
Conformant Planning via Heuristic Forward Search: A New Approach

Ronen I. Brafman
Dept. of Computer Science

Ben-Gurion University
Beer-Sheva 84105, Israel

Jörg Hoffmann
Dept. of Computer Science
Albert-Ludwigs University
79110 Freiburg, Germany

Abstract

Conformant planning is the task of generating plans given un-
certainty about the initial state and action effects, and with-
out any sensing capabilities during plan execution. The plan
should be successful regardless of which particular initial
world we start from. It is well known that conformant plan-
ning can be transformed into a search problem in belief space,
the space whose elements are sets of possible worlds. We in-
troduce a new representation of that search space, replacing
the need to store sets of possible worlds with a need to rea-
son about the effects of action sequences. The reasoning is
done by deciding solvability of CNFs that capture the action
sequence’s semantics. Based on this approach, we extend the
classical heuristic planning system FF to the conformant set-
ting. The key to this extension is the introduction of approx-
imative CNF reasoning in FF’s heuristic function. Our ex-
perimental evaluation shows Conformant-FF to be superior
to the state-of-the-art conformant planners MBP, KACMBP,
and GPT in a variety of benchmark domains.

Introduction
Conformant planning is the task of generating plans given
uncertainty about the initial state and action effects, and
without any sensing capabilities during plan execution. The
plan should be successful (achieve all goal propositions) re-
gardless of which particular initial world we start from and
which action effects occur.

Conformant planning can be transformed into a search
problem in the space of belief states, i.e., the space whose
elements are sets of possible world states. This way, our
uncertainty about the true current world state is modeled
via the set of world states that we consider possible at
this time. (Throughout the paper, we stick to this dis-
tinction between world states and belief states.) Bonet
and Geffner (2000) introduced the idea of planning in be-
lief space using heuristic forward search. But the num-
ber of possible worlds in a belief state is typically large –
even in simple examples like the infamous Bomb-in-the-
toilet problem, there are exponentially many worlds in the
initial belief state – and so Bonet and Geffner’s system
GPT, which explicitly represents these states, usually fails to
scale up. In their MBP system, Bertoli and Cimatti (2000;
2002) tackle this problem by using BDDs to represent the
belief states. This often works better, but the size of the con-
structed BDDs is still prohibitive for scaling in many cases.

In this paper we suggest a third, lazy, approach to repre-
sent belief states. We observe that, for conformant planning,
it suffices to know the propositions that are true in the in-
tersection of the worlds contained in a belief state – only
these propositions will be true no matter what initial world
we start from (it should be noted that GPT and MBP are ca-
pable of doing much more than conformant planning). An
action sequence is a conformant plan iff it leads to a belief
state where the intersection of the worlds contains all goal
propositions. In our framework, a belief state s is repre-
sented just by the initial belief state representation together
with the action sequence P that leads to s. To check for ful-
fillment of the goal and of action preconditions, we then test,
for each proposition p, if it is contained in the intersection
of the worlds in s, i.e., if it is always true after executing
P . We say that such propositions are known in s. Doing the
test for a proposition is hard in general; we show the corre-
sponding decision problem to be co-NP complete. Our im-
plementation performs the reasoning by deciding solvability
of a CNF formula that captures the semantics of the action
sequence P .

In comparison to the belief state representations used in
GPT and MBP, our approach trades space for time: assume
the planner faces a belief state s and an applicable action a,
and wants to know what the outcome s′ of applying a to s
would be. If, like in GPT and MBP, the planner maintains a
complete knowledge of s in memory then the computation
can be done based exclusively on that knowledge. In our
approach, however, the planner has no knowledge about s
in memory other than the known propositions (and the path
to s). To determine the known propositions for s′, the plan-
ner has to reason about the entire action sequence leading to
s′, including those actions that lead to s. Our intuition is
that modern SAT solvers, which can easily handle problem
instances with tens of thousands of variables and clauses,
will have little trouble reasoning about the effects of an ac-
tion sequence if the possible interactions are not overly com-
plex. Indeed, this intuition is supported quite impressively
by excellent results we obtained in a variety of benchmark
domains using a completely naive DPLL implementation as
the underlying SAT solver.

While our representation of belief states is relatively ef-
ficient, a blind traversal of the search space is still infea-
sible due to the combinatorial explosion in possible action



sequences. In classical planning (with no uncertainty about
the initial state or action effects), this problem has been tack-
led most successfully by using heuristic functions based on
a relaxation of the planning task, where the relaxation is to
assume that all delete lists are empty. To each search state
during, e.g., a forward search, a relaxed plan is computed.
The length of the relaxed plan provides an, often very in-
formative, estimate of the state’s goal distance. FF (Hoff-
mann & Nebel 2001) is one particularly successful system
that uses this technique. Beside the search space representa-
tion, the main contribution of our work is the adaptation of
FF’s heuristic function to the conformant setting. We enrich
FF’s relaxed planning process by an efficient reasoning tech-
nique that uses a stronger version of the CNF formula that
captures the true semantics of the action sequence leading to
the search (belief) state. The stronger formula we use is a
2-CNF projection of the original formula. The implication
graph (Aspvall, Plass, & Tarjan 1979) of this 2-CNF formula
supports linear time reasoning, and is naturally embedded
into the relaxed planning process used by FF to compute its
heuristic function.

Our implementation, which we call Conformant-FF, is
based on the FF code. Except for the necessary changes
to deal with uncertainty, Conformant-FF is identical to FF.
Our experimental results in a number of traditional confor-
mant benchmarks show that Conformant-FF is competitive
with the state-of-the-art conformant planner MBP in most
of these domains, scaling in fact much better in some of
them. And while on traditional domains Conformant-FF
is typically not as fast as KACMBP, a more recent version
of MBP geared specifically to conformant planning (Bertoli
& Cimatti 2002), on traditional domains, our approach has
the potential to combine the strengths of FF with confor-
mant abilities in domains that combine classical and con-
formant aspects. In fact, in a number of classical plan-
ning benchmarks enriched with uncertainty, Conformant-FF
shows fine scalability, dramatically outperforming MBP as
well as KACMBP (Bertoli & Cimatti 2002) and GPT (Bonet
& Geffner 2000).

The paper is organized as follows. Section 2 briefly de-
scribes the planning framework we consider. Section 3 de-
scribes the search space representation and computation of
known propositions. Section 4 explains our extension of
FF’s heuristic function, Section 5 explains how we avoid
repeated search states. Section 6 gives some implementa-
tion details and our empirical results, Section 7 concludes
the paper with a discussion of related and future work.

In a longer technical report we provide a more de-
tailed description of Conformant-FF, explaining vari-
ous optimizations, and how Conformant-FF can be ex-
tended to deal with non-deterministic effects. Here,
we only deal with uncertainty about the initial state.
The report is available at http://www.informatik.uni-
freiburg.de/∼hoffmann/cff-report.ps.gz.

Planning Background
The conformant planning framework we consider adds un-
certainty to a subset of the classical ADL language. The

subset of ADL we consider is (sequential) STRIPS with con-
ditional effects, i.e., the following. Propositional planning
tasks are triples (A, I, G) corresponding to the action set,
initial world state, and goal world state. World states w are
sets of propositions (those satisfied in them). Actions a are
pairs (pre(a), E(a)) of the precondition – a set of proposi-
tions – and the effects – a set of conditional effects. A condi-
tional effect e is a triple (con(e), add(e), del(e)) of propo-
sition sets, corresponding to the effect’s condition, add, and
delete lists respectively (for conformant planning, one needs
conditional effects as otherwise the same action sequence
can hardly achieve the goal from different initial worlds).
An action a is applicable in a world state w if w ⊇ pre(a).
If a is not applicable in w, then the result of applying a to w
is undefined. If a is applicable in w, then all applicable con-
ditional effects e ∈ E(a) get executed i.e., those conditional
effects whose condition satisfies w ⊇ con(e) (unconditional
effects have con(e) = ∅). Executing a conditional effect e
in w results in the world state w − del(e) + add(e). An ac-
tion sequence is a plan if the world state that results from
iterative execution of the actions, starting in the initial world
state, leads to a state that contains the goal world state.

The conformant planning setting we consider extends the
above with uncertainty about the initial state (as said be-
fore, in the TR we also consider non-deterministic effects).
The initial state is now a belief state that is represented by
a propositional CNF formula I. The possible initial world
states are those that satisfy that formula. Slightly abusing
the powerset notation, we denote the (possibly exponentially
large) set of the possible initial world states with 2I . We re-
fer to non-unary clauses in I as initial disjunctions, and to
propositions that do not occur in a unary clause as unknown.1

An action sequence is a plan if, for any possible initial world
state I ∈ 2I , executing the sequence in I results in a world
state that fulfills the goal. Note that, by saying that the result
of applying non-applicable actions is undefined, we require
that all actions in the plan must be applicable at their point
of execution no matter what the initial world state is.

Search Space
As explained in the introduction, we perform a forward
search in belief space. The search states are belief states.
A belief state s is represented by the initial state representa-
tion I together with the action sequence P that leads from
the initial state to s.

For each belief state encountered during search, we com-
pute the sets of known and negatively known propositions;
these are defined as follows. Given a conformant planning
task (A, I, G), a belief state s corresponding to an action se-
quence P ∈ A∗, and a proposition p, we say that p is known
in s if, for all I ∈ 2I , executing P in I results in a world

1Syntactically, I is given in an abbreviated form using the
closed-world assumption, where propositions whose value is not
known are explicitly specified as unknown (rather than listing all
the propositions that are known to be false). As a side remark, note
that, theoretically, a proposition can be “known” implicitly due to
possible unit propagations in I. But then I, i.e. the planning task
description, can be simplified.



state that contains p. We say that p is negatively known in
s if for all I ∈ 2I executing P in I results in a world state
that does not contain p (knowing the propositions that will
always be false helps speed up the reasoning, see below).
A proposition that is neither known nor negatively known is
unknown. Deciding about whether a proposition is known
or not is co-NP complete.

Theorem 1 Given a conformant planning task (A, I, G), a
belief state s represented by an action sequence P ∈ A∗,
and a proposition p. Deciding whether p is known in s is
co-NP complete.

Proof: We consider the complementary problem. Mem-
bership in NP: non-deterministically guess an initial world
state, and check if it satisfies I, and if p does not
hold upon execution of P . NP-hardness follows by
a reduction from SAT. For a SAT instance with vari-
ables {v1, . . . , vn}, the planning instance has the propo-
sitions {v1, not-v1, . . . , vn, not-vn} and p. Set I to
¬p

∧
1≤i≤n

(vi ∨ not-vi)
∧

1≤i≤n
(¬vi ∨ ¬not-vi). Create

a single action eval, with empty precondition and, for each
clause l1∨. . .∨lk, a conditional effect ({l1, . . . , lk}, {p}, ∅),
where negative literals ¬vi are encoded via not-vi. Then, p
is not known in the state that results from applying eval iff
there is a possible initial state such that p is false upon exe-
cution of eval, which is the case iff there is a possible initial
state such that all clauses are fulfilled.

In our implementation, we compute the sets of known and
negatively known propositions in a belief state by using a
CNF corresponding to the semantics of the respective action
sequence as follows. We use a time index to differentiate
between values of propositions at different points along the
execution of the action sequence. Say the action sequence
is P = 〈a1, . . . , an〉. We obtain our CNF φ(P ) as follows.
We initialize φ(P ) as I indexed with time 0 (i.e., for each
clause l1∨ . . .∨ lk ∈ I we add l1(0)∨ . . .∨ lk(0) into φ(P )).
We then use a1 to extend φ(P ):

• Effect Axioms: for every effect e of a1, con(e) =
{p1, . . . , pk}, and every proposition p ∈ add(e), we in-
sert the clause ¬p1(0) ∨ . . . ∨ ¬pk(0) ∨ p(1); for every
proposition p ∈ del(e), we insert the clause ¬p1(0) ∨
. . . ∨ ¬pk(0) ∨ ¬p(1).

• Frame Axioms: for every proposition p, let e1, . . . , en be
the effects of a1 such that p ∈ del(ei); for every tuple
p1, . . . , pn such that pi ∈ con(ei) we insert the clause
¬p(0)∨p1(0)∨. . .∨pn(0)∨p(1) (read this clause as an im-
plication: if p was true before and has not been deleted by
either of ei, it is still true after a1). Symmetrically, when
e1, . . . , en are the effects of a1 such that p ∈ add(ei), we
insert for every tuple p1, . . . , pn with pi ∈ con(ei) the
clause p(0) ∨ p1(0) ∨ . . . ∨ pn(0) ∨ ¬p(1) (if p was false
before and has not been added, it is still false after a1).

In the same fashion, we use a2 to further extend the for-
mula and so on until the axioms for an have been inserted.2

For the resulting CNF φ(P ), the following holds.

2Note that the number of frame axioms is exponential in the
number of distinct conditional effects of a single action that can

Proposition 1 Given a conformant planning task (A, I, G),
a belief state s represented by an n-step action sequence
P ∈ A∗, and a proposition p. Then p is known in s iff φ(P )
implies p(n).

Proof: For all possible initial world states I ∈ 2I , there is
exactly one satisfying variable assignment σ to φ(P )I (i.e.,
φ(P ) where all variables at time 0 have been set to their val-
ues in I); the truth values assigned by σ correspond exactly
to the values that the respective propositions take on at the
respective points in the plan. Thus φ(P )∧¬p(n) is unsatis-
fiable iff there is no possible initial state I ∈ 2I such that p
does not hold upon executing P in I .

We use Proposition 1 to compute the set of known propo-
sitions as follows. Start with the empty set. Then, for each
proposition p, hand φ(P ) ∧ ¬p(n) over to the underlying
SAT solver. If the result is “unsat” then add p to the known
propositions. If the result is “sat”, do nothing. Symmetri-
cally, we compute the set of negatively known propositions
by handing the formulas φ(P ) ∧ p(n) to the SAT solver.

At this point, let us consider a small illustrative example.
Say we have a robot that is initially at one out of two loca-
tions, modeled as I = {at-L1 ∨ at-L2,¬at-L1 ∨ ¬at-L2}
(both propositions are unknown initially which is specified
implicitly – no truth value for the propositions is given
in I). Our goal is to be at L2, and we have a move-
right action that has an empty precondition, and the con-
ditional effect (con = {at-L1}, add = {at-L2}, del =
{at-L1}). The known propositions in the search state s
corresponding to the sequence P = 〈move-right〉 are com-
puted as follows. The formula φ(P ) consists of the clauses
at-L1(0) ∨ at-L2(0) and ¬at-L1(0) ∨ ¬at-L2(0) (initial
disjunctions), ¬at-L1(0) ∨ at-L2(1) (add effect axiom for
move-right) and ¬at-L1(0) ∨ ¬at-L1(1) (delete effect ax-
iom for move-right), as well as ¬at-L1(0) ∨ at-L1(0) ∨
at-L1(1) (positive frame axiom for at-L1; note that this can
be skipped), ¬at-L2(0) ∨ at-L2(1) (positive frame axiom
for at-L2), at-L1(0) ∨ ¬at-L1(1) (negative frame axiom
for at-L1), and at-L2(0) ∨ at-L1(0) ∨ ¬at-L2(1) (nega-
tive frame axiom for at-L2). To check whether at-L1 is
known in s, a satisfiability test is made on φ(P )∧¬at-L1(1).
The result is “sat”: a satisfying assignment σ is, e.g.,
that corresponding to I = {at-L2}, i.e., σ(at-L2(0)) =
TRUE, σ(at-L1(0)) = FALSE, σ(at-L2(1)) = TRUE,
σ(at-L1(1)) = FALSE. Checking whether at-L2 is
known in s succeeds, however: φ(P ) ∧ ¬at-L2(1) is un-
satisfiable. Inserting ¬at-L2(1) into the positive frame ax-
iom for at-L2 we get ¬at-L2(0), inserting ¬at-L2(1) into
the effect axiom for move-right we get ¬at-L1(0), in con-
sequence the initial disjunction clause at-L1(0) ∨ at-L2(0)
becomes empty. Similarly, one can find out that at-L1 is
negatively known in s.

add/delete the same proposition. One can avoid this by introduc-
ing a new proposition p(e) for each conditional effect and ensur-
ing that p(e) is true iff e occurs; single frame axioms of the form
¬p(0) ∨ p(e1)(0) ∨ . . . ∨ p(en)(0) ∨ p(1) then suffice. We have
not implemented this because in practice actions seldomly affect
the same proposition with different effects.



The observation made in Proposition 1 gets us around
enumerating all possible initial world states for computing
whether a given proposition is known upon execution of P
or not. While we do need to perform worst-case exponen-
tial reasoning about the formula φ(P ), our empirical results
show that this reasoning is feasible, as the interactions be-
tween action effects in practice (at least as reflected by our
benchmark domains) are not overly complex. Note that one
can apply several significant reductions to the number of
SAT calls made, and the size of the CNF formulas looked
at. In our current implementation, these are:

• Simplify φ(P ) by inserting the values of propositions at
times i < n which are known to be true or false – these
values are stored (for the respective belief states) along the
path corresponding to P . In effect, φ(P ) only contains
variables whose value is unknown at the respective points
of P ’s execution.

• Make SAT calls only on propositions p such that p is af-
fected by a conditional effect that possibly occurs (all con-
dition propositions are either known or unknown, and at
least one of them is unknown).

Once the known propositions in s are computed, the ac-
tions applicable to s are those whose preconditions are all
known in s. P achieves the goal if all goal propositions are
known.

Heuristic Function
In classical planning, a successful idea has been to guide
(forward, e.g.) search by heuristic functions based on a re-
laxation of the planning task, where the relaxation is to as-
sume that all delete lists are empty. We now adapt this idea
to the conformant setting. Specifically, we adapt the heuris-
tic function used in FF (Hoffmann & Nebel 2001), a descen-
dant of the HSP system by Bonet and Geffner (2001).

To each world state during a forward search, FF computes
a relaxed plan – a plan that achieves the goals when all delete
lists are assumed empty – and takes the length of the re-
laxed plan as the state’s heuristic value. Relaxed plans are
computed in the following Graphplan-style manner (Blum &
Furst 1997; Hoffmann & Nebel 2001). Starting from a world
state w, build a relaxed planning graph as a sequence of al-
ternating proposition layers Pi and action layers Ai, where
P0 is the same as w, Ai is the set of all actions whose pre-
conditions are contained in Pi, and Pi+1 is Pi plus the add
effects (with fulfilled conditions) of the actions in Ai. From
a proposition layer Pm in which the goals are contained one
can find a relaxed plan by a simple backchaining loop: select
achieving actions at layers i < m for all goals in Pm, insert
those actions’ preconditions and the respective effect condi-
tions as new subgoals (which by construction are at layers
below the respective actions), then step backwards and se-
lect achievers for the subgoals. The heuristic value h(w) for
w then is the number of actions selected in backchaining –
the length of the relaxed plan. If there is no relaxed plan then
the planning graph will reach a fixpoint Pi = Pi+1 without
reaching the goals; h(w) is then set to ∞, excluding the state
from the search space – if there is no relaxed plan from w
then there does not exist a real plan either.

In the conformant setting, we extend this machinery by
sets uPi of propositions that are unknown at step i. Start-
ing from a belief state s, similar to before, P0 contains the
propositions that are known in s; uP0 contains the proposi-
tions that are unknown in s. To step from proposition layer
i to layer i + 1, we first proceed exactly as before, i.e., we
set Ai to those actions whose preconditions are in Pi. Then,
we set Pi+1 to the union of Pi with the add effects (with
fulfilled conditions) of the actions in Ai. Thereafter, we set
uPi+1 to uPi\Pi+1 — the previously unknown propositions
minus those that are now known to be true. Next, new un-
known propositions are inserted: the added propositions of
effects that possibly occur. These effects are those of actions
in Ai such that their condition propositions are all either in
Pi or in uPi, and at least one condition is in uPi. The added
propositions of such effects, if they are not already in Pi+1,
are inserted into uPi+1. When this process is finished, for
each proposition in uPi+1 a check is made whether it can
be inferred from an implication graph which we maintain in
parallel to the relaxed plan graph. If the check succeeds, the
respective proposition is removed from uPi+1 and inserted
into Pi+1 instead (with a flag identifying it as an inferred
proposition).

Recall that to recognize whether some proposition is
known following some action sequence, we basically check
to see whether it is implied by a CNF formula encoding the
effects of this action sequence on the initial states. Dur-
ing relaxed planning, we do not wish to pay the price of
all the SAT checks involved. Instead, we look at a sim-
plified problem that can be solved quickly, while ensuring
the completeness (but not soundness, of course) of the ap-
proach. The idea is to look at the relaxed problem, i.e., to
ignore delete lists, and to select (only) 2 literals out of each
clause of the CNF that captures the true belief state seman-
tics. The implications induced by these selected literals are
kept as edges in the implication graph: e.g., selecting the
literals ¬p(t) and p′(t + 1) from a clause yields the impli-
cation p(t) ⇒ p′(t + 1), kept as an edge (p(t), p′(t + 1)).
The inference process is then done as known from 2-CNF
reasoning (Aspvall, Plass, & Tarjan 1979).

To get an idea of the implication graph construction, sup-
pose that our current belief state corresponds to the n-step
action sequence P . Suppose the relaxed plan construction
steps from layer i to layer i + 1. The implication graph then
contains edges (l(t), l′(t′)) between timed literals where t
ranges from −n to i and t′ is either equal to t or to t + 1.
Times t < 0 correspond to the time points along the execu-
tion of P (i.e., t = −n corresponds to the initial state, and
so on), times t ≥ 0 correspond to the respective relaxed plan
graph layer. An edge (l(t), l′(t′)) is only inserted if both
l and l′ are unknown at the respective points in time. An
add effect edge (l(t), l′(t + 1)) is inserted if: for t < 0, the
respective action in P has an effect e that possibly occurs,
such that l′ ∈ add(e) and l ∈ con(e); for t ≥ 0, there is an
action in At that has such an effect e that possibly occurs.
If e has more than one unknown condition then only one
such condition l is selected arbitrarily – this is the main sim-
plification we make for computational efficiency. Note that
the resulting implication (l(t), l′(t + 1)) is stronger than the



at − L1(0) //

��@
@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

~~

at − L1(1)

¬at − L1(0) //

zz

¬at − L1(1)

at − L2(0) //

::

at − L2(1)

¬at − L2(0) //

>>

¬at − L2(1)

Figure 1: The implication graph for the example.

real implication as really all the effect conditions are needed
to imply l′. In addition to the add effect edges there are
initial disjunction edges (l(0), l′(0)) for each pair l, l′ of lit-
erals that participate together in such a disjunction (these
edges capture a stronger form of the constraints given by the
initial disjunctions). Finally, there are frame axiom edges
(l(t), l(t + 1)) for propositions l that are unknown (possibly
true) at both t and t + 1.

Having built the implication graph up to layer i + 1, we
use standard, linear-time, validity checks to decide whether
the propositions in uPi+1 can be inferred and thus moved
into Pi+1. The validity check for a proposition p looks for
backwards paths in the implication graph from p(i + 1) to
both a proposition p′ and its negation. If such a proposition
p′ is found, then p can be inferred. (To provide an intuition:
all possible world states either satisfy p′ or ¬p′; if p follows
in both cases, then it is always true.) During relaxed plan
extraction, the actions constituting the add effect edges on
the backward paths to p′ are, if p becomes a sub-goal, se-
lected as actions into the relaxed plan. For a more detailed
description, please consult our TR.

Let us re-consider the example. We have a robot that
is initially at one out of two locations, I = {at-L1 ∨
at-L2,¬at-L1 ∨ ¬at-L2}. The goal is to be at L2, and we
have a move-right action that has an empty precondition, and
the conditional effect ({at-L1}, {at-L2}, {at-L1}). When
we build the relaxed plan graph to the initial state (i.e., to
the search state corresponding to the empty action se-
quence), we first initialize the implication graph by in-
serting the nodes at-L1(0), ¬at-L1(0), at-L2(0), and
¬at-L2(0); we also insert the edges (¬at-L1(0), at-L2(0))
and (¬at-L2(0), at-L1(0)) (for the initial disjunction
at-L1 ∨ at-L2), as well as (at-L1(0),¬at-L2(0)) and
(at-L2(0),¬at-L1(0)) (for the initial disjunction ¬at-L1 ∨
¬at-L2). Starting the graph building procedure, we then
get P0 = ∅, pP0 = {at-L1, at-L2}, and A0 =
{move-right}. Thereafter we initialize P1 = ∅ and pP1 =
{at-L1, at-L2}, then we insert the implication graph nodes
at-L1(1) and at-L2(1) as well as the frame axiom edges
(at-L1(0), at-L1(1)) and (at-L2(0), at-L2(1)).

Next, we look at all effects of the actions in A0, and find
that the effect of move-right possibly occurs – its single con-

dition at-L1 is in pP0. Thus, we insert the add effect edge
(at-L1(0), at-L2(1)). This finishes the loop over the A0 ef-
fects, and we proceed to checking whether the propositions
in pP (1) can be inferred from the implication graph. Fig-
ure 1 depicts this graph. For at-L1 this check fails: the
only implication graph nodes reachable by following edges
backwards from at-L1(1) are at-L1(0) and ¬at-L2(0). For
at-L2 however the check succeeds: we can reach ¬at-L2(0)
via the add effect edge (at-L1(0), at-L2(1)) and the initial
disjunction edge (¬at-L2(0), at-L1(0)). In effect, at-L2

is moved from pP1 into P1, yielding P1 = {at-L2} and
pP1 = {at-L1}. The goals are reached. Relaxed plan ex-
traction selects the actions constituting the path that was re-
sponsible for the inference of at-L2(1); this is the single
action move-right which forms the extracted relaxed plan to
the initial state.

Note that the implication graph we use is a complete, but
not necessarily sound, approximation of the set of known
propositions. (Precisely, if, starting from a state s, some
k-step plan makes a proposition p true then p will be con-
tained in the proposition layer Pk of the relaxed planning
graph built for s; but not vice versa.) Therefore, if no plan
exists in the modified relaxed planning graph (if relaxed plan
graph construction fails to reach the goals), no plan exists in
practice. On the other hand, as the implication graph might
infer propositions that can’t be inferred, it can happen that
the relaxed plan is empty but no goal state is reached yet.
To understand this, you must remember that the implication
graph contains a relaxed encoding of the effects of the cur-
rent plan fragment leading to the current state. Thus, it may
lead to conclusions that are not implied by the full CNF for-
mula.

Repeated States
Forward search spaces in planning are, generally, graphs,
i.e., the same search states can be reached via different
search paths. In many examples, this happens so frequently
that checking for repeated search states becomes crucial for
performance. (In a forward search, a repeated search state
corresponds to the same search state reached by several ac-
tion sequences; this happens, e.g., when several actions are
independent of each other and can be applied in any order.)

We avoid repeated search states by a hash table technique
combined with a belief state domination test. In the classical
planning setting, we say that a world state w dominates a
world state w′ if the set of true propositions in w contains the
set of true propositions in w′. When classical FF performs
search, it checks via a hash table lookup whether the new
world state is dominated by some previous world state in the
same hash entry. If so, the new state is pruned.

In our conformant extension of FF, we use the same hash
table technique. The definition of state domination is ex-
tended to belief states as follows. Let s and s′ be two belief
states reached via the action sequences P and P ′, respec-
tively. We say that s dominates s′ if for every possible initial
world state I ∈ 2I the world state upon execution of P in
I dominates, in the classical sense, the world state upon ex-
ecution of P ′ in I . The domination relation between s and
s′ can be tested by checking for each proposition p whether



there exists a possible initial world state given which p does
not hold in s, but does hold in s′. One such check requires a
single satisfiability test using the formulas we already gener-
ated for s and s′. Let φ(P ) and φ(P ′) be the formulas con-
structed for the action sequences P and P ′, such that φ(P )
and φ(P ′) share the same propositional variables for time 0
propositions but have different propositional variables for all
times greater than 0 (i.e., the conjunction of these formulas
captures the semantics of executing P and P ′ in the same
initial world state). Let p(P ) and p(P ′) denote p’s value
(the respective propositional variable) following P and P ′,
respectively. If φ(P ) ∧ φ(P ′) ∧ ¬p(P ) ∧ p(P ′) is satisfi-
able, we know that there is an initial state from which P
leads into a state where p does not hold but P ′ leads into a
state where p does hold. In that case, s does not dominate
s′. If φ(P ) ∧ φ(P ′) ∧ ¬p(P ) ∧ p(P ′) is unsatisfiable for all
propositions p, then s dominates s′ and s′ can be pruned.3

Results
We implemented the techniques described in the previous
sections in C, starting from the FF code (which is available at
http://www.informatik.uni-freiburg.de/∼hoffmann/ff.html).
We call the implemented system Conformant-FF. The
system’s overall architecture is identical to that of FF. An
outline of the architecture is this:

1. Do one trial of “enforced hill-climbing”: set the current
search state s to the initial state; while s is not a goal
state:

(a) Starting from s, perform a breadth-first search for a
world state s′ such that h(s′) < h(s). During search:
avoid repeated states; cut out states s′ with h(s′) = ∞;
and expand only the successors of s′ generated by the
actions in H(s′).

(b) If no s′ with h(s′) < h(s) has been found then fail, else
s := s′.

2. If enforced hill-climbing failed, invoke complete best-first
search, i.e., starting from the initial state expand all world
states in order of increasing h value, avoiding repeated
states.

Here, h(s) denotes the heuristic value of a search state –
the number of actions in a relaxed plan to the state. H(s)
denotes the so-called helpful actions, which are the only ac-
tions considered by the planner during hill-climbing. The
helpful actions to a search state are those that could be se-
lected to start the relaxed plan. In the classical setting these
are those actions at the lowest level of the relaxed planning
graph that add a subgoal (at this level). In the conformant
setting, H(s) are the actions at the lowest level of the relaxed
planning graph that add a subgoal, or that were selected by
the implication graph reasoning.

We experimentally evaluated Conformant-FF on a variety
of domains. These include the traditional conformant bench-
mark domains Bomb-in-the-toilet, Ring, Cube, Omlette, and

3One can optimize the domination test by checking only those
propositions p that are unknown in both s and s

′: if p is unknown
in s but known in s

′ then s does not dominate s
′; if p is known in

s then p needs not be checked.

Safe; see (Cimatti & Roveri 2000) and (Petrick & Bac-
chus 2002) for a detailed description of these domains. We
also performed tests on variants of the classical benchmarks
Blocksworld, Logistics, and Grid, into which we introduced
uncertainty about the initial state. All testing examples
are available for download from http://www.informatik.uni-
freiburg.de/∼hoffmann/cff-tests.tgz. The experiments were
run on a PC with a Pentium 4 2.4 GHz processor with
0.5 Gigabyte memory and 512KB cache running Linux.
Conformant-FF currently uses a very naive standard DPLL
solver for the CNF reasoning. Given that Conformant-FF
spends around 75% of its runtime in the unit propagation
procedure, we expect dramatic runtime improvements from
better implementations. In our experiments we compared
the performance of Conformant-FF with MBP, GPT, and
KACMBP. First, we describe the Conformant-FF vs. MBP
experiments. These are the most extensive experiments be-
cause MBP appears to be the fastest among the conformant
planners with a high-level input language.

Conformant-FF is given as input a PDDL-like file describ-
ing the domain and the task, with obvious modifications for
describing uncertainty about the initial state. Conformant-
FF then generates the set of ground actions. MBP is given
as input an NPDDL file, which is an extension of PDDL
allowing for uncertainty, non-deterministic effects, and a
rich set of goal conditions. MBP translates this input into
a set of ground actions, as well. Its translation process is
naive, and therefore, we made a serious effort to use various
NPDDL options that reduce this set of actions. In partic-
ular, NPDDL allows for the definition of functions (which
allow efficient encoding of multi-valued variables) – a ca-
pability that Conformant-FF does not have – and we tried
to use this option as much as we could. In each domain, we
tested a variety of example tasks, giving the planners at most
25 minutes to solve each task. In Table 1 we provide the re-
sults for the Bomb-in-the-toilet, Cube, Omlette, Ring, and
Safe domains. For all test suites in the table (see leftmost
column), the upper row provides Conformant-FF’s runtimes
whereas the lower row provides MBP’s runtimes.

In the well-known Bomb-in-the-toilet domain we used
four test suites, each of which contains five example in-
stances. In the “Bomb-x-x” suite instances the number of
toilets is the same as the number of bombs. In the “Bomb-x-
c” suites the number of bombs varies, but the number of toi-
lets is fixed to c. Across all these test suites, the examples 1
to 5 contain 5, 10, 20, 50, and 100 bombs, respectively. The
top right corner of Table 1, e.g., says that Conformant-FF
solves the task with 100 bombs and 100 toilets in no more
than 2.39 seconds. MBP is competitive with Conformant-
FF when there are very few toilets, but gets outperformed
quickly as the number of toilets increases.

In Cube, one is initially located at any point on a 3-
dimensional grid with extension n × n × n. In each di-
mension one can move up or down; when moving against a
border of the grid, nothing happens. In the “Cube-corner”
test suite the task is to move into a corner of the grid. In the
“Cube-center” test suite the task is to move into the center
of the grid. In both test suites, the value of n is 3, 5, 7, 9,
and 11 for examples 1 to 5, respectively. Conformant-FF is



Test suite exp1 exp2 exp3 exp4 exp5

Bomb-x-x 0.00 0.00 0.00 0.24 2.39

Bomb-x-x 0.08 1.82 50.54 - -

Bomb-x-1 0.00 0.00 0.07 4.69 113.70

Bomb-x-1 0.01 0.02 0.09 1.18 11.35

Bomb-x-5 0.00 0.01 0.10 4.68 113.24

Bomb-x-5 0.08 0.39 2.67 35.24 327.92

Bomb-x-10 0.00 0.00 0.04 3.32 97.50

Bomb-x-10 0.39 1.82 10.20 130.90 1279.07

Cube-corner 0.00 0.06 0.48 1.80 5.66

Cube-corner 0.04 2.94 - - -

Cube-center 0.19 - - - -

Cube-center 2.82 2.74 - - -

Omlette 0.02 0.03 0.30 1.14 3.74

Omlette 1.33 13.32 556.66 - -

Ring 0.02 1.35 50.61 - -

Ring 0.00 0.01 0.02 0.03 0.07

Safe 0.00 0.05 151.29 788.93 907.38

Safe 0.00 0.06 144.45 573.98 1355.86

Table 1: Conformant-FF runtime (upper rows) vs. MBP run-
time (lower rows) in our purely conformant testing suites.
Times are in seconds, dashes indicate time-outs.

clearly better suited than MBP to find a corner. None of the
planners scales very well to the move into the center; MBP
is somewhat better at that.

In the Omlette domain, n eggs must be broken into a bowl
without spoiling the bowl. Breaking an egg into the bowl
spoils the bowl by a non-deterministic effect (namely, when
the egg is bad, which one does not know without breaking
it). As said, we haven’t yet implemented support for such ef-
fects so we have modeled that effect as a conditional effect
that has a new, unknown, “dummy” proposition as its condi-
tion. Note that this is different from a truly non-deterministic
effect in that the outcome of the effect will be the same for
all eggs, only we don’t know what this constant outcome is.
Still, there is no conformant plan to our Omlette tasks. In our
test suite, the value of n is 3, 5, 10, 15, and 20 for the five ex-
amples respectively. In difference to MBP, Conformant-FF
proves these tasks unsolvable quite efficiently (by exhaust-
ing the space of reachable belief states).

The Ring domain is problematic for Conformant-FF.
There are n rooms through which one can move in a cyclic
fashion. The initial location is unkown. Each room has
a window which is either open or closed or locked. The
initial states of the windows are unknown. One can apply
an action “close” which closes the window of the room in
which one is currently located, and one can apply an action
“lock”which locks the window of the room in which one is
currently located, given the window is already closed. A
solution plan moves once through the ring and applies the
“close” and “lock” actions after each move. Our test suite
contains the tasks with n value 2, 3, 4, 5, and 6, respectively.
The poor performance of Conformant-FF here is due to two
weaknesses. First, a lack of informativity of the heuristic
function in the presence of non-unary effect conditions – all
but one of which are ignored by the implication graph. (In
Ring, the conditions of “lock” are that one is in the right

Test suite exp1 exp2 exp3 exp4 exp5

Blocksworld-2 0.03 0.03 0.02 0.16 5.41

Blocksworld-2 0.77 16.83 - - -

Blocksworld-3 0.00 0.00 0.02 0.47 3.54

Blocksworld-3 1.10 10.86 - - -

Blocksworld-4 0.01 0.11 0.21 70.64 4.48

Blocksworld-4 0.71 18.85 - - -

Logistics-2 0.00 0.01 0.01 0.02 3.33

Logistics-2 1.63 16.36 35.54 - -

Logistics-3 0.00 0.02 0.03 0.06 41.80

Logistics-3 23.13 508.24 428.94 - -

Logistics-4 0.01 0.12 0.01 0.07 71.20

Logistics-4 122.66 1091.85 1187.00 - -

Grid-2 0.03 0.17 1.46 3.13 80.87

Grid-2 - - - - -

Grid-3 0.05 0.95 1.39 6.81 136.79

Grid-3 - - - - -

Grid-4 0.05 2.54 5.78 12.53 512.30

Grid-4 - - - - -

Table 2: Conformant-FF runtime (upper rows) vs. MBP run-
time (lower rows) in our mixed test suites. Times are in sec-
onds, dashes indicate time-outs.

room and that the window is already closed.) Second, if a
new belief state shares the same known propositions with an
already seen belief state, then the states are checked for dom-
ination using SAT calls – without any further pre-checks to
see if the CNF reasoning can be avoided. (In Ring, no propo-
sition becomes known until the entire task is solved; turning
the repeated states check off, Conformant-FF solves the five
examples in 0.00, 0.29, 4.76, 50.76, and 445.50 seconds re-
spectively.) We are currently experimenting with methods
to improve on these two weaknesses (see the discussion of
future work).

In the Safe domain, a safe has one out of n possible com-
binations, and one must try all combinations in order to open
the safe. Our test suite contains the examples with n values
5, 10, 30, 50, and 70, respectively. Conformant-FF and MBP
scale roughly similar here. We remark that, similar to what
we observed in Ring, no proposition becomes known before
the task is solved so that most of Conformant-FF’s runtime
is spent in SAT calls for checking belief state domination.
Turning the repeated states check off, the runtimes we get
are 0.01, 0.01, 0.61, 22.73, and 156.27 seconds.

In Table 2 we provide the results for our “mixed”
benchmark domains, enriching classical planning bench-
marks with uncertainty. Again the upper rows provide
Conformant-FF’s runtimes whereas the lower rows provide
MBP’s runtimes.

The Blocksworld domain we use is the variant with three
operators to put a block x from another block y onto the ta-
ble, to put a block x from a block y onto a different block
z, and to put a block x from the table onto a block y. The
uncertainty in our test suites is that the top blocks on each
initial stack are arranged in an unknown order. In the test
suites “Blocksworld-k” the order of the top k blocks on each
stack (which might be the whole stack) is unknown. Putting
a block x from a block y onto the table has conditional ef-



fects: (only) if x is located on y in the state of execution, x
is put onto the table, and y is cleared. That is, (only) if x is
on y then x, including the whole stack of blocks on top of it,
is moved to the table. Across our three test suites, the exam-
ples are generated with the software by Slaney and Thiebaux
(Slaney & Thiebaux 2001), and contain 5, 6, 7, 13, and 20
blocks respectively. Conformant-FF scales well and outper-
forms MBP dramatically. As the behavior of Conformant-
FF differs quite considerably on individual Blocksworld in-
stances, we generated 25 random examples per size, and pro-
vide average runtime values. We note that in some of these
cases, MBP stopped before our time-limit because it reached
its maximal number of search states.

Our Logistics domain is the following modification of the
well-known standard encoding. The uncertainty we intro-
duced lies in that the initial position of each package within
its origin city is unknown. Loading a package onto a truck
has a conditional effect that only occurs when the package
is at the same location as the truck. The amount of uncer-
tainty increases with the size of the cities. In our test suites
“Logistics-k” the city size (which is the same for each city)
is k. Across all suites, the instances are randomly gener-
ated ones with the following parameters. Each city contains
one truck. The first four examples contain 2-3 cities, 2-4
packages, and 1-2 airplanes; to demonstrate Conformant-
FF’s fine scaling behaviour, the largest examples contain 10
cities, 10 packages, and 10 airplanes (the plan found for the
largest “Logistics-4” example, e.g., has 120 actions in it).
MBP solves only the smaller instances.

Our final testing domain is a variant of the Grid domain
as used in the AIPS-98 planning competition. In Grid, a
robot moves on a 2-dimensional grid on which positions can
be locked and, to be accessible, must be opened with a key
of a matching shape; the robot can hold one key at a time,
and the goal is to transport some keys to specified goal posi-
tions. We introduced uncertainty about the locked positions
on the grid that must be opened in order to solve the respec-
tive task. The shape of these locks was specified to be an
unknown one out of a number of possible shapes. Open-
ing a lock with a key has a conditional effect that occurs
only if the key is of the same shape as the lock. In our test
suites “Grid-k” the unknown locks have k possible shapes.
Across the suites, the instances are the original five examples
“prob01” . . . “prob05” as used in the AIPS-98 competition.
We remark that these tasks are very challenging. While FF
finds a 174-steps plan for “prob05” without uncertainty, the
plan Conformant-FF finds for “prob05” with k = 2 has 194
steps, for k = 3 it are 214 steps, for k = 4 it are 254 steps
(with uncertainty, more keys must be transported). MBP can
not even solve the “prob01” instances.

To cover a broader spectrum of conformant planners, we
ran additional experiments with GPT and KACMBP. GPT is
known to be slower than MBP on the tranditional domains,
but we wanted to verify that this is true for the mixed do-
mains, too. Thus, we conducted a number of experiments
with GPT on a sample of mixed domains instances. In al-
most all of them, GPT was slower than MBP and much
slower the Conformant-FF. For example, in three of the
smallest Blocksworld-2 examples, the per-instance runtimes

Test suite exp1 exp2 exp3 exp4 exp5

Bomb-x-x 0.00 0.00 0.00 0.24 2.39

Bomb-x-x 0.06 0.17 1.47 54.56 -

Bomb-x-1 0.00 0.00 0.07 4.69 113.70

Bomb-x-1 0.00 0.03 0.33 2.34 2.38

Bomb-x-5 0.00 0.01 0.10 4.68 113.24

Bomb-x-5 0.04 0.19 1.01 4.31 4.31

Bomb-x-10 0.00 0.00 0.04 3.32 97.50

Bomb-x-10 0.19 0.51 2.28 9.11 9.02

Cube-corner 0.00 0.06 0.48 1.80 5.66

Cube-corner 0.00 0.00 0.00 0.00 0.00

Cube-center 0.19 - - - -

Cube-center 0.02 0.01 0.01 0.08 0.08

Ring 0.02 1.35 50.61 - -

Ring 0.00 0.00 0.00 0.01 0.01

Omlette 0.02 0.03 0.30 1.14 3.74

Omlette 0.03 0.09 0.22 733.43 -

Blocksworld-2 0.01 0.03 0.01 0.14 4.75

Blocksworld-2 0.2 0.25 1.04 - -

Blocksworld-3 0.01 0.01 0.01 0.45 2.98

Blocksworld-3 0.05 1.07 - - -

Blocksworld-4 0.00 0.03 0.02 0.15 4.80

Blocksworld-4 0.06 0.88 1.16 - -

Logistics-2 0.00 0.01 0.01 0.02 3.33

Logistics-2 0.08 51.38 0.47 478.72 -

Logistics-3 0.00 0.02 0.03 0.06 41.80

Logistics-3 0.97 - 67.6 - -

Logistics-4 0.01 0.12 0.01 0.07 71.20

Logistics-4 0.94 - 57.52 - -

Grid-2 0.00 0.01 0.03 0.05 0.03

Grid-2 1.3 12.29 30.13 731.57 -

Grid-3 0.01 0.02 0.03 0.03 0.10

Grid-3 10.74 276.35 265.22 - -

Grid-4 0.02 0.01 0.01 0.06 0.14

Grid-4 97.15 - - - -

Table 3: Conformant-FF runtime (upper rows) vs.
KACMBP runtime (lower rows) in our test suites. Times
are in seconds, dashes indicate time-outs or out-of-memory.

(pure solution times excluding parsing and compilation) we
got are 41.30, 93.82, and 936.88 seconds for GPT as com-
pared with 6.17, 13.18, and 102.50 for MBP, and a few
milliseconds for Conformant-FF. For the smallest three in-
stances of Logistics-2, GPT takes 0.86, 28.74, and 382.35
seconds, MBP takes 1.63, 16.36, and 35.54 seconds, and
Conformant-FF takes a few milliseconds. In the Grid suites,
GPT kept producing error messages for reasons we could not
figure out. These results clearly indicate that MBP is indeed
superior to GPT in these domains, and that Conformant-FF
is superior to both.

KACMBP is an earlier version of MBP, specifically de-
signed for conformant planning, using a heuristic function
that estimates the number of distinct world states in a belief
state. KACMBP is no longer supported, has no documen-
tation, and has no high-level input language. One has to
explicitly specify each ground action, a tedious and error-
prone task. Yet, KACMBP appears to be much better than
MBP on conformant planning problems. We ran KACMBP
with the same parameters as used in the experimental se-



tups included with the KACMBP download. Our results
appear in Table 3. The upper rows provide Conformant-
FF’s runtimes whereas the lower rows provide KACMBP’s
runtimes. In the Grid domain, the instances used are ran-
domly generated ones that are much smaller than those used
in Table 2; in Blocksworld, for each entry we ran just one
of the 25 random instances; in all other domains, the in-
stances are the same as previously. KACMBP is much better
than Conformant-FF in Ring, Cube, and in Bomb examples
with few toilets. Conformant-FF performs much better in
the Bomb-x-x examples, the Omlette domain and in all the
mixed domains.

From our results in the “mixed” domains, we con-
clude that our approach has the potential to combine the
strengths of FF with conformant abilities in domains that
combine classical and conformant aspects. In this respect,
Conformant-FF is superior to MBP, KACMBP, and GPT. We
consider this an important advantage as, in a real-world do-
main, one would surely expect only parts of the problem to
be uncertain.

Discussion
We introduced a new, lazy, approach for representing belief
states in conformant planning. Based on that, we extended
the classical heuristic forward search planner FF (Hoffmann
& Nebel 2001), into conformant planning. The necessary
knowledge about belief states – the known propositions – is
computed via a CNF reasoning technique. The relaxed plan-
ning method that FF uses to compute its heuristic function is
modified accordingly, with an approximate linear-time rea-
soning about known propositions using a 2-CNF projection
of the formula that captures the true belief state semantics.
The resulting planner Conformant-FF is competitive with
the state-of-the-art conformant planners MBP, KACMBP,
and GPT. Further, Conformant-FF shows the potential to
combine the strength of FF with conformant abilities. We
emphasize that these results are obtained using a completely
naive SAT solver as the underlying reasoning technique.

Conformant-FF shares various ideas and techniques with
other conformant planning algorithms. CGP (Smith & Weld
1998), the first specialized conformant planner, uses the
Graphplan algorithm, which Conformant-FF adopts to gen-
erate its heuristic function. However, CGP uses one plan-
ning graph for each possible initial world state, an approach
that does not scale up well. GPT (Bonet & Geffner 2000)
introduced the idea of planning in belief space using for-
ward heuristic search which Conformant-FF uses. MBP
and KACMBP (Cimatti & Roveri 2000; Bertoli & Cimatti
2002) developed this technique further, by using BDDs to
represent belief states. The methods used by these planners
to compute the heuristic function are quite different from
Conformant-FF’s. (Also, as said before these systems are
capable of doing much more than conformant planning.)
Petrick and Bacchus (Petrick & Bacchus 2002) introduced
the use of logical formulas to represent the current state of
knowledge of the agent. Conformant-FF adopted the idea of
storing logical knowledge about the belief state. The major
difference between the two approaches is that Conformant-
FF stores only a partial knowledge, inferred from a standard

task description, while Petrick and Bacchus model planning
tasks at the knowledge level (which loses expressive power
(Petrick & Bacchus 2002)).

SAT solvers play an important part in QBFPLAN (Rin-
tanen 1999) and CPLAN (Ferraris & Giunchiglia 2000).
CPLAN, in particular, introduced the use of SAT techniques
for testing the validity of certain properties in the final state
of a plan, which we use throughout the search process.
CPLAN generates candidate conformant plans (using a SAT
encoding, too) and then tests them to see if they are legal and
if they lead to a goal state. Conformant-FFś use of unsatisfi-
ability tests to check whether a proposition holds following
an action sequence is virtually the same as the test CPLAN
uses to recognize whether a candidate plan leads to a goal
state. QBFPLAN uses more powerful (and more complex)
satisfaction tests where quantified boolean formulas are used
rather than propositional formulas.

We are currently working on various ideas that can help
us address the two main weaknesses of Conformant-FF, as
can be observed (e.g.) in the Ring domain. The first is
Conformant-FF’s use of only a single condition proposi-
tion per effect within the relaxed planning problem. This
can lead to inadequate heuristic values when there are ef-
fects with more than one unknown condition. The second is
the large overhead of repeated states checking in problems
where there is a lack of different known propositions in the
belief states. To overcome the first weakness, one can pa-
rameterize the heuristic function by using a k-projection of
the belief state CNF; as the value of k increases, the heuris-
tic is likely to become slower but more informative (with
k > 2 the inference reasoning can/has to be done by a SAT
solver). In our experiments the single SAT calls (for com-
puting known propositions) were always very cheap, while
the number of expanded belief states (and thus the number
of calls to the heuristic function) was rather low. So values
k > 2 are worth trying. To overcome the second weakness,
one can introduce incomplete pre-tests to avoid full domina-
tion tests of state pairs s and s′. For example, say φ is the
CNF whose satisfiability must (repeatedly) be tested for de-
ciding whether s dominates s′. If even a 2-projection of φ is
solvable, then φ is solvable, and s does not dominate s′.

Another interesting idea how to overcome Conformant-
FF’s current limitations is to try and combine the heuristic
principles used in Conformant-FF and KACMBP. While the
former system estimates goal distances, the latter system es-
timates belief state size. In both cases, states with lower
heuristic value are preferred during search. The compara-
tive data in Table 3 reveals that the two kinds of heuristics
have very different strengths and weaknesses. KACMBP
outperforms Conformant-FF in cases where planning comes
close to reducing the initial uncertainty. Conformant-FF be-
comes superior when more classical planning aspects come
into the play. A promising idea is to use a hybrid heuris-
tic (h, b) where h estimates goal distance, b estimates belief
state size, and (h(s), b(s)) < (h(s′), b(s′)) if h(s) < h(s′)
or h(s) = h(s′) and b(s) < b(s′). To improve Conformant-
FF, the main question to answer here is if, and how, belief
state size can be estimated based on our data structures. Sim-
ilarly, one can try to improve KACMBP by estimating goal



distances based on KACMBP’s data structures.
Additional extensions we plan for Conformant-FF

are: implement the support needed for handling non-
deterministic effects (as described in our TR the extensions
needed for this are moderate); implement more elaborate
SAT solving strategies; introduce an ability to handle ob-
servations.

Acknowledgements. We would like to thank Piergiorgio
Bertoli and Alessandro Cimatti for their help in using MBP
and KACMBP, Blai Bonet for his help with GPT, and the
anonymous reviewers for their useful input. Ronen Brafman
is partially supported by the Paul Ivanier Center for Robotics
and Production Management at Ben-Gurion University.

References
Aspvall, B.; Plass, M.; and Tarjan, R. 1979. A linear-time
algorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters 8:121–123.
Bertoli, P., and Cimatti, A. 2002. Improving heuristics
for planning as search in belief space. In Proc. AIPS’02,
143–152.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. AIJ 90(1-2):279–298.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc.
AIPS’00, 52–61.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Cimatti, A., and Roveri, M. 2000. Conformant planning
via symbolic model checking. JAIR 13:305–338.
Ferraris, P., and Giunchiglia, E. 2000. Planning as satisfia-
bility in nondeterministic domains. In AAAI’00, 748–753.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-
based approach to planning with incomplete information
and sensing. In Proc. AIPS’02, 212–221.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. JAIR 10:323–352.
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
AIJ 125:119–153.
Smith, D. E., and Weld, D. 1998. Conformant graphplan.
In Proc. AAAI’98, 889–896.


