 and 2 show the comparisons of normalized
computation times for the four implementations compared
in (Fischetti, Lodi, & Toth 2002) and run on their machine
along with the normalized times for concorde and CZ-
c&s run on our machine. Comparing the normalized times
for concorde for the two machines, we see that the nor-
malization error consistently works against us - in several
cases there is an order of magnitude difference. Concorde
requires the use of cplex (Ilog web), for its LP solver.
We used cplex version 8.1 while (Fischetti, Lodi, & Toth
2002) used version 6.5.3. Assuming that cplex has not
gotten substantially slower with this newer version, we can
speculate the normalization error is strongly biased against
us. We suspect this error may be due to the significant dif-
ferences in machine running times. For instance, for 100-
city instances the normalization factor for our machine is 5,
while it is 0.25 for the Fischetti, Lodi, and Toth machine.

The CDT implementation performs well for many of the
TSPLIB instances and for most of the computer disk read
head (disk), no-wait flowshop (shop), and shortest com-
mon super string (super) problems. Unfortunately, the
code is not robust and fails to solve � �_� of the instances
within the allotted time (1,000 seconds on the Fischetti,
Lodi, and Toth machine).

The FT-add implementation behaves somewhat like the
previous branch-and-bound search. It performs fairly well
for most of the same instances that CDT performs well on
and fails to solve almost all of the same instances that are
missed by CDT. (FT-add fails to solve � ��� of the in-
stances.)

Both FT-b&c and CZ-c&s behave more robustly than
the branch-and-bound algorithms. They solve all of the
TSPLIB instances but fail to solve the 316-city instances of
the coin collection (coin), stacker crane (crane), and one
of the tilted drilling machine (stilt) instances. CZ-c&s
also fails to solve the other tilted drilling machine instance
(rtilt).

Although FT-b&c consistently has better normalized
running times than CZ-c&s, the normalization error bias
should be considered. One comparison that is not machine
dependent is the ratio of each algorithm’s time to their corre-
sponding time for concorde. We calculate these ratios by
summing the run times for all instances except the 316-city
instances of coin, crane, rtilt, and stilt as these
instances are not run to completion for all of the algorithms.
crane runs to completion only for concorde and rtilt

does not run to completion for CZ-c&s. rtilt does run
to completion for FT-b&c, using about �/  � of the allotted
time. FT-b&c solves all of the other instances in � A_]gAS� of
the time required by concorde on the same machine and
CZ-c&s solves the instances in

�   ]�¡_� of the time required
by concorde on the same machine. (Note that cplex ver-
sion 6.5.3 is used on the former machine, while version 8.1
is used on the latter.) This comparison is not scientific. How-
ever, it gives a vague sense of how these algorithms might
compare without the normalization error bias.

Finally, we compare CDT, concorde, and CZ-c&s for
100-city instances of the seven problem classes and aver-
age over 100 trials. These comparisons were all run on our
machine, so there is no normalization error. We varied the
degree of accuracy of the arc costs by varying the number of
digits used for the generator parameter. In general, a smaller
generator parameter corresponds to a greater number of op-
timal solutions.

There is no graph for the super class as it is not depen-
dent upon the generator parameter. The average normalized
time to solve these instances using CDT is 0.073 seconds,
while concorde required 8.15 seconds and CZ-c&s took
2.07 seconds.

The average normalized computation times and the   ���
confidence intervals for the other classes are shown in Fig-
ures 1 and 2. The confidence intervals are large as might be
expected due to the heavy-tailed characteristics of the ATSP.

The CDT algorithm performed extremely well for the
shop and super instances. However, it failed to complete
any of the other tests. Although CDT performed well for five
of the six disk instances in the testbed (including the 316-
city instance), it failed to solve 100 of the disk instances
for any of the parameter settings. We allowed 20 days of
normalized computation time for each parameter setting; in-
dicating that the average time would be in excess of 17,000
seconds.

The missing data points for the concorde code are due
to the implementation terminating with an error. Although
CZ-c&s performed better than concorde for the five 100-
city rtilt instances in the testbed, on average, it does not
perform as well as concorde for the rtilt class in this
set of tests. However, it outperforms concorde for all of
the other problem classes.

In conclusion, our implementation of the cut-and-solve
strategy for the ATSP appears to be more viable than the
two branch-and-bound solvers. It is difficult to make deci-
sive comparisons with FT-b&c due to normalization errors,
however, our implementation appears to generally perform
better than concorde for these asymmetric instances.

Discussion and Related Work
Search tree methods such as branch-and-bound and branch-
and-cut must choose between memory problems or the prob-
lem of fruitlessly searching subtrees containing no opti-
mal solutions. Cut-and-solve is free from these difficulties.
Memory requirements are insignificant as only the current
incumbent solution and the current doubly-modified prob-
lem need be saved as the search path is traversed. Further-



Fischetti, Lodi, & Toth machine Climer & Zhang machine
Name CDT FT-add concorde FT-b&c concorde CZ-c&s

br17 0.6 0.0 0.0 0.0 0.7 0.0
ft53 - 0.0 0.1 0.0 1.1 0.4
ft70 0.1 0.1 0.7 0.0 4.7 0.5

ftv33 0.0 0.0 0.1 0.0 0.5 0.0
ftv35 0.0 0.0 1.8 0.1 5.3 0.5
ftv38 0.0 0.1 2.9 0.1 14.2 0.5
ftv44 0.0 0.0 1.9 0.1 10.0 0.6
ftv47 0.0 0.1 4.9 0.1 35.7 1.0
ftv55 0.2 0.3 2.0 0.3 12.3 0.9
ftv64 0.2 0.3 4.6 0.6 49.8 1.5
ftv70 0.8 0.9 4.1 0.3 15.8 1.9
ftv90 0.2 0.6 3.7 0.1 18.9 1.4

ftv100 4.2 7.4 3.2 0.6 30.1 2.8
ftv110 1.3 10.0 6.7 1.9 18.2 4.9
ftv120 13.5 26.8 14.7 3.5 61.5 6.8
ftv130 1.7 4.6 4.6 0.4 36.4 4.6
ftv140 4.0 11.3 7.4 0.6 23.0 5.6
ftv150 0.9 5.1 8.1 0.8 21.3 5.9
ftv160 29.1 98.0 17.3 1.2 38.6 11.9
ftv170 - - 13.0 1.3 31.7 20.0

kro124p - 33.9 2.5 0.3 12.4 5.0
p43 - - 4.8 2.0 23.2 6.1

rbg323 0.0 0.1 10.3 0.2 55.4 48.5
rbg358 0.0 0.2 13.2 0.2 23.8 72.8
rbg403 0.0 0.5 22.7 0.6 31.0 194.9
rbg443 0.0 0.6 16.6 0.7 33.9 155.3

ry48p - 4.3 4.8 0.2 44.0 2.1

Table 1: Normalized CPU times (in seconds) for TSPLIB instances. Instances not solved in the allotted time are labeled by “-”.
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Figure 1: Average normalized computation times with   ��� confidence interval shown. (a) rtilt problem class. (b) stilt
problem class. (c) crane problem class.

more, being a linear search, there are no subtrees in which
to get lost.

Cut-and-solve can be thought of as a sort of stubborn
branch-and-cut algorithm that refuses to explore beyond the
root node. Cuts are applied, one at a time, until an optimal
solution is found. For each cut, a relaxation of the current
tightened problem is solved. This solution serves two pur-
poses. It guides the selection of solutions used for the cut
and its value is compared to the incumbent solution value,
thus determining when the search can be terminated. Cut-
ting deeply yields two benefits. First, it provides a set of
solutions from which the best one is chosen for a poten-
tial incumbent. Second, these piercing cuts tighten the re-
laxed problem in an aggressive manner, and consequently
tend to increase the solution of the doubly-modified prob-
lem. Once this solution meets or exceeds the incumbent
value, the search is finished. In this sense, cut-and-solve can
be thought of as solving a branch-and-cut tree at the root
node. However, referring to it in this way diminishes the
fact that an iterative procedure is performed. For this reason

we refer to cut-and-solve as searching a linear path.
When designing a cut-and-solve algorithm, the selections

of a relaxation algorithm and piercing cuts are subject to
trade-offs. The relaxation algorithm should be tight and the
cuts should try to capture optimal solutions, yet to be effi-
cient, both problems need to be relatively easy to solve.

Choosing a strategy for determining the piercing cuts is
synonymous with selecting a branching rule in a search tree.
If the cuts are too shallow, the path will become very long.
On the other hand, if the cuts bite off too large a chunk of the
solution space, the sparse problem will not be easily solved.
While cut-and-solve shares a design decision similar to se-
lecting a branching rule, it has an advantage over search tree
methods as it is free from having to use a search strategy to
decide the order in which nodes should be explored.

Related work
Cut-and-solve is similar to Gomory’s algorithm in that cuts
are used to constrain the problem and a linear path is
searched. The major difference is that Gomory’s cuts are not



Fischetti, Lodi, & Toth machine Climer & Zhang machine
Name CDT FT-add concorde FT-b&c concorde CZ-c&s

coin100.0 - - 26.5 2.2 118.0 14.2
coin100.1 - - 12.3 1.5 75.4 17.4
coin100.2 - - 10.1 2.3 65.7 28.0
coin100.3 - - 5.3 0.7 50.6 21.2
coin100.4 - - 16.0 1.2 138.5 76.4

crane100.0 - - 1.6 0.4 8.4 8.1
crane100.1 - - 4.0 0.4 23.8 6.6
crane100.2 - - 88.9 51.2 411.9 51.1
crane100.3 - 10.2 0.9 0.1 6.0 5.3
crane100.4 - - 69.4 29.4 267.9 46.4

disk100.0 0.2 0.2 1.8 0.3 16.9 1.7
disk100.1 - 7.4 10.1 0.7 41.3 4.0
disk100.2 0.0 0.2 1.4 0.1 6.9 2.3
disk100.3 0.2 0.4 0.6 0.0 3.4 1.9
disk100.4 0.0 0.1 2.3 0.1 15.2 1.9

disk316.10 0.9 18.7 13.4 2.4 36.2 51.0
rtilt100.0 - - 32.3 56.9 208.5 202.9
rtilt100.1 - - 6.7 1.7 57.9 27.9
rtilt100.2 - - 2.0 0.1 14.6 4.3

rtilt100.3 - - 4.8 1.1 23.4 8.5
rtilt100.4 - - 6.7 1.2 49.2 20.6

shop100.0 0.0 0.1 7.2 0.2 39.8 2.5
shop100.1 0.3 0.7 9.9 0.4 40.1 4.0
shop100.2 0.1 1.3 4.4 0.3 24.8 4.9
shop100.3 0.1 0.7 6.1 0.4 33.0 4.0
shop100.4 0.0 0.3 4.2 0.1 18.2 5.1

shop316.10 1.3 39.3 52.7 6.2 164.5 69.8
stilt100.0 - - 131.1 12.3 741.6 84.2
stilt100.1 - - 55.4 14.3 387.2 61.2
stilt100.2 - - 14.2 1.5 59.0 39.8
stilt100.3 - - 165.6 35.3 1147.4 535.0
stilt100.4 - - 423.8 324.9 2454.3 200.2

super100.0 0.0 0.0 1.5 0.1 2.7 0.5
super100.1 0.0 0.1 2.1 0.1 6.4 1.0
super100.2 0.0 0.1 0.4 0.0 14.4 1.0
super100.3 0.0 0.1 0.9 0.1 10.7 1.5
super100.4 0.0 0.0 1.5 0.0 14.6 2.2

super316.10 - 102.0 6.4 1.7 42.2 53.1
coin316.10 - - - - - -

crane316.10 - - 1847.8 - - -
rtilt316.10 - - 255.8 3830.3 80.7 -
stilt316.10 - - - - - -

Table 2: Normalized CPU times (in seconds) for real-world problem class instances. Instances not solved in the allotted time
are labeled by “-”.

piercing cuts as they do not cut away any feasible solutions
to the original problem.

Cut-and-solve is also similar to an algorithm for solving
the Orienteering Problem (OP) as presented in (Fischetti,
Salazar, & Toth 2002). In this work, conditional cuts re-
move feasible solutions to the original problem. These cuts
are used in conjunction with more traditional cuts and are
used to tighten the problem. When a conditional cut is ap-
plied, an enumeration of all of the feasible solutions within
the cut is attempted. If the enumeration is not solved within
a short time limit, the cut is referred to as a branch cover
cut and the sparse graph associated with it is stored. This
algorithm attempts to solve the OP in a linear fashion, how-
ever, due to tailing-off phenomena, branching occurs after
every five branch cover cuts have been applied. After this
branch-and-cut tree is solved, a second branch-and-cut tree
is solved over the union of all of the graphs stored for the
branch cover cuts.

Cut-and-solve differs from this OP algorithm in several
ways. First, incumbent solutions are forced to be found
early in the cut-and-solve search. These incumbents provide
useful upper bounds and improve the anytime performance.
Second, the approach used in (Fischetti, Salazar, & Toth
2002) stores sparse problems and combines and solves them
as a single, larger problem after the initial cut-and-solve tree

is explored. Finally, this OP algorithm is not truly linear as
branching is allowed.

Is cut-and-solve truly “linear”?

This is a debatable question. We use the term “linear search”
as this is the structure of the search space when viewed at a
high level. In general, the algorithms used for solving sub-
problems within a search algorithm are not relevant in iden-
tifying the search strategy. For example, branch-and-bound
search is not defined by the algorithms used for solving the
relaxed problem, identifying potential incumbent solutions,
or guiding the search, as these algorithms are of a number
of varieties and could themselves be solved by branch-and-
bound or some other technique such as divide-and-conquer.

However, as pointed out by Matteo Fischetti in (Fischetti
2003), one could write a paper with a “Null search” strat-
egy, in which a single subproblem is solved by calling a
black-box ATSP solver. It appears that the pertinent ques-
tion here is whether the “subproblems” that are solved in
cut-and-solve are truly subproblems.

Let us consider the subproblems that are solved in the
FT-b&c algorithm. At each node, a number of cutting
planes are derived and applied, the relaxation is iteratively
solved, and a sparse problem is solved every time the subtour
elimination constraints are not in violation. The sparse prob-
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Figure 2: Average normalized computation times with   �_� confidence interval shown. (a) disk problem class. (b) coin
problem class. (c) shop problem class.

lem is solved by enumerating the Hamiltonian circuits. This
procedure is terminated if the number of backtracking steps
exceeds

A Z/Z � A Z � . The number of iterations performed
at each node is also limited by terminating when the lower
bound does not increase for five consecutive iterations. The
relaxations are solved using the simplex method, despite the
fact that it has an exponential worst-case running time. The
ellipsoid method could be used to solve the relaxation with a
polynomial worst-case time, however, this method tends to
run quite slow (Johnson, McGeoch, & Roghberg 1996). In
fact, the simplex method is commonly used for solving the
relaxation as, in practice, it is expected to run efficiently.

Two subproblems, a relaxation and a sparse problem, are
solved at each node in the CZ-c&s algorithm. The relax-
ation is solved using simplex. The sparse problem is solved
using cplex and we cannot assert that it is a substantially
easier problem to solve than the original. However, for “dif-
ficult” problems in which a substantial amount of the solu-
tion space is explored, in practice we might expect that find-
ing the best solution in a small chunk of the solution space
is substantially easier than finding the optimal solution in
the entire space. (Furthermore, after the first sparse problem
is solved, subsequent sparse problems have the advantage of
having an upper bound provided by the incumbent solution.)
In our experiments, solving the first sparse problem tended
to be the bottleneck. However, as indicated by the perfor-
mance of other algorithms, the time spent solving the sparse
problem tends to be substantially less than the time required
to solve the entire problem outright. For these reasons, we
(cautiously) refer to cut-and-solve as a “linear” search.

Is this method applicable to other problems?
It appears that cut-and-solve might be applicable to other
optimization problems, including Integer Linear Programs
(and additional planning and scheduling problems). There
are four requirements that are apparently necessary for any
hope of this method being useful. First, there must be an
efficient algorithm available for finding a tight relaxation of
the problem. Second, an efficient algorithm is also needed
for solving the sparse problem. Third, a strategy must be
devised for easily identifying succinct cuts that tend to cap-
ture optimal solutions. Finally, it appears that this method

works best for problems that are otherwise difficult to solve.
In these cases, solving sparse problems can be considerably
easier than tackling the entire problem at once.

Conclusions
In this paper, we introduce a search strategy which we refer
to as cut-and-solve. We showed that optimality and com-
pleteness are guaranteed despite the fact that no branching
is used. Being a linear strategy, this technique is immune
to some of the pitfalls that plague search tree methods such
as branch-and-bound and branch-and-cut. Memory require-
ments are nominal, as only the incumbent solution and the
current tightened problem need be saved as the search path
is traversed. Furthermore, there is no need to use techniques
to reduce the risks of fruitlessly searching subtrees void of
any optimal solution.

We have quickly implemented this strategy for solving the
ATSP. Comparisons with ATSP solvers in (Fischetti, Lodi,
& Toth 2002) have been thwarted by a substantial normal-
ization error. However, by using concorde as a baseline,
we are able to sense that our simple implementation is com-
petitive with state-of-the-art solvers.

Lower-bounding modifications for the ATSP have been
well researched and exploited as heuristics. However, to our
knowledge, the only upper-bounding modifications used for
the ATSP are the inclusion and/or exclusion of one or more
arcs. In our efforts to find an unusual, but useful, upper-
bounding modification, we hit upon the idea of setting a sum
of arc decision variables equal to or less than a constant.
This is when the cut-and-solve strategy was realized.

By developing a more systematic approach for exploiting
unusual upper bounds, we may be able to devise other algo-
rithms that may have otherwise been overlooked. We plan
to continue working toward this end.
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