
Heuristic Guidance Measures for Conformant Planning

Daniel Bryce & Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

{dan.bryce,rao}@asu.edu

Abstract

Scaling conformant planning is a problem that has received
much attention of late. Many planners solve the problem as a
search in the space of belief states, and some heuristic guid-
ance techniques have been developed to estimate the distance
between belief states. We claim that heuristic techniques in
the past involved an ad hoc combination of classical plan-
ning heuristics and cardinality measures. We discuss how
to derive heuristics systematically, with the help of planning
graphs, such that the measures reflect the reachability of rele-
vant states within belief states. To demonstrate these ideas we
show how distances between belief states can be estimated by
a set of reachability heuristics. We empirically evaluate their
effectiveness within a conformant regression planner named
CAltAlt.

Introduction
Ever since CGP (Smith & Weld 1998) a series of plan-
ners have been developed for tackling conformant planning
problems – including GPT (Bonet & Geffner 2000), C-
Plan (Castellini, Giunchiglia, & Tacchella 2001), PKSPlan
(Bacchus 2002), Frag-Plan (Kurien, Nayak, & Smith 2002),
HSCP (Bertoli, Cimatti, & Roveri 2001), and KACMBP
(Bertoli & Cimatti 2002). Several of these planners are
extensions of heuristic state search planners that search in
the space of “belief states” (where a belief state is a set
of states, one of which the agent “believes” it is currently
in). Although heuristic search conformant planners are cur-
rently among the best, the question of what should constitute
heuristic estimates for a conformant planner has not yet been
adequately investigated.

Intuitively, it can be argued that the heuristic merit of a
belief state depends on at least two factors–the size of the
belief state (i.e., the uncertainty in the belief state), and the
distance of the individual states in the belief state from the
goal (belief) state. The question of course is how to com-
pute these measures and which are most effective. We argue
that existing planners do not adequately address this ques-
tion, concentrating instead exclusively on one measure or

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

another. For example, in regression search, HSCP picks be-
lief states with high cardinality for expansion, with the in-
tuition that the larger the belief state, the larger the uncer-
tainty. KACMBP adds to HSCP’s heuristic by also mea-
suring reachability of literals. In contrast to these methods,
GPT only considers only admissible reachability informa-
tion.

A related issue in evaluating the effectiveness of heuris-
tics is the many architectural differences between planners.
It is quite hard to pinpoint the global effect of the assump-
tions underlying their heuristics on performance. For ex-
ample, GPT is outperformed by HSCP and KACMBP–but
it is questionable as to whether the credit for this efficiency
is attributable to the differences in heuristics, or differences
in search engines (HSCP and KACMBP use a BDD-based
search).

Our interest in this paper is to systematically evaluate a
spectrum of approaches for computing heuristics for confor-
mant planning. We will start by discussing, in general terms,
what the heuristic estimates should be evaluating in confor-
mant planning. This involves formalizing the notions of dis-
tances between belief states. Once we figure out what infor-
mation the heuristics should be computing, we will then turn
our attention to efficient ways of computing that informa-
tion. We will show that planning graph structures continue
to provide a good substrate for the heuristic computation. To
improve the informedness of the heuristics, we need to track
multiple planning graphs, each corresponding to one of the
possible initial states. We will describe how several pow-
erful planning graph-based heuristics from classical plan-
ning, including “level” and “relaxed plan” (Nguyen, Kamb-
hampati, & Nigenda 2002) can be generalized to the case
of multiple planning graphs. Finally, we will evaluate the
relative advantages of these heuristics in a normalized set-
ting. For this, we use CAltAlt, a regression search planner
that searches in the space of belief states. Our results show
that relaxed plan heuristics derived from multiple planning
graphs are often the best.

Although our main interest in this paper is to evaluate
the relative advantages of a spectrum of conformant plan-
ning heuristics in a normalized setting, we also compare the

best heuristics from this work to existing conformant plan-
ners. Our empirical studies show that planning graph based
heuristics provide accurate guidance compared to cardinal-
ity heuristics as well as the reachability heuristic used by
GPT, and are competitive with BDD-based conformant plan-
ners such as HSCP or KACMBP and GraphPlan-based ones
such as CGP.

The rest of this paper is organized as follows. We present
our work by first explaining the state and action representa-
tion used within CAltAlt, then discuss appropriate heuristic
measures for conformant planning, followed by the set of
heuristics used within CAltAlt for search control, followed
by empirical evaluation, related work, and concluding re-
marks.

State and Action Representation
Our conformant planning formulation uses A* regression
search in the space of belief states over actions with condi-
tional and non-deterministic effects. The planning problem
is P = (D,BSI , BSG) and the domain is D = (L, S,A),
where L is the set of all literals l, S is the set of all states,
and A is the set of actions. BSI and BSG are the respective
initial and goal belief states.

Belief State Representation: As discussed in (Bonet &
Geffner 2000), conformant planning can be seen as a search
in the space of belief states. Given a world represented in
terms of a set of boolean state variables, a belief state BSi

is an arbitrary propositional formula. We consider two spe-
cial canonical representations of BSi – clausal representa-
tion κ(BSi), which is in CNF, and constituent representa-
tion, ξ(BSi), which is in DNF.

Since we’re dealing with partial regression states, BSi

may not explicitly represent all states in a belief state, so
we define ξ̂(BSi) as the complete set of states represented
by BSi.

Using the bomb and toilet with clogging problem, BTC, 1

(McDermott 1987) as a running example for this paper, the
belief state representation of BTC’s initial condition, in
clausal representation, is: κ(BSI) = arm∧¬clog∧(inP1∨
inP2)∧(¬inP1∨¬inP2), or in constituent representation:
ξ(BSI) = (arm∧¬clog∧inP1∧¬inP2)∨(arm∧¬clog∧
inP1∧¬inP2). BTC’s goal state is partial, its clausal rep-
resentation is: κ(BSG) = ¬arm, and its constituent repre-
sentation is: ξ(BSG) = ¬arm. However, its complete set
of states: ξ̂(BSG) = (¬arm ∧ clog ∧ inP1 ∧ ¬inP2) ∨
(¬arm∧clog∧¬inP1∧ inP2)∨(¬arm∧¬clog∧ inP1∧
¬inP2) ∨ (¬arm ∧ ¬clog ∧ ¬inP1 ∧ inP2).

1Bomb in the Toilet with Clogging.For the uninitiated, here are
the arcana of the Bomb in the Toilet family of problems: Bomb in
the Toilet (BT)–the problem includes two packages, one of which
contains a bomb, and a toilet. The goal is to disarm the bomb and
the only allowable actions are dunking a package in the toilet. The
variation “bomb in the toilet with clogging” or BTC says that the
toilet will clog unless it is “flushed” after each “dunking” action.

Action Representation: An action a, of the action set A,
is described in terms of (1) an executability precondition ρ e,
(2) an unconditional effect ϕ0, and (3) several conditional
effects ϕ of the form (ρ =⇒ ε), where the antecedent ρ
and the consequent ε are, in general, formulas. The exe-
cutability precondition ρe, also a formula, of the action must
hold for the action to be executable. We define ϕ0 as the
unconditional effect of an action where ρ0 = � and ε0 is
given.

As an example, the actions for BTC are:
DunkP1 : {ρe : ¬clog, ρ0 : � =⇒ ε0 : clog,

ρ1 : inP1 =⇒ ε1 : ¬arm}
DunkP2 : {ρe : ¬clog, ρ0 : � =⇒ ε0 : clog,

ρ1 : inP2 =⇒ ε1 : ¬arm}
Flush : {ρe : �, ρ0 : � =⇒ ε0 : ¬clog}
Regression: We pose conformant planning by regression as
a search in the space of belief states, starting with the goal
state and regressing it non-deterministically over all relevant
actions. An action is relevant for regressing a belief state if
(1) its unconditional effect is not inconsistent with the belief
state and (2) at least one effect consequent gives a literal that
is present in the belief state.

Following (Pednault 1987), regressing a belief state BS i

over an action a, with conditional effects, involves finding
the executability, causation, and preservation formulas of
BSi w.r.t. a. We define regression in terms of clausal rep-
resentation, but it can be generalized for arbitrary formulas.
The regression of a belief state is a conjunction of the re-
gression of clauses in κ(BSi). Formally, the result BSi′ of
regressing the belief state BSi over the action a is defined
as:2

BSi′ = Regress(BSi, a) = Πa ∧

 ∧

C∈κ(BSi)

∨
l∈C

(
Σ

l
a ∧ IP

l
a

)
 (1)

where

Executability formula (Πa) is the executability precondi-
tion ρe of a. This is what must hold in BSi′ for a to have
been applicable.

Causation formula (Σl
a) for a literal l w.r.t all effects ϕj of

an action a is defined as the weakest formula that must hold
in the state before a such that l holds in BSi. Formally Σl

a

is defined as: 
l ∨

∨
j

ρj

∣∣∣∣∣ εj |= l


 (2)

Preservation formula (IP l
a) of a literal l w.r.t. all effects

ϕj of action a is defined as the weakest formula that must
be true before a such that l is not violated by the effect ε j .

2Note that BSi′ may not be in clausal form after regression
(especially when an action has multiple conditional effects).

Formally IP l
a is defined as:


∧
j

¬ρj

∣∣∣∣∣ εj |= ¬l

 (3)

For example, in the BTC problem we have BS1 =
Regress(BSG, DunkP1) = ¬clog ∧ (¬arm ∨ inP1).
The first clause is the executability formula and the sec-
ond clause is the causation formula for DunkP1’s condi-
tional effect and ¬arm. Regressing BS1 with Flush gives
BS2 = (¬arm∨ inP1) because the executability precondi-
tion of Flush is �, the causation formula is �∨¬clog = �
and (¬arm ∨ inP1) comes through persistence. Finally,
BS3 = regress(BS2, DunkP2) = ¬clog ∧ (¬arm ∨
inP1 ∨ inP2).

Termination: Regression terminates when search node ex-
pansion generates a belief state BSi which is entailed by the
initial belief state BSI . The plan is the sequence of actions
regressed from BSG to obtain BSi.

From our example, we terminate at BS3 because BSI |=
BS3. The plan is DunkP2, F lush,DunkP1.

Belief State Distance Estimation
We will start by discussing what measures are worth estimat-
ing for providing heuristic guidance for conformant plan-
ning through regression. Consider the example in Figure 1;
there are two belief states BS1 and BS2 that we are trying
to assign heuristic measures for the difficulty of reaching
the initial belief state BSI . We would like to estimate D1

and D2, the actual lengths of conformant plans from BS I to
BS1 and BS2, respectively. The arcs on BS2 labelled χ1

and χ2 are showing how state distance measures are com-
bined.

There are several factors to consider and leverage in mak-
ing this estimation of D1 and D2:

1: ξ̂(BSi), the set of states in the belief state.

2: Reachability measures between pairs of individual states,
dij−k , where each pair is a state Sk from BSI and Sj from
BSi, as well as χ1 and χ2, the combination techniques for
the distances of individual states to obtain di, a distance es-
timate to Di.

3: The overlap of independent plans that reach the relevant
states of BSi from states in BSI .

The cardinality of a belief state may be used as a cheap
heuristic that assumes, in regression, that a larger belief state
has more probability of containing the states of the initial
belief state. However, this can be misleading because even
though a belief state is large, we may not be able to extend
it to include the initial states, during regression.

The reachability measures of pairs of states (dij−k) or
pairs of belief states and states (di−k) also reflect how diffi-
cult a conformant plan will be to construct. These d ij−k and

di−k measures can be handled as either numbers estimating
the plan length or sets of actions estimating a plan. Also
important is how to combine the dij−k and di−k measures
to ultimately get the estimate di. We define two combina-
tions: χ1, which uses the dij−k’s to get the di−k measures,
and χ2, which combines the di−k measures to get di. The
applicable operations allowable in χ1 and χ2 for numerical
estimates are minimum, maximum, and average; and for es-
timated sets of actions we can take the minimum cardinality
set, maximum cardinality set, or the union of sets. Note that
the sets of actions can be turned into numerical estimates by
taking the cardinalities of the sets; this necessarily happens
before we get a final number for di.

An important point to note is that in regression not all of
the states Sj ∈ BSi need to be costed with respect to each
of the initial states, only the min-cost reachable Sj for each
Sk ∈ BSI . Whereas, in progression, if there is a single
goal state, then each of the states in the current belief state
must have finite distance to the goal to be useful. However,
the same argument for regression holds in progression when
there are multiple goal states; we only care that each of the
states in the current belief state has finite distance to one of
the goal states. So we would like to take the max of the
distances from the min-cost states to one of the goal states
because some of the states in the current state may not be
able to reach all of the goal states.

Furthermore, of the reachability measures for S j ∈
ξ̂(BSi) there can be much redundancy because the same ac-
tions may be used in many of the individual plans that map
the initial states BSI into BSi, hence plans have high over-
lap. As we will show, keeping sets of actions instead of nu-
merical estimates for the d measures can allow us to reason
about overlap. Planning graphs can aid in finding the sets of
actions that improve the measure of individual plan overlap.

Heuristics

This section provides three sets of heuristics that estimate
these distance computations, alluded to in the previous sec-
tion.

To illustrate the computation of each heuristic, we use
an example from BTC called CBTC,3 where a courteous
package dunker has to disarm the bomb and leave the toi-
let unclogged. This problem is used because the goal state
has two conjuncts, allowing better illustration of heuristic
computation that combines the costs of individual subgoals.
The initial belief state in clausal representation is arm ∧
¬clog ∧ (inP1 ∨ inP2)∧ (¬inP1 ∨ ¬inP2), and the goal
is ¬clog ∧ ¬arm. The optimal action sequences to reach
BSG from BSI is: DunkP1, F lush,DunkP2, F lush,
or DunkP2, F lush,DunkP1, F lush, thus the optimal
heuristic estimate is h∗(BSG) = 4 because in either plan
there are four actions.

3Courteous BTC.

h(BS1) = d1

h(BS2) = d2

I1 : d11−1

I3 : d11−3

I2 : d11−2

I2 : d12−2

I3 : d12−3

I1 : d13−1

I2 : d13−2

I3 : d13−3

I1 : d14−1

I2 : d14−2

I3 : d14−3

I1 : d21−1

I2 : d21−2

I3 : d21−3

I1 : d12−1

I1 : d2−1

I2 : d2−2

I3 : d2−3

I1 : d1−1

I2 : d1−2

I3 : d1−3

di : distance from BSi to BSI

di−k: distance from BSi to state k

k - state in BSI

i - belief state
j - state in BSi

I3

I2

I1

D2

D1

I1 : d22−1

I2 : d22−2

I3 : d22−3

BS2

BS1

dij−k: distance from state k to j

χ2

χ1: Combination of dij−k values

χ2: Combination of di−k values

to compute di−k value

to compute di value

Di: # of conformant actions
from BI to Bi

BSI

S2

S1

S3

S4

S2

χ1

χ1
χ1

S1

Figure 1: Conformant Plan Distance Estimation in Belief Space

We shall assume that by default all of the heuristics used
in CAltAlt are within the context of weighted A* search (cf.
(Bonet & Geffner 1999)).

Cardinality
The idea behind cardinality is to count the number of states
that are represented by a belief state. This can be useful in
regression because the more states that are in a belief state
the better chance that the initial states are in the belief state.
The means by which we make this measure is to take a belief
state and find its set of constituents, ξ(BSi), approximating
ξ̂(BSi), and count them. Formally,

hcard(BSi) =| ξ(BSi) |.
For instance in CBTC, hcard(BSG) = 1.

Single planning graph heuristics
The base approach for using planning graphs for conformant
planning heuristics is to just take all the literals in the ini-
tial belief state and insert each literal into the initial layer
of the planning graph, ignoring interactions between possi-
ble worlds. Thus, for CBTC, the initial level of the plan-
ning graph is {arm,¬clog, inP1, inP2,¬inP1,¬inP2},
ignoring the “xor” connective between inP1 and inP2.
Once the planning graph is computed, the level lev(l) at
which a particular literal appears in the planning graph is
later used at its cost. Notice, χ2 is not applicable because

there is only one di−k value estimated by a single planning
graph.

The most simple conformant planning heuristic to com-
pute on a planning graph is

hmax(BSi) = max
C∈κ(BSi)

cost(C), where

cost(C) = min
l∈C

(lev(l)).

Here we estimate χ1 when constructing the cheapest set
of literals and taking the max cost literal. This is an under-
estimate of the most distant state. Another heuristic is:

hsum(BSi) =
∑

C∈κ(BSi)

cost(C)

It sums the costs of the literals of the closest estimated
state in the belief state to estimate χ1. Other heuristics con-
sidering mutex information can be computed on a single
graph, and we have investigated several of them. They are
not discussed here for lack of space.

The main disadvantages of single planning graph heuris-
tics is that they make it hard to reason about the overlap of
independent plans from the initial states, and make it diffi-
cult to identify consistent states because the graph is built
from an inconsistent union of literals.

Multiple planning graph heuristics

Single graph heuristics are mostly uninformed because the
initial belief state corresponds to multiple possible states.

The lack of accuracy is because single graphs are often not
able to capture propagation of world specific support infor-
mation. Consider, in BTC, if DunkP1 was the only action
we could say that ¬arm is reachable in level 1, but in fact
the cost of ¬arm is infinite (since there is no DunkP2 to
support ¬arm from all initial worlds), and there is no con-
formant plan.4

To account for this and sharpen the heuristic estimate
by considering support across all possible worlds, multiple
planning graphs Γ are considered. Given the initial belief
state BSI , we grow a planning graph γk ∈ Γ for each con-
stituent of ξ(BSI). With multiple graphs, the achievability
cost of a belief state is computed in terms of its achievabil-
ity in all the constituent graphs. We now can estimate many
di−k measures and need to define χ2 methods to combine
them.

For example in BTC, there would be two graphs built
(Figure 2). They would have the respective conjunctive ini-
tial levels:

I1 = {arm,¬clog, inP1,¬inP2}
I2 = {arm,¬clog,¬inP2, inP2}
In the graph for the first world, I1, ¬arm comes in only

through DunkP1 at level 1. In the graph for the second
world, I2, ¬arm comes in only through DunkP2 at level 1.
Thus, the multiple graphs show which actions in the differ-
ent worlds contribute to the same fact’s support.

There are several ways to compute the achievability cost
of a belief state with multiple graphs, as follows:

Sum-max (hsummax): The easiest heuristic to compute with
multiple planning graphs is hsummax . The hsummax(BSi)
computes the sum of the cost of the clauses in κ(BSi) for
each graph γk ∈ Γ and takes the maximum. Formally:

hsummax(BSi) = max
γk∈Γ

(
hsumγk

(BSi)
)

Here we estimate χ1, and χ2 = maximum. hsummax con-
siders the minimum cost, relevant literals of a belief state
(those that are reachable given an initial state for each graph
γk) to get di−k measures. The max is taken because the es-
timate accounts for the worst (i.e., the plan needed in the
most difficult world to achieve the subgoals). This max nul-
lifies the chance of getting any overlap information between
the worlds, but taking an average or sum wouldn’t help ei-
ther because there is no way to tell overlap by looking at the
numerical estimates for each world.

From the CBTC, the goal is BSG = ¬clog ∧ ¬arm.
Computing the hsummax(BSG) (Figure 2) finds hsumγ1

=
1 (denoted by circled facts in the top graph), h sumγ2

= 1
(denoted by the circled facts in the bottom graph), and the
max, hsummax(G) = 1.

Level-max (hlevelmax): Similar to hsummax , hlevelmax is
found by first finding hlevelγk

to get di−k for each graph

4If any of the planning graphs does not “reach” all of the goals,
then this is an indication that a conformant plan does not exist (as
would be the case with only the DunkP1 action in BTC2).

inP1

~clog ~clog

inP1 inP1

~clog

clog clog

~arm~arm

armarm

Flush

DunkP1

DunkP2

DunkP1

DunkP2

Flush

arm

arm

~clog

inP2 inP2 inP2

~clog ~clog

arm arm

Flush Flush

~arm ~arm

clogclog
DunkP2 DunkP2

DunkP1 DunkP1

~inP2~inP2 ~inP2

~inP1~inP1~inP1

0

0

1 1

11

2

22

2

g2

g1

Figure 2: Multiple planning graphs for CBTC, with
facts used for hsummax(BSG) circled, facts used for
hlevelmax(BSG) in boxes, and actions for hRPmax(BSG)
and hRPunion(BSG) in ovals.

γk ∈ Γ, and then taking the max of this value across the
graphs. hlevelγk

(BSi) is computed by taking the minimum
among the s ∈ ξ(BSi), of the first level (lev(s)) in the plan-
ning graph where literals of s are present with none of them
marked mutex. Formally:

hlevelγk
(BSi) = min

s∈ξ(BSi)
(lev(s))

hlevelmax(BSi) = max
γk∈Γ

(hlevelγk
(BSi))

Here we use χ1 = minimum to get hlevelγk
, then χ2 =

maximum for hlevelmax . Note that this heuristic is admissi-
ble. By the same reasoning as in classical planning, the first
level where all the subgoals are present and non-mutex is an
underestimate of the true cost of a state. This holds for each
of the graphs. Taking the max accounts for the most difficult
world in which to achieve a constituent of BS i and is thus a
provable underestimate of h∗. Note, GPT’s heuristic (Bonet
& Geffner 2000) can be shown to be similar to h levelmax .

For the CBTC goal BSG = ¬clog ∧ ¬arm, computing
the hlevelmax (BSG) (Figure 2) finds hlevelγ1

= 2 (denoted
by level containing facts inside boxed for the top graph),
hlevelγ2

= 2 (denoted by level containing facts inside boxed
for the top graph), and the max, h levelmax(BSG) = 2.

RP-max (hRPmax): Following the same maximization logic
as the hsummax and hlevelmax heuristics for χ2, but to ac-
count for the actual number of actions used, hRPmax is
computed by finding the relaxed plan from the constituent
s ∈ BSi that contributes to the hlevelγk

(BSi) for each

γk ∈ Γ and taking the max of the number of actions in the
relaxed plan.

The relaxed plan for a belief state BSi is computed by
a backward chaining search on the planning graph. We
start at the constituent s ∈ ξ(BSi), such that s is the con-
stituent at level b, computed in hlevelγk

(BSi) = b. From
s at level b, for each subgoal l ∈ s, a supporting action
is selected (ignoring mutexes) from the bth action level.
Once, a supporting set of actions (stepb) is determined, the
needed preconditions for the actions in stepb are added to
the list of subgoals to support for level b − 1. Then, we
look at level b− 1. The algorithm repeats and continues un-
til the initial level is reached. Thus, a relaxed plan is the
set RPγk

={step0,γk
, ..., steps,γk

, ..., stepb,γk
}. Formally,

when hlevelγk
(BSi) = b:

hRPmax(BSi) = max
γk∈Γ

(
b∑

s=0
| steps,γk

|
)

Here χ1 = minimum is used to get the cheapest estimated
relaxed plan for each initial state, then χ2 = maximum is
used to get di. This gives an inadmissible estimate for the
number of actions to reach the easiest constituent state in the
most difficult world.

For CBTC, the goal is BSG = ¬clog∧¬arm. Comput-
ing the hRPmax(BSG) (Figure 2) finds hRPγ1

= 3 (step1 =
Flush, step2 = {DunkP1, F lush}; actions in ovals for
the top graph), hRPγ2

= 3 (step1 = Flush, step2 =
{DunkP2, F lush}; actions in ovals for the bottom graph),
and the max, hRPmax(BSG) = 3. Notice that this is the
closest multiple graph estimate, so far, for h∗(BSG), but it
can be improved.

RP-union (hRPunion): Observing the relaxed plans com-
puted by hRPmax in the BTC example, we see that the re-
laxed plans extracted from each graph are different. This
information can be leveraged to account for the interaction
or overlap of the two initial worlds. Notice, that step2 for
both graphs contained a Flush action irrespective of which
package the bomb is in. Also, step2 contains a DunkP1
for the first graph, and DunkP2 for the second graph.
Now, taking the union of the two relaxed plans, would give
step2 = {DunkP1, DunkP2, F lush}, thus accounting
for the action that is the same between possible worlds and
the actions that differ.

In order to get the union plan, first a relaxed plan is com-
puted for each graph γk ∈ Γ, as in hRPmax . Then, starting
from the last action level (hlevelmax (BSi)) and repeating for
each step until the first level, we union the sets of actions for
each relaxed plan at each level into another relaxed plan.
The relaxed plans are right-aligned, hence the unioning of
steps proceeds from the last step of each relaxed plan to cre-
ate the last step of stepb,union, then the second to last step
for each relaxed plan is unioned for stepb−1,union and so on.
Then the sum of the numbers of actions of the each step in
the RPunion is used as the heuristic value. Formally, when
hlevelmax (BSi) = b:

hRPunion(BSi) =
b∑

s=0
| steps,union |

Here χ1 = minimum, and χ2 = union.
hRPunion doesn’t follow the same form as the rest of the

techniques, rather it estimates di by finding the relaxed plans
corresponding to minj(dij) for each graph γk, then unions
the relaxed plans to get the overlap of plans for relevant
states.

The insight of this heuristic is that taking the union of
action levels of relaxed plans between graphs will account
for the same action being used at the same level in multiple
worlds. Thus the unioned relaxed plan contains a represen-
tative set of overlapping actions for achieving the relevant
states in a belief state for all initial states.

For the CBTC goal BSG = ¬clog ∧ ¬arm, comput-
ing the hRPunion(BSG) (Figure 2) finds RPγ1 = {step1 =
Flush, step2 = {DunkP1, F lush}}, RPγ2 = {step1 =
Flush, step2 = {DunkP2, F lush}}, and RPunion =
{step1 = Flush, step2 = {DunkP1, DunkP2, F lush}}.
Thus, hRPunion(BSG) = 4, which is equal to the optimum
estimate h∗(BSG).

Reducing Heuristic Cost

Searching in the space of belief states complicates heuris-
tic computation by us having to reason about the reachabil-
ity of sets of states from sets of states. We want to find a
state within BSi that is the easiest to reach, with respect to
each initial state. In doing this, an efficiency issue is how
to find the belief state to state measure (di−k) as the mini-
mum among the state to state measures (dij−k). Up to this
point, we’ve enumerated all of the dij−k values to find the
minimum, but this is costly, so we present two techniques
for reducing the cost in finding di−k .

• Cost the cheapest set of literals to get only one dij−k that
is used for di−k. This corresponds to χ1 being an esti-
mate.

• Cost the estimated cheapest constituent s to get only one
dij−k that is used for di−k. This also corresponds to χ1

being an estimate.

The first idea is to combine the cost of a set of literals that
satisfies the clauses in the clausal representation of a belief
state. This set of literals isn’t checked for consistency, and
may not even represent a valid state. It is found by assuming
χ1 is an estimated minimum and taking the min cost literal
from each clause of κ(BSi) (not checking the resulting set
for consistency). This is used for the single planning graph
heuristics as well as hsummax .

The second idea is to construct only one state, thus avoid-
ing the DNF expansion cost of the enumerative technique. 5

The state we construct is partially specified by all of the unit

5Notice, that using this technique for a single planning graph
doesn’t make sense because consistent states cannot be identified
on a planning graph built from unioned initial states.

clauses in the clausal representation of the belief state. How-
ever there still remains the choice of an appropriate subset
of the literals of the non-unit clauses to complete the state.6

The appropriate subset is chosen such that the constructed
state is the estimated easiest to reach of the set. Here we
avoid costing | ξ(BSi) | −1 constituents. The greedy ap-
proach to selecting the subset of literals from the non-unit
clauses is to take the single literal from each clause that ap-
pears at the lowest level in the planning graph. The algo-
rithm for this selection is as follows:
(1) Sort the literals in each non-unit clause by increasing
level of first appearance.
(2) Sort the set of non-unit clauses in decreasing order, using
the level of the first element of the clause as the key.
(3) While the set of non-unit clauses is non-empty and the
current partial state is a consistent state (i.e. the literals of
the partial state appear non-exclusive at some level in the
graph).

(a) Insert the first literal of the first non-unit clause into
the partial state.

(b) Remove all clauses from the list of non-unit clauses
that contain the literal from (a).
(4) If the complete constructed state or partial state is not
consistent, then the cost of the belief state is set to infinity,
otherwise the cost of the belief state is the cost of the con-
structed state.

Empirical evaluation

This section presents the results7 of our experimentation
with the heuristics within CAltAlt. We also compare
with the competing approaches (CGP, GPT, HSCP, and
KACMBP) for several domains and problems.

The implementation of CAltAlt uses several off the shelf
planning software packages. Figure 4 shows a diagram of
the system architecture. The pieces of CAltAlt are the IPC
parser for PDDL 2.1 , the HSP-r search engine (Bonet &
Geffner 1999), and the IPP planning graph (Koehler et al.
1997). The custom parts of the implementation include the
action representation, belief state representation and regres-
sion operator, not to mention the heuristic calculation.

In addition to the standard domains used in conformant
planning–such as Bomb-in-the-Toilet variants, we also de-
veloped two new domains. We chose these domains because
they demonstrate higher difficulty in the attainment of sub-
goals, having many plans of varying length.

The Rovers domain is a conformant adaptation of the
analogous domain of the IPC. The added uncertainty to the
initial state is conditions that rule whether an image objec-
tive is visible from various vantage points due to weather.

6Only one literal from each clause is taken because selecting
more literals will only increase the cost of the state.

7All tests were run in Linux on a Pentium 4 1.6GHz w/512MB
RAM.

A* Search
Engine
(HSP-r)

Heuristics

Planning
Graph(s)
(IPP)

Belief
States

Off – The - Shelf Custom

IPC PDDL
Parser

S
e
a
r
c
h
e
s

Gu
id
ed

By

Input forInput for

Extracted

From

Figure 4: Architecture diagram of CAltAlt.

The goal is to upload an image of an objective, thus a confor-
mant plan requires visiting all of the possible vantage points
and taking a picture. Significant negative interaction of ac-
tions comes in through having to calibrate the camera on an
objective before taking the picture, but navigating the rover
will de-calibrate the camera.

The Logistics domain is a conformant adaptation of
the classical Logistics domain where trucks and airplanes
move packages. The uncertainty is the initial locations of
packages. The problems scale by adding packages and
cities. Logistics shows that conformant planning problems
can require reachability heuristics, but the cost of computing
the heuristic must be considered in relation to the benefit of
the search.

Figure 3 shows the performance of the heuristics within
CAltAlt where the heuristic weight is 5 for all heuristics.
For Rovers, hRPunion performs well, but the unioning ap-
proach for χ2 may be a bit more costly than simply taking a
maximum, as in hRPmax . However, in Logistics the union-
ing is worth the effort because it reduces the overall search
time significantly over maximization. Furthermore, using
sets of actions as the d values proves to be more informed
than simply using numerical estimates. With the exception
of hlevelmax , the heuristics based on numerical estimates are
largely uninformed on the Logistics and Rovers domains.
The reason these other heuristics do not provide as much
relevant information is that they are based on single plan-
ning graphs; this means that we’re not considering overlap
of individual world plans or mutex interactions of literals.
Notice, that hcard doesn’t solve any of the problems in these
two domains because, as we indicated in section 3, cardinal-
ity does not provide accurate reachability information that is
necessary in more complex domains.

Problem HCard HMax HSum HSumMax HLevelMax HRPMax HRPMax* HRPUnion

Rover1 - - - - 129/5 147/5 145/5 145/5
2 - 3390/8 182272/8 13701/8 4751/8 420/9 420/9 331/9
3 - 23857/10 18185/10 13542/10 5985/10 494/11 489/11 636/11
4 - - - 736663/13 - 5173/15 5118/15 15530/15

Logistics1 - 1217/9 147/9 323/9 198/9 343/11 333/11 321/11
2 - - 26438/15 24638/15 2844/15 11312/17 8979/17 6144/19
3 - - 2611/14 10079/14 1973/14 7952/17 7536/17 1723/17
4 - - - - 9118/18 306615/22 241311/19 164748/26

BiT2 17/2 3/2 3/2 3/2 5/2 10/2 11/2 11/2
10 78/10 3920/10 3921/10 2737/10 5118/10 10560/10 10253/10 462/10
20 364/20 - - - - - - 3380/20
30 - - - - - - - 41114/30
40 - - - - - - - 307590/40

BiTC2 6/3 4/3 4/3 5/3 11/3 16/3 16/3 16/3
10 106/19 9798/19 10072/19 5001/19 10016/19 197191/19 179249/19 801/19
15 353/29 - - - - - - 1987/29
20 - - - - - - - 4077/39
25 - - - - - - - 8218/49
30 - - - - - - - 66287/59

Figure 3: This table shows the performance of the planning graph heuristics within CAltAlt. Legend – [Search time (ms)/Plan
length], “-”: Out of Memory or Out of Time.

However, hcard does perform better in the traditional con-
formant planning domains: BT , BTC, as expected. The
surprising thing is that hcard, while outperforming in easier
problems, does not scale as well as hRPunion . hRPunion ’s ad-
vantage over hcard is that it considers the union of non-unit
costs of the minimum-cost constituents s ∈ ξ(BSi) in de-
termining reachability estimates rather than the sum of unit
costs of ξ(BSi). The advantage of hRPunion over the other
planning graph heuristics in these domains is that it actu-
ally counts the number of actions that are needed among all
worlds. Simply considering a max among worlds gives no
discernible information about reachability because among
individual worlds the initial states are equidistant.

Figure 3 also shows a comparison of hRPmax when using
the enumerative and the estimated minimum state technique
(hRPmax∗) to illustrate the speedup of not explicitly expand-
ing ξ(BSi). The benefit of estimating the minimum cost
constituent state appears in problems where there are many
clauses in the clausal representation of a belief state, hence
ξ̂(BSi) is large, such as in Logistics. However, the gain is
small in problems were uncertainty is more limited.

Comparisons to other planners: Although this work is
aimed at giving a general comparison of heuristics for con-
formant planning, we also present a comparison of two
heuristics within CAltAlt to some of the other leading ap-
proaches to conformant planning. Note, since each approach
uses a different planning representation (BDDs, GraphPlan,
or explicit state space), and not all of which even use heuris-
tics, it is hard to get a standardized comparison of heuristic

effectiveness. The problems for each planner are expressed
with binary variables. Although, some of the planners sup-
port multi-valued variable encodings, we chose to examine
only binary to get a levelled comparison among the compet-
ing approaches. Figure 5 compares CGP, GPT, HSCP, and
KACMBP with hRPunion with respect to run time and plan
length.

An observation independent of the planning substrate is
the optimality of plans. Optimality can be ensured by us-
ing admissible heuristics, but of the heuristic approaches
that are inadmissible it is interesting to note that HSCP and
KACMBP tend to generate plans that are highly in-optimal
with respect to plans generated by CAltAlt using hRPunion

in the Rovers and Logistics domains.
For Rovers, hRPunion provides the best guidance by

outperforming CGP, GPT, HSCP, and KACMBP (on some
problems). GPT builds a model of over 10000 states for
Rovers1, and cannot scale for the other versions of Rovers.
CGP has trouble constructing its planning graphs as the con-
formant depth of the goal increases. The bi-level planning
graphs in CAltAlt can handle large domains better than
CGP’s planning graphs, and thus scale much better.

Logistics provides a better means of comparison. The
first thing we see is that HSCP’s cardinality heuristic, sim-
ilar to hcard, does not scale well. Yet HSCP does better
than hcard, indicating that the planning substrate, opposed to
the heuristic, may be responsible for the performance. Sec-
ond, Logistics can have relatively complex planning graphs
and as problems scale to include more initial states, multiple

Problem CGP GPT HSCP KACMBP HRPUnion

Rover1 135/5 25960/5 4395/5 100/5 145/5
2 5788/7 - - 14609/8 331/9
3 - - - 14916/12 636/11
4 - - - 14525/26 15530/15

Logistics1 64/8 69/9 561/9 188/10 321/11
2 1323/11 580/15 - 863/33 6144/19
3 168/10 262/11 - 2576/35 1723/17
4 4559/14 4756/18 - 15225/86 164748/26

BT2 2/1 42/2 8/2 16/2 11/2
10 63/1 234/10 16/10 25/10 462/10
20 1032/1 - 35/20 127/20 3380/20
30 5492/1 - 70/30 373/30 41114/30
40 16005/1 - 137/40 877/40 307590/40

BTC2 2/3 92/3 14/3 21/3 16/3
10 - 288/19 39/19 72/19 801/19
15 - 34280/29 162/29 336/29 1987/29
20 - - 160/39 330/39 4077/39
25 - - 479/49 1018/49 8218/49
30 - - 484/59 1020/59 66287/59

Figure 5: This table shows the performance of CGP, GPT, HSCP, KACMBP in comparison with hRPunion . Legend – [Search
time (ms)/Plan length], “-”: Out of Memory or Out of Time.

planning graphs become less attractive. This issue is ad-
dressed in the following discussion.

The BT and BTC domains show that CAltAlt is com-
petitive with CGP and GPT, but is dominated by HSCP and
KACMBP with respect to handling common structure of
problems.

Related Work
The recent interest in conformant planning can be traced to
CGP (Smith & Weld 1998), a conformant version of Graph-
Plan, here the graph search is conducted on several plan-
ning graphs, each constructed from one of the possible initial
states. More recent work on C-plan (Castellini, Giunchiglia,
& Tacchella 2001) and Frag-Plan (Kurien, Nayak, & Smith
2002) generalize the CGP approach by ordering the searches
in the different worlds such that the plan for the hardest to
satisfy world is found first, and is then extended to the other
worlds. Although CAltAlt utilizes planning graphs similar
to CGP and Frag-plan, in contrast to them, it only uses them
to compute reachability estimates. The search itself is con-
ducted in the space of belief states.

Another strand of work models conformant planning as a
search in the space of belief states. This started with Gene-
sereth & Nourbakhsh (1993), who concentrated on formu-
lating a set of admissible pruning conditions for control-
ling search. There were no heuristics for choosing among
unpruned nodes. GPT (Bonet & Geffner 2000) extended
this idea to consider a simple form of reachability heuris-
tic. Specifically, in computing the estimated cost of a be-

lief state, GPT assumes that the initial state is fully observ-
able. The cost estimate itself is done in terms of reacha-
bility (with relaxed dynamic programming rather than plan-
ning graphs). GPT’s reachability heuristic is similar to our
hlevelmax heuristic because they both underestimate the cost
of the farthest (max distance) state by looking at a deter-
ministic relaxation of the problem. In comparison to GPT,
CAltAlt can be seen as using heuristics that do a better job
of considering the cost of the belief state across the various
possible worlds.

A sub-strand of search in belief states is the MBP-family
of planners—CMBP, HSCP (Bertoli, Cimatti, & Roveri
2001) and KACMBP (Bertoli & Cimatti 2002). In compar-
ison to CAltAlt, the MBP-family of planners all represent
belief states in terms of binary decision diagrams, and ac-
tion application is modelled as modifications to the BDDs.
CMBP and HSCP support both progression and regression
in the space of belief states, while KACMBP is a progres-
sion planner. While CMBP concentrated on efficient BDD
manipulations, HSCP employs cardinality heuristic in addi-
tion. Before computing heuristic estimates, KACMBP pro-
actively reduces the uncertainty (disjunction) in the belief
state by taking actions that effectively force the agent into
states with reduced uncertainty. The motivation for this ap-
proach is that applying heuristics to belief states containing
multiple states may not give accurate enough direction to
the search. While reducing the uncertainty seems to be an
effective idea, we note that (a) not all domains may contain
actions that reduce belief state uncertainty and (b) the need

for uncertainty reduction may be reduced when we have
heuristics that effectively reason about the multiple worlds
(viz., our multiple planning graph heuristics). Nevertheless,
it would be very fruitful to integrate knowledge goal ideas of
KACMBP and the reachability heuristics of CAltAlt to han-
dle domains that contain both high uncertainty and costly
goals.

In contrast to these domain-independent approaches that
only require models of the domain physics, PKSPlan (Bac-
chus 2002) is a forward-chaining knowledge-based planner
that requires richer domain knowledge.

Finally, CAltAlt is also related to, and an adaptation of
the work on reachability heuristics for classical planning, in-
cluding AltAlt (Nguyen, Kambhampati, & Nigenda 2002),
FF (Hoffmann & Nebel 2001) and HSP-r (Bonet & Geffner
1999).

Conclusion

With the intent of scaling conformant planning to domains
where reachability of subgoals is a non-trivial search prob-
lem, we have:

1. Discussed what the heuristic measures for conformant
planning that should be estimating.

2. Shown how to compute such heuristic measures on plan-
ning graphs when using a factored representation of belief
states.

3. Provided empirical comparisons of these measures.

The best heuristics reported in this paper are based on
tracking multiple planning graphs. Although effective, the
multiple graph heuristics do suffer from certain shortcom-
ings: we need to track one graph for each potential initial
state (although we do have the option of ignoring some of
the initial states at the expense of lower quality of heuris-
tic). The multiple planning graphs also have a large amount
of redundancy when the possible worlds are quite similar.
To overcome these disadvantages, we have recently pursued
an idea called labeled planning graphs, which uses a single
condensed graph. The literals and actions of the condensed
graph would be labeled to indicate the worlds in which they
are supported. When computing heuristic costs, a literal’s
level is not the first level where it appears, but the first level
where its label indicates it has full support in every world.
A forthcoming companion paper (Bryce, Kambhampati, &
Smith 2004) reports on the results from this investigation.

Acknowledgements: We thank Minh B. Do, Romeo
Sanchez, Terry Zimmermam, and Satish Kumar Thittama-
ranahalli for helpful discussions and feedback. We also
thank David Smith and Piergiorgio Bertoli for help with the
CGP and MBP planners. This research is supported in part
by the NASA grants NCC2-1225 and NAG2-1461, and the
NSF grant IIS-0308139.

References
Bacchus, R. P. P. F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In
Artificial Intelligence Planning Systems, 212–221.

Bertoli, P., and Cimatti, A. 2002. Improving heuristics for
planning as search in belief space. In Artificial Intelligence
Planning Systems, 143–152.

Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
search + symbolic model checking = efficient conformant
planning. In ijcai.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP, 360–372.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Artificial
Intelligence Planning Systems, 52–61.

Bryce, D.; Kambhampati, S.; and Smith, D. 2004. Confor-
mant planning with a labelled uncertainty graph. Submitted
for publication.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2001.
Improvements to sat-based conformant planning. In 6th
European Conference on Planning.

Genesereth, M. R., and Nourbakhsh, I. R. 1993. Time-
saving tips for problem solving with incomplete informa-
tion. In Proceedings of the 11th National Conference on
Artificial Intelligence, 724–730. Menlo Park, CA, USA:
AAAI Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.

Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset. Tech-
nical Report report00088, IBM.

Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-
based conformant planning. In Artificial Intelligence Plan-
ning Systems, 153–162.

McDermott, D. 1987. A critique of pure reason. Compu-
tational Intelligence 3(3):151–237.

Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73–123.

Pednault, E. P. D. 1987. Synthesizing plans that contain
actions with context-dependent effects. Technical Memo-
randum, AT&T Bell Laboratories, Murray Hill, NJ. (sub-
mitted to the Journal of Artificial Intelligence).

Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Proceedings of the 15th National Conference on
Artificial Intelligence (AAAI-98) and of the 10th Confer-
ence on Innovative Applications of Artificial Intelligence
(IAAI-98), 889–896. Menlo Park: AAAI Press.

