
A Polynomial-time Algorithm for Constructing k-Maintainable Policies∗

Chitta Baral
Department of Computer Science and Engineering
Arizona State University Tempe, Arizona 85287

chitta@asu.edu

Thomas Eiter
Institute of Information Systems

Vienna University of Technology, A-1040 Vienna
eiter@kr.tuwien.ac.at

Abstract

In this paper we present a polynomial time algorithm for
constructingk-maintainable policies (Nakamura, Baral,
& Bjareland 2000). Our algorithm, in polynomial time,
constructs ak-maintainable control policy, if one exists,
or tells that no such policy is possible. Our algorithm is
based on SAT Solving, and employs a suitable formula-
tion of the existence ofk-maintainable control in a frag-
ment of SAT which is tractable. We then give a logic
programming implementation of our algorithm and use
it to give a standard procedural algorithm. We then
present several complexity results about constructingk-
maintainable controls, under different assumptions such
ask = 1, and compact representation.

Introduction and Motivation
Consider an agent who is assigned the goal of ‘maintaining a
room clean’. There are various possible interpretation of this
goal. A strict interpretation would be that the room should
be always clean. This can be expressed in linear temporal
logic as¤ clean. A less stricter interpretation of it would be
to allow the room to get unclean (say while it is being used)
but with a guarantee that it will be eventually clean. This can
be expressed in linear temporal logic as¤ ♦ clean. There
are two issues with this representation. First, it does not give
a bound on how soonclean should be true after¬clean be-
comes true. For the second issue, consider the case when
the agent is not allowed to clean the room while it is being
used and the room is being continuously used. In that case
we can not blame the agent for the status of the room. But
we can seek a different kind of guarantee. We can demand
that the agent give a guarantee that as long as it is not inter-
fered with (i.e., is allowed to clean) fork steps (ork units of
time) it will have the room clean after that. This is formu-
lated ask-maintainability in (Nakamura, Baral, & Bjareland
2000). Whenk is finite it is referred to simply as “maintain-
ability”. This notion was earlier discovered (Dijkstra 1974)

∗This work was partially supported by FWF (Austrian Science
Funds) projects P-16536-N04 and Z29-N04, NSF (National Sci-
ence Foundation of USA) grant number 0070463 and NASA grant
number NCC2-1232. The major part of this work was done when
Chitta was visiting Vienna University of Technology during May
2003.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

in the context of distributed systems where it was referred to
as self-stabilization.

Another example in support of the intuition behind main-
tainability is the notion of maintaining the consistency of
a database (Ceri & Widom 1990). When direct updates
are made to a database, maintaining the consistency of the
database entails the triggering of additional updates thatmay
bring about additional changes to the database so that in the
final state (after the triggering is done) the database reaches
a consistent state. This does not mean that the database will
reach consistency if continuous updates are made to it and
it is not given a chance to recover. In fact, if continuous up-
date requests are made, we may have something similar to
denial of service attacks. In this case we can not fault the
triggers saying that they do not maintain the consistency of
the database. They do. It is just that they need to be given
a window of opportunityor a respite from continuous ha-
rassment from the environment to bring about the additional
changes necessary to restore database consistency.

Another example is a mobile robot (Brooks 1986; Maes
1991) which is asked to ‘maintain’ a state where there are
no obstacles in front of it. Here, if there is a belligerent
adversary that keeps on putting an obstacle in front of the
robot, there is no way for the robot to reach a state with no
obstacle in front of it. But often we will be satisfied if the
robot avoids obstacles in its front when it is not continually
harassed. Of course, we would rather have the robot take a
path that does not have such an adversary, but in the absence
of such a path, it would be acceptable if it takes an available
path and ‘maintains’ states where there are no obstacles in
front.

The inadequacy of the expression¤♦f in capturing our
intuition about ‘maintainingf ’ is because¤♦f is defined
on trajectories which do not distinguish between transitions
due to agent and environment actions. Thus we can not dis-
tinguish the cases

(i) where the agent does its best to maintainf (and is some-
times thwarted by the environment), and can indeed make
f true in some (say,k) steps if not interfered by the envi-
ronment during them; and

(ii) where the agent really does not even try.

The main contributions of this paper can be summarized
as follows.

1. We provide polynomial time algorithms that can construct
k-maintainable control policies, if one exists. (In the
rest of the paper we will refer to ‘control policy’ simply
by ‘control’.) Our algorithm is based on SAT Solving,
and employs a suitable formulation of the existence ofk-
maintainable control in a tractable fragment of SAT. We
then proceed to give a logic programming implementa-
tion of this method, and finally distill from it a standard
procedural algorithm.

2. We analyze the computational complexity of construct-
ing k-maintainable controls, under different settings of
the environment and the windows of opportunity open to
the agent, as well as under different forms of representa-
tion. We show that the problem is complete forPTIME
in the standard setting, where the possible states are enu-
merated, and complete forEXPTIME in a STRIPS-style
setting where states are given by value assignments to flu-
ents.

Background: Actions, states, control policies
and k-maintainability

In this section we present a slightly revised versions of the
definitions for k-maintainability presented in (Nakamura,
Baral, & Bjareland 2000). We start with defining the no-
tion of a system that is used in the discrete event dynamic
systems community (Ozveren, Willsky, & Antsaklis 1991).

Definition 1 (System)A systemis a quadrupleA = (S, A,
Φ, poss), where
• S is the set of system states;
• A is the set of actions, which is the union of the set of

agents actions,Aag, and the set of environmental actions,
Aenv;

• Φ : S × A → 2S is a non-deterministic transition func-
tion that specifies how the state of the world changes in
response to actions; and

• poss : S → 2A is a function that describes which actions
are possible to take in which states.

In practice, the functionsΦ andposs are required to be ef-
fectively (and efficiently) computable, and they may often be
specified in a representation language such as in (Gelfond &
Lifschitz 1992; Fikes & Nilson 1971). The possibility of an
action has different meaning depending on whether it is an
agent’s action or whether it is an environmental action. In
case of an agent’s action, it is often dictated by the control
policy followed by the agent. For environmental actions,
it encodes the various possibilities that are being accounted
for in the model. We tacitly assume here that possible ac-
tions lead always to some successor state, i.e., the axiom
thatΦ(s, a) 6= ∅ whenevera ∈ poss(s) holds for any state
s and actiona, is satisfied by any system.

An example of a systemA = (S,A,Φ, poss), where
S = {b, c, d, f, g, h}, A = { a, a′, e}, and the transi-
tion functionΦ is shown in Figure 1, wheres′ ∈ Φ(s, a)
iff an arc s → s′ labeled witha is present andposs(s)
are all actions that label arcs leavings. Notice that in this
case,Φ(s, a) is deterministic, i.e., Φ(s, a) is a singleton if
nonempty.

b

c

f

d

h

g

a
a

a

a

e

a′

Figure 1: Transition diagram of systemA

We now formally define the notion of a control and a
super-control policy.

Definition 2 (Control and super-control policy) Given a
systemA = (S,A,Φ, poss) and a setAag ⊆ A of agent
actions,

• a control policy forA w.r.t. Aag is a partial functionK :
S → Aag, such thatK(s) ∈ poss(s) wheneverK(s) is
defined.

• asuper-control policy forA w.r.t.Aag is a partial function
K : S → 2Aag such thatK(s) ⊆ poss(s) andK(s) 6= ∅
wheneverK(s) is defined.

As we mentioned earlier, the main intuition behind the no-
tion of maintainability is that maintenance becomes possi-
ble only if there is a window of non-interference from the
environment during which maintenance is performed by the
agent. In other words, an agentk-maintains a conditionc
if its control (or its reaction) is such that if we allow it to
make the controlling actions without interference from the
environment for at leastk steps, then it gets to a state that
satisfiesc. The definition of maintainability has the follow-
ing parameters: (i) a set of initial statesS that the system
may be initially in, (ii) a set of desired statesE that we want
to maintain, (iii) a systemA = (S,A,Φ, poss), (iv) a set
Aag ⊆ A of agent actions, (v) a functionexo : S → 2Aenv

detailing exogenous actions, such thatexo(s) ⊆ poss(s),
and (vi) a controlK (mapping a relevant part ofS to Aag)
such thatK(s) ∈ poss(s).

The next step is to formulate when the controlK main-
tains E assuming that the system is initially in one of
the states inS. The exogenous actions are accounted
for by defining the notion of a closure ofS with re-
spect to the systemAK,exo = (S,A,Φ, possK,exo), de-
noted byClosure(S,AK,exo); wherepossK,exo(s) is the set
{K(s)} ∪ exo(s). This closure is the set of states that the
system may get into starting fromS because ofK and/or
exo. Maintainability is then defined by requiring the control
to be such that if the system is in any state in the closure
and is given a window of non-interference from exogenous
actions, then it gets into a desired state.The importance of
using the notion of closure is that one can focus only on a
possibly smaller state of states, rather than all the states,
thus limiting the possibility of an exponential blow-up - as
warned in (Ginsberg 1989) - of the number of control rules.
We now formally define the notions of closure and maintain-
ability.

Definition 3 Given a systemA = (S,A,Φ, poss) and a state
s, R(A, s) ⊆ S is the smallest set of states that satisfies
the following conditions: (i)s ∈ R(A, s), and (ii) if s′ ∈
R(A, s), anda ∈ poss(s′), thenΦ(s′, a) ⊆ R(A, s). ¤

Definition 4 (Closure) Let A = (S,A,Φ, poss) be a sys-
tem and letS ⊆ S be a set of states. Then the clo-
sure ofA w.r.t. S, denoted byClosure(S,A), is defined by
Closure(S,A) =

⋃

s∈S R(A, s). ¤

Example 1 In the systemA in Figure 1, we have that
R(A, d) = {d, h} and R(A, f) = {f, g, h}, and therefore
Closure({d, f}, A) = {d, f, g, h}. ¤

Next we define the notion of unfolding a control.

Definition 5 (Unfoldk(s,A,K)) Let A=(S, A, Φ, poss)
be a system, lets∈S, and let K be a control forA.
Then Unfoldk(s,A,K) is the set of all sequencesσ =
s0, s1, . . . , sl wherel≤k ands0=s such thatK(sj) is de-
fined for all j<l, sj+1∈Φ(sj ,K(sj)), and if l<k, then
K(sl) is undefined. ¤

Intuitively, an element ofUnfoldk(s,A,K) is a sequence
of states of length at mostk + 1 that the system may go
through if it follows the controlK starting from the states.
The above definition ofUnfoldk(s,A,K) is easily extended
to the case whenK is a super-control, meaningK(s) is a
set of actions instead of a single action. In that case, we
overloadΦ and for any set of actionsa∗, defineΦ(s, a∗) =
⋃

a∈a∗ Φ(s, a).
We now define the notion ofk-maintainability. This defi-

nition can be used to verify the correctness of a control.

Definition 6 (k-Maintainability) Given a systemA =
(S,A,Φ, poss), a set of agents actionAag ⊆A, and a spec-
ification of exogenous action occurrenceexo, we say that
a control1 K for A w.r.t. Aag k-maintainsS ⊆ S with re-
spect toE ⊆ S, wherek≥0, if it holds for each states ∈
Closure(S,AK,exo) and each sequenceσ = s0, s1, . . . , sl

in Unfoldk(s,A,K) with s0 = s that{s0, . . . , sl}∩E 6= ∅.
We say that a set of statesS ⊆ S (resp.A, if S = S) is k-

maintainable, k ≥ 0, with respect to a set of statesE ⊆ S,
if there exists a controlK which k-maintainsS w.r.t. E.
Furthermore,S (resp.A) is calledmaintainablew.r.t E, if S
(resp.A) is k-maintainablew.r.t. E for somek ≥ 0. ¤

Example 2 Reconsider the systemA in Figure 1. Let us
assume thatAag = { a, a′ }, that exo(s) = { e } iff
s = f and thatexo(s) = ∅ otherwise. Suppose now that
we want a 3-maintainable control policy forS = {b} w.r.t.
E = {h}. Clearly, such a control policyK is to takea in
b, c, andd. Indeed,Closure({b}, AK,exo) = {b, c, d, h}
andUnfold3(b, A,K) = {〈b, c, d, h〉}, Unfold3(c,A,K) =
{〈c, d, h〉}, andUnfold3(d,A,K) = {〈d, h〉}; furthermore,
each sequence containsh.

Suppose now thatΦ(c,a)={d, f} instead of{d} (i.e.,
nondeterminism inc). Then, nok-maintainable control pol-
icy for S = {b} w.r.t. E = {h} exists for anyk ≥ 0. In-
deed, the agent can always end up in the dead-endg. If,

1Here onlyK(s) for s ∈ Closure(S, AK,exo) is of relevance.
For all others, K(s) can be arbitrary or undefined.

however, in additionΦ(g,a′) = {f, h} anda
′ ∈ poss(g),

a 3-maintainable control policyK is K(s) = a for s ∈
{b, c, d, f} andK(g)= a′. ¤

Polynomial time methods to construct
k-maintainable control policies

Now that we have defined the notion ofk-maintainability,
our next step is to show how somek-maintainable control
can be constructed in an automated way. We start with some
historical background. There has been extensive use of sit-
uation control rules (Drummond 1989) and reactive control
in the literature. But there have been far fewer efforts (Ka-
banza, Barbeau, & St-Denis 1997) to define correctness of
such control rules2, and to automatically construct correct
control rules. In (Kaelbling & Rosenschein 1991), it is sug-
gested that in a control rule of the form: “if conditionc is
satisfied then do actiona”, the actiona is the action that
leads tothe goal from any state where the conditionc is sat-
isfied. In (Baral & Son 1998) a formal meaning of “leads
to” is given as: for all statess that satisfyc, a is the first
action of a minimal cost plan froms to the goal. Using this
definition, an algorithm is presented in (Nakamura, Baral, &
Bjareland 2000) to constructk-maintainable controls. This
algorithm is sound but not complete, in the sense that it gen-
erates correct controls only, but there is no guarantee thatit
will find always a control if one exists. The difficulty in de-
veloping a complete algorithm – also recognized in (Jensen,
Veloso & Bryant 2003) – can be explained as follows. Sup-
pose one were to do forward search from a state inS. Now
suppose there are multiple actions from this state that ‘lead’
to E. Deciding on which of the actions or which subsets
one needs to chose is a nondeterministic choice necessitating
backtracking if one were to discover that a particular choice
leads to a state (due to exogenous actions) from whereE
can not be reached. Same happens in backward search too.
In this paper we overcome the problems one faces in follow-
ing the straightforward approaches and give a sound and
complete algorithm for constructingk-maintainable control
policies.

We provide it in two sets: First we consider the case when
the transition functionΦ is deterministic, and then we gen-
eralize to the case whereΦ may be non-deterministic. In
each case, we present different methods, which illustrates
our discovery process and also eases a better grasp of the fi-
nal algorithm. We first present an encoding of our problem
as a propositional theory and appeal to propositional SAT
solvers to construct the control. As it turns out, this encod-
ing is in a tractable fragment of SAT, for which specialized
solvers (in particular, Horn SAT solvers) can be used eas-
ily. Finally, we present a direct algorithm distilled from the
previous methods.

The reasoning behind this line of presentation is the fol-
lowing:

(i) It illustrates the methodology of using SAT and Horn
SAT encodings to solve problems;
2Here we exclude the works related to MDPs as it is not known

how to express the kind of goal we are interested in – such ask
maintenance goals – using reward functions.

(ii) the encodings allow us to quickly implement and test
algorithms;

(iii) the proof of correctness mimics the encodings; and

(iv) we can exploit known complexity results for Horn SAT
to determine the complexity of our algorithm, and in par-
ticularly to establish tractability.

As for ii), we can make use of Answer Set Solvers such
as DLV (Eiteret al. 2000) or Smodels (Niemelä & Simons
1997) which extend Horn logic programs by nonmonotonic
negation. These solvers allow to compute efficiently the
least model and some maximal model of a Horn theory,
which can be exploited to construct robust or “small” con-
trols, respectively.

The problem we want to solve, which we refer to ask-
MAINTAIN , has the following input and output:

Input: An input I is a systemA = (S, A, Φ, poss), sets
of statesE ⊆ S andS ⊆ S, a setAag ⊆ A, a functionexo,
and an integerk ≥ 0.

Output: A control K such thatS is k-maintainable with
respect toE (using the controlK), if such a control exists.
Otherwise the output is the answer that no such control ex-
ists.

We assume here that the functionsposs(s) andexo(s) can
be efficiently evaluated; e.g., if both functions are given by
their graphs (i.e., in a table).

Deterministic transition function Φ(s, a)
We start with the case of deterministic transitions, i.e.,
Φ(s, a) is a singleton set{s′} whenever nonempty. In abuse
of notation, we simply will writeΦ(s, a) = s′ in this case.

Our first algorithm to solvek-MAINTAIN will be based
on a reduction to propositional SAT solving. Given an input
I for k-MAINTAIN , we construct a SAT instancesat(I) in
polynomial time such thatsat(I) is satisfiable if and only
if the input I allows for ak-maintainable control, and that
the satisfying assignments forsat(I) encode possible such
controls.

In our encoding, we shall use for each states ∈ S propo-
sitional variabless0, s1, . . . , sk. Intuitively, si will denote
that (i) there is a path from states to some state inE using
only agent actions and at mosti of them, to which we re-
fer as “there is an a-path froms to E of length at mosti,”
and that (ii) from each states′ reachable froms, there is an
a-path froms′ to E of length at mostk.

The encodingsat(I) contains the following formulas:
(0) For alls ∈ S, and for allj, 0 ≤ j < k:

sj ⇒ sj+1

(1) For alls ∈ E ∩ S:
s0

(2) For any statess, s′ ∈ S such thatΦ(a, s) = s′ for some
actiona ∈ exo(s):

sk ⇒ s′k
(3) For any states ∈ S \ E and alli, 1 ≤ i ≤ k:

si ⇒
∨

s′∈PS(s) s′i−1, where

PS(s) = {s′ ∈ S | ∃a ∈ Aag ∩ poss(s) : s′ = Φ(a, s)};

(4) For alls ∈ S \ E:
sk

(5) For alls ∈ S \ E:
¬s0

The intuition behind the above encoding is as follows. For
(0), (1), (4), and (5) it is ok to assume that the intuitive mean-
ing of si is as given by (i). Thus, the clauses in (0) state that
if there is an a-path froms to E of length at mostj then,
logically, there is also an a-path of length at mostj+1. Next,
the clauses in (1) say that for statess in S ∩ E, there is an
a-path of length 0 froms to E. Next, (4) states that for any
starting states in S outsideE, there is an a-path froms to E
of length at mostk, and finally (5) that for any states outside
E, there is no a-path froms to E of length 0. Ignoring part
(ii) of the meaning ofsi, the clauses in (3) state that if, for
any states, there is an a-path froms to E of length at most
i, then for some possible agent actiona and successor state
s′ = Φ(a, s), there is an a-path froms′ to E of length at most
i-1. For (2), let us consider the full intuitive meaning ofsi.
The ‘if’ part of (2) expresses that there is an a-path froms to
E of length at mostk, and for each states∗ reachable from
s, there is an a-path froms∗ to E of length at mostk. The
‘then’ part of (2) expresses that there is an a-path froms′ to
E of length at mostk, and for each states′′ reachable from
s′, there is an a-path froms′′ to E of length at mostk. The
link between thes in the ‘if’ part and thes′ in the ‘then’ part
is that an exogenous action takes one froms to s′. Thus (2)
follows from the intuitive meaning ofsi.

Given any modelM of sat(I), we can extract a desired
control K from it by definingK(s) = a, if s is ok to be
in the closure fork-maintenance (indicated by truth ofsk in
M) but outsideE, anda is a possible agent action ins such
thats′ = Φ(s, a) ands′ is closer toE thans is. In case of
multiple possiblea ands′, onea can be arbitrarily picked.
Otherwise,K(s) is left undefined.

In particular, fork = 0, only the clauses from (1), (2), (4)
and (5) do exist. As easily seen,sat(I) is satisfiable in this
case if and only ifS ⊆ E and no exogenous action leads
outsideE, i.e., the closure ofS under exogenous actions is
contained inE. This means that no actions of the agent are
required at any point in time, and we thus obtain the trivial
0-controlK which is undefined on all states, as desired.

The next result states that the SAT encoding works prop-
erly in general.
Proposition 1 Let I consist of a systemA = (S, A, Φ,
poss) whereΦ is deterministic, a setAag ⊆ A, sets of states
E ⊆ S and S ⊆ S, an exogenous functionexo, and an
integerk. For any modelM of sat(I), let CM = {s ∈ S |
M |= sk}, and for any states ∈ CM let ℓM (s) denote the
smallest indexj such thatM |= sj (i.e., s0, s1,. . . , sj∗−1

arefalse andsj∗ is true), which we call thelevelof s w.r.t.
M . Then,
(i) S is k-maintainable w.r.t.E iff sat(I) is satisfiable.
(ii) Given any modelM of sat(I), the partial function

K+
M : S → 2Aag defined onCM \ E such that

K+
M (s) = {a ∈ Aag ∩ poss(s) | Φ(s, a) = s′,

s′ ∈ CM , ℓM (s′) < ℓM (s)},

is a valid super-control forA w.r.t.Aag;

(iii) any controlK which refinesK+
M for some modelM of

sat(I) k-maintainsS w.r.t. E. ¤

Horn SAT encoding While sat(I) is constructible in
polynomial time fromI, we can not automatically infer that
solvingk-MAINTAIN is polynomial, since SAT is a canoni-
cal NP-hard problem. However, a closer look at the structure
of the clauses insat(I) reveals that this instance is solvable
in polynomial time. Indeed, it is areverse Horntheory; i.e.,
by reversing the propositions, we obtain a Horn theory. Let
us use propositionssi whose intuitive meaning is converse
of the meaning ofsi. Then the Horn theory corresponding
to sat(I), denotedsat(I), is as follows:

(0) For alls∈S andj, 0≤j<k:
sj+1 ⇒ sj .

(1) For alls ∈ E ∩ S:
s0 ⇒ ⊥.

(2) For any statess, s′ ∈ S such thats′=Φ(a, s) for some
actiona∈exo(s):

s′k ⇒ sk.

(3) For any state inS \ E, and for alli, 1 ≤ i ≤ k:
(

∧

s′∈PS(s) s′i−1

)

⇒ si, where

PS(s)={s′∈S | ∃a∈Aag∩poss(s): s′=Φ(a, s)}.

(4) For alls ∈ S \ E:
sk ⇒ ⊥.

(5) For alls ∈ S \ E:
s0.

Here, ⊥ denotes falsity. We then obtain a result similar
to Proposition 1, and the modelsM of sat(I) lead tok-
maintainable controls, which we can construct similarly;
just replace in part (ii)CM with CM = {s ∈ S | M 6|= sk}.
Notice thatCM coincides with the set of statesCM for the
modelM of sat(I) such thatM |= p iff M 6|= p, for each
atomp.

Example 3 For the first (deterministic) instanceI in Exam-
ple 2, the encodingsat(I) yields the least model

M = {g3, g2, g1, g0, f3, f2, f1, f0,

b2, b1, b0, c1, c0, d0};

hence,CM = {b, c, d, h}, which gives rise to the super-
controlK+

M such thatK+
M (s) = {a} for s ∈ {b, c, d} and

K+
M (s) is undefined fors ∈ {f, g, h}. In this case, there is

a single controlK refiningK+
M , which is given byK(s) =

a for s ∈ {b, c, d} discussed above. ¤

As computing a model of a Horn theory is a well-known
polynomial problem (Dowling & Gallier 1984), we thus ob-
tain the following result.

Theorem 2 Under deterministic state transitions, problem
k-MAINTAIN is solvable in polynomial time. ¤

An interesting aspect of the above is that, as well-known,
each satisfiable Horn theoryT has the least model,MT ,
which is given by the intersection of all its models. More-
over, the least model is computable in linear time, cf. (Dowl-
ing & Gallier 1984). This model not only leads to ak-
maintainable control, but also leads to amaximalcontrol,
in the sense that the control is defined on a greatest set
of states outsideE among all possiblek-maintainable con-
trols for S′ w.r.t. E such thatS ⊆ S′. This gives a clear
picture of which other states may be added toS while k-
maintainability is preserved; namely, any states inCMT

.
Furthermore, any controlK computed fromMT applying
the method in Proposition 1 (usingCMT

) works for such an
extension ofS as well.

On the other hand, intuitively ak-maintainable control
constructed from some maximal model ofsat(I) with re-
spect to the propositionssk is undefined to a largest extent,
and works merely for a smallest extension. We may gener-
ate, starting fromMT , such a maximal model ofT by trying
to flip first, step by step all propositionssk which arefalse
to true, as well as other propositions entailed. In this way,
we can generate a maximal model ofT on{sk | s ∈ S \E}
in polynomial time, from which a “lean” control can also be
computed in polynomial time.

Non-deterministic transition function Φ(s, a)

We now generalize our method for constructingk-maintain-
able controls to the case in which transitions due toΦ may
be non-deterministic. As before, we first present a general
propositional SAT encoding, and then rewrite to a proposi-
tional Horn SAT encoding. To explain some of the notations,
we need the following definition, which generalizes the no-
tion of an a-path to the non-deterministic setting.

Definition 7 (a-path) We say that there exists an a-path of
length at mostk ≥ 0 from a states to a set of statesS′, if
eithers ∈ S′, or s /∈ S′, k > 0 and there is some action
a ∈ Aag ∩ poss(s) such that for everys′ ∈ Φ(s, a) there
exists an a-path of length at mostk − 1 from s′ to S′. ¤

In the following encoding of an instanceI of problemk-
MAINTAIN to SAT, referred to assat′(I), si will again intu-
itively denote that (i) there is an a-path froms to E of length
at mosti, and (ii) from each states′ reachable froms , there
is an a-path froms′ to E of length at mostk. The propo-
sition s ai, i > 0, will denote that for suchs there is an
a-path froms to E of length at mosti starting with actiona
(∈ poss(s)). The encodingsat′(I) has again groups (0)–(5)
of clauses as follows:

(0), (1), (4) and (5) are the same as insat(I).

(2) For any states ∈ S ands′ such thats′ ∈ Φ(a, s) for
some actiona ∈ exo(s):

sk ⇒ s′k

(3) For every states ∈ S \ E and for alli, 1 ≤ i ≤ k:

(3.1) si ⇒
∨

a∈Aag∩poss(s) s ai;

(3.2) for everya ∈ Aag∩poss(s) ands′∈Φ(s, a):
s ai ⇒ s′i−1;

(3.3) for everya ∈ Aag ∩ poss(s), if i < k:
s ai ⇒ s ai+1.

Group (2) above is very similar to group (2) ofsat(I) in the
previous subsection. The only change is that we now have
s′ ∈ Φ(a, s) instead ofs′ = Φ(a, s). The main difference is
in group (3). We now explain those clauses, but while doing
it ignore the aspect (ii) of the meaning ofsi. The clauses
in (3.1) state that if there is an a-path froms to E of length
at mosti, then there is some possible actiona for the agent,
such that for each states′ that potentially results by takinga
in s, there must be an a-path froms′ to E of length at most
i-1 (expressed by 3.2). The clausess ai ⇒ s ai+1 in (3.3)
say that on a longer a-path froms the agent must be able
to pick a also. Notice that there are no formulas insat′(I)
which forbid to pick different actionsa anda′ in the same
states, and thus we have a super-control; however, we can
always refine it easily to a control.

Proposition 3 Let I consist of a systemA = (S, A, Φ,
poss), a setAag ⊆ A, sets of statesE,S ⊆ S, an exogenous
functionexo, and an integerk. For any modelM of sat′(I),
let CM = {s ∈ S | M |= sk}, and for any states ∈ CM \E
let ℓM (s) denote the smallest indexj such thatM |= s aj

for some actiona ∈ Aag∩poss(s), which we call thea-level
of s w.r.t. M . Then,

(i) S is k-maintainable w.r.t.E iff sat′(I) is satisfiable;
(ii) given any modelM of sat′(I), the partial function

K+
M : S → 2Aag which is defined onCM \ E by

K+
M (s) = {a | M |= s aℓM (s)}

is a valid super-control; and
(iii) any controlK which refinesK+

M for some modelM of
sat′(I) k-maintainsS w.r.t. E. ¤

One advantage of the encodingsat′(I) over the encoding
sat(I) for deterministic transition functionΦ above is that
it directly gives us the possibility to read off a suitable con-
trol from thes ai propositions,a ∈ poss(s), which are true
in any modelM that we have computed, without looking at
the transition functionΦ(s, a) again. On the other hand, the
encoding is more involved, and uses a larger set of proposi-
tions. Nonetheless, the structure of the formulas insat′(I)
is benign for computation and allows us to compute a model,
and from it ak-maintainable control in polynomial time.

Horn SAT encoding (general case) The encodingsat′(I)
is, like sat(I), a reverse Horn theory. We thus can rewrite
sat′(I) similarly to a Horn theory,sat

′
(I) by reversing the

propositions, where the intuitive meaning ofsi ands ai is
the converse of the meaning ofsi ands ai respectively. The
encodingsat

′
(I) is as follows:

(0), (1), (4) and (5) are as insat(I)

(2) For any states ∈ S ands′ such thats′ ∈ Φ(a, s) for
some actiona ∈ exo(s): s′k ⇒ sk.

(3) For every states ∈ S \ E and for alli, 1 ≤ i ≤ k:

(3.1)
(

∧

a∈Aag∩poss(s) s ai

)

⇒ si;

(3.2) for everya ∈ Aag∩poss(s) ands′∈Φ(s, a):

s′i−1 ⇒ s ai;
(3.3) for everya ∈ Aag ∩ poss(s), if i < k:

s ai+1 ⇒ s ai.

We thus obtain from Proposition3 easily the following re-
sult, which is the main result of this section so far.

Theorem 4 Let I consist of a systemA = (S, A, Φ, poss),
a setAag ⊆ A, sets of statesE,S ⊆ S, an exogenous
function exo, and an integerk. Let, for any modelM of
sat

′
(I), CM = {s | M 6|= sk}, and letℓM (s) = min{j |

M 6|= s aj , a ∈ Aag ∩ poss(a)}. Then,
(i) S is k-maintainable w.r.t.E iff the Horn SAT instance

sat
′
(I) is satisfiable;

(ii) Given any modelM of sat
′
(I), every controlK such

thatK(s) is defined iffs ∈ CM \ E and satisfies

K(s) ∈ {a ∈ Aag ∩ poss(s) | M 6|= s aj , j = ℓM (s)},

k-maintainsS w.r.t. E. ¤

Corollary 5 Problemk-MAINTAIN is solvable in polyno-
mial time. ¤

Example 4 Continuing Example 2, for the nondetermin-
istic variant I1 where Φ(c,a) = {d, f} instead of{d},
the formulasat

′
(I1) is found unsatisfiable for anyk≥0.

On the other hand, for the instanceI2 where in addition
Φ(g,a′) = {f, h} anda

′ ∈ poss(g), sat
′
(I2) is satisfiable

and has the least model
M = {b0, c0, d0, f0, g0, b1, c1, g1,

b a1, c a1, b a
′
1, g a

′
1, b a2}.

We thus obtain the super-controlK+
M defined on the states

b, c, d, f , andg, whereK+(s) = {a} for s ∈ {c, d, f} and
K+(s) = {a′} for s ∈ {b, g}. There is a single controlK
which refinesK+

M , namelyK(s) = a for s ∈ {c, d, f} and
K(s)= a′, for s ∈ {b, g}. ¤

Genuine procedural algorithm
From the encoding to Horn SAT above, we can distill a di-
rect algorithm to construct ak-maintainable control, if one
exists. The algorithm mimics the steps which a SAT solver
might take in order to solvesat′(I). It uses countersc[s] and
c[s a] for each states ∈ S and possible agent actiona in
states, which range over{−1, 0, . . . , k} and{0, 1, . . . , k},
respectively. Intuitively, valuei of counterc[s] represents
thats0, . . . , si are assigned true; in particular,i = −1 rep-
resents that nosi is assigned true yet. Similarly, valuei for
c[s a] represents thats a1, . . . , s ai are assigned true (and
in particular,i = 0 that nos ai is assigned true yet).

Starting from an initialization, the algorithm updates by
demand of the clauses insat

′
(I) the counters (i.e., sets

propositions true) using a commandupd(c, i) which is short
for “if c < i thenc := i,” towards a fixpoint. If a counter
violation is detected, corresponding to violation of a clause
s0 → ⊥ for s ∈ S ∩ E in (1) or sk → ⊥ for s ∈ S \ E
in (4), then no control is possible. Otherwise, a control is
constructed from the counters.

In detail, the algorithm is as follows:

Algorithm k-CONTROL

Input: A systemA = (S,A,Φ, poss), a setAag ⊆ A
of agent actions, sets of statesE,S ⊆ S, an exogenous
functionexo, and an integerk ≥ 0.

Output: A controlK whichk-maintainsS with respect to
E, if any such control exists. Otherwise, output that no
such control exists.

(Step 1) Initialization

(i) For everys in E, setc[s] := −1.
(ii) For everys in S \ E, setc[s] := k if s ∈ S and
Aag ∩ poss(s) = ∅; otherwise, setc[s] := 0.

(iii) For every s in S \ E anda ∈ Aag ∩ poss(s), set
c[s a] := 0.

(Step 2) Repeat the following steps until there is no change
or c[s]=k for somes ∈ S \ E or c[s]≥0 for somes ∈
S ∩ E:

(i) For any statess ∈ S ands′ ∈ Φ(a, s) wherea ∈
exo(s) andc[s′]=k do upd(c[s], k).

(ii) For any states ∈ S \ E,
(a) if s′ ∈ Φ(a, s) for a ∈ Aag ∩ poss(s) andc[s′]=i
such that0 ≤ i < k then do upd(c[s a], i + 1).
(b) if Aag ∩ poss(s) 6= ∅ and i= min(c[s a] | a ∈
Aag ∩ poss(s)), then doupd(c[s], i).

(Step 3) Ifc[s]=k for somes ∈ S \ E or c[s]≥0 for some
s ∈ S ∩ E, then output thatS is notk-maintainable w.r.t.
E and halt.

(Step 4) Output any controlK : S \ E → Aag defined
on all statess ∈ S \ E with c[s] < k and such that
K(s) ∈ {a ∈ Aag ∩ poss(s) | c[s a] < k andc[s a] =
minb∈Aag∩poss(s) c[s b]}. ¤

The above algorithm is easily modifiable if we simply want
to output a super-control such that each of its refinements is
a k-maintainable control, leaving a choice about the refine-
ment to the user. Alternatively, we can implement in Step 4
such a choice based on preference information.

The following proposition states that the algorithm works
correctly and runs in polynomial time.

Proposition 6 Algorithm k-CONTROL solves problemk-
MAINTAIN . Furthermore, for any inputI it terminates in
polynomial time. ¤

Encodingk-Maintainability for an Answer Set
Solver

In this section, we show how computing ak-maintainable
control can be encoded to a logic program, based on the re-
sults of the previous section. More precisely, we describe an
encoding to non-monotonic logic programs under the An-
swer Set Semantics (Gelfond & Lifschitz 1991), which can
be executed on one of the available Answer Set Solvers such
as DLV (Eiteret al. 2000) or Smodels (Niemelä & Simons
1997). These solvers support the computation of answer sets
(models) of a given program, from which solutions (in our
case,k-maintaining controls) can be extracted.

The encoding is generic, i.e., given by afixed program
which is evaluated over the instanceI represented by input
factsF (I). It makes use of the fact that non-monotonic logic
programs can have multiple models, which correspond to
different solutions, i.e., differentk-maintainable controls.

In the following, we first describe how a system is rep-
resented in a logic program, and then we develop the logic
programs for both deterministic and general, nondetermin-
istic domains. We shall follow here the syntax of the DLV
system; the changes needed to adapt the programs to other
Answer Set Solvers such as Smodels are very minor.

Input representation F (I)
The inputI of problemk-MAINTAIN , can be represented by
factsF (I) as follows.

• The systemA = (S,A,Φ, poss) can be represented us-
ing predicatesstate, transition, andposs by the
following facts:

– state(s), for eachs ∈ S;
– action(a), for eacha ∈ A;
– transition(s,a,s′), for eachs, s′ ∈ S anda ∈ A

such thats′ ∈ Φ(s, a);
– poss(s,a), for eachs ∈ S and a ∈ A such that

a ∈ poss(s).

• the setAag⊆A of agent actions is represented using a
predicateagent by factsagent(a), for eacha∈Aag;

• the set of statesS is represented by using a predicate
start by factsstart(s), for eachs ∈ S;

• the set of statesE is represented by using a predicate
goals by factsgoal(s), for eachs ∈ E;

• the exogenous functionexo is represented by using a
predicateexo by facts exo(s,a) for eachs∈S and
a∈exo(s).

• finally, the integerk is represented using a predicate
limit by the factlimit(k).

Example 5 Coming back to Example 2, the inputI is rep-
resented as follows:
state(b). state(c). state(d). state(f).
state(g). state(h).

start(b). goal(h).

poss(b,a). poss(c,a). poss(d,a).
poss(b,a1). poss(f,a). poss(f,e).

action(a). action(a1). action(e).

agent(a). agent(a1). exo(f,e).

trans(b,a,c). trans(c,a,d). trans(d,a,h).
trans(b,a1,f). trans(f,a,h). trans(f,e,g).

limit(3).

¤

Deterministic transition function Φ
The following is a program, executable on the DLV engine,
for deciding the existence of ak-control. In addition to the
predicates for the input factsF (I), it employs a predicate
n path(X,I), which intuitively corresponds toXI , and
further auxiliary predicates.

% Define range of 0,1,...,k for stages.
range(I) :- #int(I), I <= K, limit(K).

% Rule for (0).
n_path(X,I) :- state(X), range(I),

limit(K), I<K, n_path(X,J), J = I+1.

% Rule for (1).
:- n_path(X,0), goal(X), start(X).

% Rule for (2)
n_path(X,K) :- trans(X,A,Y), exo(X,A),

n_path(Y,K), limit(K).

% Rules for (3)
n_path(X,I) :- state(X), not goal(X),

range(I), I>0,
not some_pass(X,I).

some_pass(X,I) :- range(I), I>0,
trans(X,A,Y), agent(A),
poss(X,A), not n_path(Y,J), I=J+1.

% Rule for (4)
:- n_path(X,K), limit(K), start(X),

not goal(X).

% Rule for (5)
n_path(X,0) :- state(X), not goal(X).

The predicaterange(I) specifies the index range from
0 to k, given by the inputlimit(k). The rules encod-
ing the clause groups (0) – (2) and (4), (5) are straight-
forward and self explanatory. For (3), we need to encode
rules with bodies of different size depending on the transi-
tion functionΦ, which itself is part of the input. We use
that the antecedent of any implication (3) is true if it is not
falsified, where falsification means that some atoms′i−1,
s′ ∈ PS(s), is false; to assess this, we use the auxiliary
predicatesome pass(X,I).

To compute the super-controlK+, we may add the rule:

% Define C M
cbar(X) :- state(X), not n_path(X,K),

limit(K).

%Define state level L
level(X,I) :- cbar(X), not n_path(X,I),

I > 0, n_path(X,J), I=J+1.

level(X,0) :- cbar(X), not n_path(X,0).

% Define super-control k_plus
k_plus(X,A) :- agent(A), trans(X,A,Y),

poss(X,A), level(X,I),
level(Y,J), J<I, not goal(X).

In cbar(X), we compute the states inCM , and in
level(X,I) the levelℓM (s) of each states ∈ CM (=CM

for the corresponding modelM of sat(I)). The super-
controlK+

M is then computed ink plus(X,A).
Finally, by the following rules we can nondeterministi-

cally generate any control which is a refinement ofK+
M :

% Selecting a control from k_plus.
control(X,Y) :- k_plus(X,Y),

not exclude_k_plus(X,Y).

exclude_k_plus(X,Y) :- k_plus(X,Y),
control(X,Z), Y<>Z.

The first rule enforces that any possible choice forK(s)
must be taken unless it is excluded, which by the second rule
is the case if some other choice has been made. In combina-
tion the two rules effect that one and only one element from
K+

M (s) is chosen forK(s).

Example 6 The output of DLV for the inputI and the
above program, filtered tocontrol is{control(b,a),
control(c,a), control(d,a)}. This corresponds
to the “maximal” controlK mentioned earlier. ¤

Nondeterministic transition function Φ
As for deciding the existence of ak-maintaining control,
the only change in the code for the deterministic case af-
fects Step (3). The modified code is as follows, where
n apath(X,A,I) intuitively corresponds toX AI .
% Rules for (3); different from above

% (3.1)
n_path(X,I) :- state(X), not goal(X),

range(I), I>0, not some_apass(X,I).

some_apass(X,I) :- range(I), I>0, agent(A),
poss(X,A), not n_apath(X,A,I),
not goal(X).

% (3.2)
n_apath(X,A,I) :- agent(A), trans(X,A,Y),

poss(X,A), range(I), I>0,
n_path(Y,J), I=J+1, not goal(X).

% (3.3)
n_apath(X,A,I) :- agent(A), poss(X,A),

range(I), I>0, limit(K), I<K,
n_apath(X,A,J), J=I+1, not goal(X).

Here,some apass(X,A,I) plays for encoding (3.1) a
similar role assome pass(X,I) for encoding (3) in the
deterministic encoding.
To compute the super-controlK+

M , we may then add the fol-
lowing rules:
% Define C M
cbar(X) :- state(X), not n_path(X,K),

limit(K).

% Define state action level, alevel (>=1)
alevel(X,I) :- alevel_leq(X,I), I=J+1,

range(J), not alevel_leq(X,J).

alevel_leq(X,I) :- cbar(X), not goal(X),
poss(X,A), agent(A), I>0,
range(I), not n_apath(X,A,I).

% Define super-control k_plus
k_plus(X,A) :- agent(A), alevel(X,I),

poss(X,A), not n_apath(X,A,I).

Here, the value ofℓM (s) is computed inalevel(X,I),
using the auxiliary predicatealevel leq(X,I) which
intuitively means thatℓM (X) ≤ I.

For computing the controls refiningK+
M , we can add the

two rules for selecting a control fromk plus from the pro-
gram for the deterministic case.
Example 7 The output of DLV for the input inputI2 and
the above program, filtered tocontrol is
{control(b,a1), control(c,a), control(d,a),
control(f,a), control(g,a1)}

(wherea1 encodesa′). Again, this is a correct result. ¤

State descriptions by variables
In many cases, states of a system are described by a vector
of values for parameters which are variable over time. It is
easy to incorporate such compact state descriptions into the
LP encoding from above, and to evaluate them on Answer
Set Solvers provided that the variables range over finite do-
mains. In fact, if any states is given by a (unique) vector
s = 〈s1, . . . , sm〉 m > 0, of valuessi, 1 ≤ i ≤ m, for
variablesXi ranging over nonempty (finite) domains, then
we can represents as factstate(vi

1,...,vi
ri
) and use a

vectorX1,...,Xm of state variables in the DLV code, in
place of a single variable,X. No further change of the pro-
grams from above is needed.

Computational Complexity
In this section, we give some results regarding the complex-
ity of constructingk-maintainable controls under various as-
sumptions.

We consider here the decision problem associated withk-
MAINTAIN (decidingk-maintainability ofS w.r.t. E in A,
which we refer to ask-MAINTAINABILITY), and deciding
the maintainability ofS w.r.t. E in A, which we refer to as
MAINTAINABILITY .

We first consider the problems in the setting where the
constituents of an instance are explicitly given, i.e., thesets
in enumerative form and the functions by their graphs in ta-
bles.

Theorem 7 Problem k-MAINTAINABILITY is PTIME -
complete (under logspace reductions). Furthermore, the
PTIME -hardness holds for 1-MAINTAINABILITY (i.e., k
fixed to 1), even if all actions are deterministic and there
is only one (deterministic) exogenous action.

Proof. (Sketch) The membership ofk-MAINTAINABILITY
in PTIME has been established above. ThePTIME -
hardness is shown by a reduction from deciding entailment
of an atomq from a propositional Horn logic programπ.

Briefly, the idea is to represent backward rule application
through agent actions; i.e., for a ruler of b0 ← b1, . . . , bm,
there is an agent actiona r which applied to a statesb0 rep-
resentingb0, brings the agent nondeterministically to any
statesbi

representingbi, i ∈ {1, . . . ,m}. In order to deal
with cycles through rules, the states also carry level informa-
tion. Given a statesq encodingq, S = {sq} is maintainable
w.r.t. a set of statesE encoding the facts inπ if q is provable
from π. Given thatk rules exist inπ, this is equivalent to
k-maintainability ofS w.r.t. E, and ak-maintaining control
corresponds to a proof ofq from π.

By using a special form of the rules inπ and an exoge-
nous action, it is possible with some coding tricks to emu-
late nondeterministic agent actions and sequences of agent
actions by alternating sequences of agent and exogenous ac-
tions, such that provability ofq from π corresponds to1-
maintainability ofS w.r.t. a setE in a systemA constructible
in logarithmic workspace fromq andπ. ¤

Theorem 8 MAINTAINABILITY is PTIME -complete. The
PTIME -hardness holds even in absence of exogenous ac-

tions, or if all actions are deterministic and there is only one
exogenous action.

Proof. (Sketch) The membership inPTIME is immediate
from the previous theorem and the fact thatS is maintain-
able w.r.t.E iff S is k-maintainable w.r.t.E for k = |S|.
ThePTIME -hardness for the stated restrictions is shown by
reductions similar to the one in the proof of Theorem 7.¤

The problems are thus of the same difficulty as Horn SAT,
which is PTIME -complete (Papadimitriou 1994). In some
cases, the complexity is lower:

Theorem 9 Problem MAINTAINABILITY for systems with
only deterministic actions and no exogenous actions is
NLOG-SPACE-complete.

Proof. (Sketch) In this case, it can be shown that the problem
amounts to deciding whether eachs ∈ S reaches somes′ ∈
E in the graph whose nodes are all states inS and which
has an edges → s′ whenevers′ ∈ Φ(s, a, s′) for some
a ∈ Aag ∩ poss(s). Since deciding reachability of a node
s′ from a nodes in a directed graph is well-knownNLOG-
SPACE-complete (Papadimitriou 1994), the result follows.
¤

Another case in which the complexity is lower is if the
maintenance phase is short and exogenous actions are ex-
cluded.

Theorem 10 Problem k-MAINTAINABILITY for systems
without exogenous actions is inLOG-SPACE, if k is con-
stant.

Proof. (Sketch) In this case, the problem consists in decid-
ing whether for every states ∈ S, some state inE is reach-
able withink steps by executing appropriate actions. More
precisely, define inductively

r0(s) = s ∈ E,

ri+1(s) = s ∈ E ∨ ∃a ∈ Aag ∩ poss(s)

∀s′ ∈ S(s′ ∈ Φ(s, a) ⇒ ri(s
′)),

for i ≥ 0. Then, in absence of exogenous actionsk-MAIN -
TAINABILITY is equivalent tork(s) for all s ∈ S. This can
be checked, for constantk, in logarithmic workspace. ¤

Thus, in the two cases above, the problems can be reduced
to deciding reachability of a nodet from a nodes in graph,
where in the latter each node has at most one outgoing edge.

State descriptions by variables
We note that under compact state representation as described
above, in which a system states is represented by a vector
s = (v1, . . . , vm) of values for fluentsf1,. . . ,fm ranging
over given finite domains, the complexity of the problem
increases by an exponential in general.

In this setting, we assume that the following member-
ship predicates, evaluable in polynomial time, are avail-
able: in Phi(s, a, s′), in poss(s, a), and in exo(s, a) re-
spectively fors′ ∈Φ(s, a, s′), a∈ poss(s), anda∈ exo(s),
respectively. Furthermore,in S (s) andin E (s) for decid-
ing whethers∈S ands∈E, respectively. We then obtain
the following result.

Theorem 11 k-MAINTAINABILITY and MAINTAINABIL -
ITY are EXPTIME -complete, when the input is given in
the compact representation from above. TheEXPTIME -
hardness holds even for 1-MAINTAINABILITY (i.e., k fixed
to 1) and also for MAINTAINABILITY , even if all actions are
deterministic and there is only one exogenous action.

Proof. (Sketch) The membership inEXPTIME follows eas-
ily from unpacking the compact state representation to an
explicit (enumerative) one, which leads to an exponential
increase in the worst case, and which can be constructed in
exponential time. On the enumerative representation, the
problem can then be solved in polynomial time as shown
above. In total, this means that the problem is solvable in
exponential time.

The EXPTIME -hardness can be shown by a reduction
from deciding inference of an atom from a Horn logic pro-
gram with variables (a datalog program). The construc-
tion lifts a similar one for propositional programs, show-
ing PTIME -hardness for the respective problems under enu-
merative representation, to the Datalog case. ¤

In absence of exogenous actions, under compact represen-
tationk-MAINTAINABILITY for constantk and MAINTAIN -
ABILITY are inPSPACEprovided that for the latter problem
all actions are deterministic.

A more detailed discussion of complexity issues, with full
proofs of all results will be given in the extended paper.

Conclusion
In this paper, we presented a polynomial time algorithm to
compute the control fork-maintainability, if one exists. We
then analyzed the complexity of constructing such controls
under various assumptions. One interesting aspect of our
polynomial time algorithm is the approach that led to its
finding: use of SAT encoding, and complexity results re-
garding the special Horn sub-class of propositional logic.

In other related work, (Jensen, Veloso & Bryant 2003)
considers the somewhat opposite problem of developing
policies that achieve a given goal assuming at mostk inter-
ferences from the environment. A formal connection, if any,
between this problem andk-maintainability remains open.
Also, in recent years there have been several work, such as
(Cimatti et al. 2003), on planning with non-deterministic
actions, but in none of those papers, agents actions and ex-
ogenous actions are viewed separately.

Acknowledgments
We thank the reviewers for their helpful suggestions to im-
prove this paper.

References
Baral, C., and Son, T. 1998. Relating theories of actions
and reactive control.Electronic Transactions on Artificial
Intelligence2(3-4):211-271.
Brooks, R. 1986. A robust layered control system for a
mobile robot.IEEE J. Robotics and Automation14–23.
Ceri, S., and Widom, J. 1990. Deriving production rules
for constraint maintainance. In McLeod, D., et al., eds.,

Proc. 16th Int’l Conference on Very Large Data Bases
(VLDB’90), 566–577. Morgan Kaufmann.
Cimatti, A., Pistore, M., Roveri, M., and Traverso, P. 2003
Weak, strong, and strong cyclic planning via symbolic
model checking.Artificial Intelligence, 147(1-2): 35-84.
Dijkstra, E. W. 1974. Self-stabilizing systems in spite of
distributed control.Comm. ACM17(11):843–644.
Dowling, W., and Gallier, H. 1984. Linear time algorithms
for testing the satisfiability of propositional Horn formulae.
Journal of Logic Programming1:267–284.
Drummond, M. 1989. Situation control rules. InProc.
First Int’l Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-89), 103–113.
Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 2000.
Declarative problem-solving using the DLV system. In
Minker, J., ed.,Logic-Based Artificial Intelligence, 79–
103. Kluwer Academic Publishers.
Fikes, R., and Nilson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence2(3–4):189–208.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.
Gelfond, M., and Lifschitz, V. 1992. Representing actions
in extended logic programs. In Apt, K., ed.,Joint Int’l
Conf. and Symp. on Logic Programming, 559–573. MIT
Press.
Ginsberg, M. 1989. Universal planning: An (almost) uni-
versally bad idea.AI magazine40–44.
Jensen, R.; Veloso, M.; and Bryant, R. 2003. Synthe-
sis of fault tolerant plans for non-deterministic domains.
ICAPS’03 Workshop on planning under uncertainty and in-
complete information, 64-73.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Plan-
ning control rules for reactive agents.Artificial Intelligence
5(1):67–113.
Kaelbling, L., and Rosenschein, S. 1991. Action and plan-
ning in embedded agents. In Maes, P., ed.,Designing Au-
tonomous Agents. MIT Press. 35–48.
Maes, P., ed. 1991.Designing Autonomous Agents. MIT/
Elsevier.
Nakamura, M.; Baral, C.; and Bjareland, M. 2000. Main-
tainability: a weaker stabilizability like notion for high
level control. InProceedings of the 8th National Confer-
ence on Artificial Intelligence (AAAI-90), 62–67.
Niemel̈a, I., and Simons, P. 1997. Smodels – an implemen-
tation of the stable model and well-founded semantics for
normal logic programs. In Dix, J., et al., eds.,Proc. 4th Int’l
Conference on Logic Programming and Non-Monotonic
Reasoning (LPNMR’97), LNAI 1265, 420–429. Springer.
Ozveren, O.; Willsky, A.; and Antsaklis, P. 1991. Stabil-
ity and stabilizability of discrete event dynamic systems.
Journal of the ACM38(3):730–752.
Papadimitriou, C. H. 1994.Computational Complexity.
Addison-Wesley.

