
Two-Job Shop Scheduling Problems with Availability Constraints

Riad Aggoune

Laboratoire des Technologies Industrielles
Centre de Recherche Public Henri Tudor

BP 144, L-4002 Esch-sur-Alzette, G.D. Luxembourg
Riad.Aggoune@tudor.lu

Abstract
This paper addresses the complexity of scheduling problems
considering two jobs to schedule and availability constraints
imposed on the machines. A polynomial algorithm called
temporized geometric approach is first proposed for the
minimization of the makespan, under the non-preemption
constraint. Then, a generalization to the preemptive case is
developed. These algorithms are extensions of the
geometric approach, which allows solving the classical two-
job scheduling problem.

Introduction
The classical scheduling literature commonly assumes that
the machines are never unavailable during the planning
horizon. However, in actual workshop, this assumption
may turn false. In fact, one or several machines might
become unavailable for processing jobs after a breakdown
or when a preventive maintenance such as washing or
control operations is scheduled.

This paper addresses the two-job shop scheduling
problem under availability constraints. We consider the
deterministic model of fixed and known in advance
unavailability periods. Moreover we assume unless
specified that the jobs are strictly non-preemptable. This
means once an operation is started, its execution can be
interrupted neither by an unavailability period, nor by
another operation. The objective function is the
minimization of the makespan.

As compared to the literature dedicated to classical
scheduling problems, studies dealing with limited machine
availability are very rare. Availability constraints have
been firstly introduced in single machine (see Adiri et al.
1992) and parallel machines (Schmidt 1984, 1988)
environments. Lee extensively investigated flow shop
scheduling problems with two machines (Lee 1996, 1997
and 1999). In particular, the author defined the resumable,
non-resumable and semi-resumable models. An operation
is called resumable if it can be interrupted by an
unavailability period and completed without penalty as
soon as the machine becomes available again. If the part of

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

the operation that has been processed before the
unavailability period must be partially (resp. as a whole)
re-executed, then the operation is called semi-resumable
(resp. non-resumable). Recently, flow shop scheduling
problems with two machines and resumable jobs have been
treated in (Blazewicz et al. 2001), and (Kubiak et al.
2002). For more details, we refer to the survey of (Schmidt
2000), where existing methods for solving scheduling
problems under availability constraints as well as
complexity results are reviewed. To the best of our
knowledge, there is no theoretical study in the scheduling
literature for the two-job scheduling problems with
availability constraints addressed in this paper.

The remainder of this paper is organized as follows. We
first describe, in the following section, the considered
problem. Secondly, the classical geometric approach is
presented. It is a polynomial algorithm for solving classical
scheduling problems with two jobs. Then, we propose an
extension of the geometric approach, which allows dealing
with unavailability periods of the machines. This
extension, developed for the non-preemptive case, is
finally generalized to the resumable model.

Problem Definition
The non-preemptive job shop scheduling problem with two
jobs and availability constraints can be stated as follows:
• Two jobs J1 and J2 have to be processed on a set of m

machines M = {M1, M2,…, Mm}.
• Each job Ji is composed by a linear sequence of ni

operations {Oi1, Oi2,…, Oini
}.

• Each machine Mj can perform at most one operation at a
time and each operation Oij needs one machine, during
pij time-units.

• A maximum of K unavailability periods may occur on
each machine. The starting times and durations of these
tasks are known in advance and fixed.

• Operations are strictly non-preemptable, which means
that their executions can be interrupted neither by
unavailability periods, nor by other operations.

• The objective is to determine starting times of operations
on each machine, such that the above constraints are
satisfied and the makespan is minimized.

According to the terminology concerning the machines
availability introduced in (Schmidt 2000), the studied
problem can be denoted by J, NCwin | n = 2 | Cmax, where
NCwin means that non-availability periods are arbitrarily
distributed on the machines.

Classical Geometric Approach
The geometric approach has been firstly introduced in
(Akers and Friedman 1955). It consists in reducing the
two-job shop scheduling problem in a shortest path one. Its
exact complexity for the minimization of any regular
criterion is stated in (Sotskov 1985) and (Brucker 1988).
We describe in the following, the basic ideas of the
geometric approach with the makespan criterion.

The problem J | n=2 | Cmax can be represented into a two-
dimension plane with obstacles, defined as follows:
• Each axis representing one job Ji= {Oi1, Oi2, …, Oini

} is
decomposed into ni sub-intervals. The length Lij of sub-
interval Iij is proportional to the processing time pij of
operation Oij.

• The rectangle defined by intervals I1j and I2k is an
obstacle if the associated operations O1j and O2k share
the same machine.

• The right and upper borders of the rectangle defined by
the origin point O and the final point F, which
corresponds to the completion of the two jobs, is the
final obstacle.

A feasible solution of the scheduling problem is then a
path going from the origin O to the point F. Such a path
consists of horizontal, vertical and diagonal legs. A
horizontal (resp. vertical) leg represents the exclusive
progression of job J1 (resp. J2), whereas diagonal legs
correspond to simultaneous executions of the two jobs.
Moreover, any path must avoid the interior of the
obstacles. This is due to the fact that two operations can
not be executed simultaneously on the same machine and
are not preemptable. The length L of a path, which is equal
to the makespan of the associated schedule, is given by the
formula:

L = L(Hor) + L(Vert) + L(Diag) / √2, (1)
where L(Hor) (resp. L(Vert), L(Diag)) is the total length of
horizontal (resp. vertical, diagonal) legs.
As a consequence, the search of the schedule that
minimizes the makespan is equivalent to the search of the
shortest path in the plane with obstacles. Figure 1 shows,
in bold, the shortest path obtained for a two-job shop
scheduling problem defined by the following linear
sequences, where each number in brackets represents the
processing time pij of job Ji on machine Mj:
• J1 : M1 (1) M2 (3) M3 (3)
• J2 : M2 (2) M3 (2) M1 (1)

J1

J2

O
M 1 (1) M 3 (3) M 2 (3)

M 2 (2)

M 3 (2)

M 1 (1)
F

4

3

1

2

Figure 1: Shortest path in the plane

The search of a shortest path in the plane previously
defined can be reduced to the search of the shortest path in
an appropriate acyclic network N, this last problem being
solvable in a linear time, in function of the number of
obstacles. The network N = (V, E, d) is constructed as
follows:
• V is the set of vertices, composed by the origin O, the

final point F, and all the south-east (SE) and north-west
(NW) corners of the obstacles.

• Each vertex i ∈ V \ {F} coincides with at most two legs
going from i. These legs are obtained by progressing
diagonally (in the north-west direction) from i, until the
border of the rectangle defined by O and F, or an
obstacle D, is hit:

• In the first case, F is the unique successor of i and the leg
(i, F) is composed by the path going diagonally from i to
the final border and then going along it (see Figure 2.a).

• If an obstacle D is met, then two legs (i, j) and (i, k) are
created, where j and k are the NW and SE corners of
obstacle D, these two vertices being the direct
successors of vertex i (Figure 2.b).

• The length d(i, j) of a leg (i, j) is equal to its horizontal or
vertical part, to which is added the projection on one of
the axis of its diagonal part.

i

j

D

k

F

i

 (a) 1st case (b) 2nd case

Figure 2: Directs successors of a vertex i

An O-F path in this network corresponds to a feasible
schedule for the problem J | n=2 | Cmax and its length is
equal to the makespan. So, finding the optimal makespan
is equivalent to the search of a shortest path in the
constructed network. Figure 3 represents the acyclic
network associated with the shortest path provided by
Figure 1.

O

2

1 3

4

F

2
6

4
4

3

3

3

Figure 3: Acyclic network N

In (Brucker 1988), it was shown that the network N could
be constructed in O(r log r) steps, where r is the number of
obstacles, at most equal to O(n1 n2). Moreover, the shortest
path in an acyclic network can be found in a time
proportional to O(r). So, the complexity of the problem
J | n=2 | Cmax is at most equal to O(r log r). Since the works
of Sotskov (1985), several generalizations of the method
have been proposed in the literature. Applications of the
geometric approach are reviewed in (Aggoune 2002).

Temporized Geometric Approach
We develop in this section an extension of the geometric
approach which exactly solve the problem J, NCwin | n=2 |
Cmax. This extension, called temporized geometric
approach, allows to integrate the evolution of time and so
the availability of the machines. It is based on the
definition and the introduction of new vertices, as well as a
new and dynamic way to progress from one vertex to its
successors.

Vertices Characterization and Definitions
In the classical geometric approach, vertices of the
network are the north-west (NW) and south-east (SE)
corners of the obstacles hit when going diagonally in the
plane. These corners are located at the extremities of the
intervals corresponding to operations in conflict. Each
vertex can then be defined thanks to its coordinates in the
plane: the x-coordinate (resp. y-coordinate) of the vertex
corresponds to operation of job J1 (resp. J2) to be executed
(Figure 4.a).
In our approach, some vertices can be located between two
lines bounding an operation that is to say inside intervals.
So, we add, for each coordinate of the vertices, an
additional information related to the duration already
processed of the associated operation (Figure 4.b).

J1

J2

O1j

O2k

O

SE = (j+1, k)

J1

J2

O1j

O2k

O

S = ((j, ∆1), (k, 0))

∆1
j

NW = (j, k+1)

j+1 j j+1

k

k+1

k

k+1

(a) classical characterization (b) new characterization

Figure 4: Vertices characterization
Furthermore, an earliest date, noted h(v), is combined with
each vertex v obtained by a progression in the plane with
obstacles. This value corresponds to the smallest duration
which is necessary to reach vertex v starting from the
origin O (note that h(O) = 0). The earliest date h(v) is then
equal to the length of the shortest path going from O to v.

In order to take into account the unavailability periods of
the machines, tests are realized at each consideration of a
vertex, so as to verify if the machines needed for
processing the next operations are available. Knowing the
earliest date h(v) of vertex v, we try to process at the
earliest, and if it is possible simultaneously, operations of
the two jobs to be started. An availability test on direction
J1 (resp. J2) consists in determining the availability time
T1,h(v) (resp. T2,h(v)) of the machine associated with the next
operation of job J1 (resp. J2).

J1

J2

O1j

O2k

O

v O1j

time
0

h(v)

T1,h(v)

Unavailability periods

Figure 5: Availability test on direction J1

In the example provided by Figure 5, operation O1j can not
be processed at time h(v), since it can not be completed
before the first availability period of the machine.
Operations being strictly non-preemptable, the execution
of O1j can start (at the earliest) at time T1,h(v) which is equal
to the time in which the problematical availability period is
finished.

We describe in what follows the principle of the
temporized geometric approach, namely the set of vertices,
the progression method from one vertex to its successors,
and the way to calculate the distance between two vertices.
Then, the construction of the network associated with the
shortest path determination is developed.

Set of Vertices
The set of vertices V of the network constructed by our
approach is composed by the three following kinds of
vertices:
• Regular vertices, located at the intersection of horizontal

and vertical lines, whose NW and SE corners of
obstacles belong to. They correspond to the end of at
least one operation.

• Singular vertices, located on a horizontal (resp. vertical)
line, which means that the execution of the operation of
job J1 (resp. J2) has already started (see Figure 4.b).
They correspond to the fact that the execution of one job
is going on, while the other is starting.

• Waiting vertices, also located at the intersection of two
lines, for which the execution of operations of jobs J1
and J2 has not started yet.

A singular vertex is created if at the current time t, the
progression of only one job is possible, whereas waiting
vertices are created if the progression is possible for none
of the two jobs. In the two-dimension plane, a waiting
vertex is always a duplication of the regular vertex having
the same geometric coordinates.

Progression Method
Let us consider a vertex v =((j, ∆1), (k, ∆2)), and its earliest
date h(v). Availability tests are first realized on the
operations of the two jobs to execute. According to these
tests results, several ways to progress and to determine the
successors of v are to be considered:
First Case. If the operations of the two jobs can not start at
time h(v), vertex v is duplicated. A waiting vertex
vw = ((j, 0), (k, 0)) is then created, and vw is the only
successor of v.
Second Case. If there is an availability problem in the
direction J1 (resp. J2), the progression is made along the
vertical (resp. horizontal) line, that corresponds to only
execute the operations of job J2 (resp. J1), until job J1 (resp.
J2) becomes available again. A singular vertex s, from
which a diagonal progression is possible, is added as the
unique successor of v.
Third Case. If there is no availability problem, that is to
say if the operations of the two jobs can be executed at
time h(v), the progression works as in the classical
geometric approach. It is made in the diagonal direction
until an obstacle is hit. If this obstacle represents a
machines conflict, its NW and SE corners are the two
direct successors of vertex v. If the hit obstacle is the final
one, point F is added as the unique successor of v.

Distance Between Two Vertices
Let v = ((j, ∆1), (k, ∆2)) be an arbitrary vertex that belongs
to a path of the plane with obstacles, and let v’= ((j’, ∆1’),
(k’, ∆2’)) be one of its direct successors. If v’ is a
duplication of vertex v (see 1st case), then the distance
between v and v’ corresponds to the waiting time of the
availability of one of the two jobs, which is given by the
formula:

d(v, v’) = min {T1v, T2v} – h(v). (2)
If v and v’ have not the same geometric coordinates
(Figure 6), let us suppose without loss of generality that
they are located on horizontal lines, that is to say
∆2 = ∆2’ = 0.

v
k

j

s
v ’

r

∆ 1 ’

∆ 1

Figure 6: Distance between two vertices

In this case, d(v, v’) = ∑
−

=

1r

jx
P1x - ∆1 + ∆1’, (3)

where ∑
−

=

1r

jx
P1x is the distance between lines j and r.

Construction of the Network N = (V, E, d)
We have described in the previous parts the progression
method from one vertex. Each time a new vertex v’ (that is
to say a successor of an explored vertex v) is generated, it
is inserted in the set V of the vertices. A leg connecting the
two vertices is created and the associated weight is equal to
the distance d(v, v’).

The initial vertex of network N is the origin point O. Its
successors are generated, following the progression
method, and added to the set V of vertices to be explored.
Vertices of V are ordered according to their coordinates in
the plane with obstacles.

More precisely, let us consider two vertices v = ((j, ∆1),
(k, ∆2)) and v’ = ((j’, ∆1’), (k’, ∆2’)). Vertex v is inserted
before v’ in the set V if one of the following conditions is
verified:
• (i): j < j’ and k < k’: v is located at the left and below v’.
• (ii): j < j’ and k = k’: v is at the left of v’ on the plane.
• (iii): k < k’ and j = j’: v is below v’ on the plane.
• (iv): j = j’, k = k’ and (∆1 < ∆1’ or ∆2 < ∆2’): v is regular

vertex and v’ is a singular one.
The set V of vertices to be explored being partially
ordered, the first vertex of V is the one selected at each
step of the network construction. The explored vertex is
then deleted from V and its successors are added to the set,
if it is not already done. Note that this exploration method
guarantees for every selected vertex, that its predecessors
have been previously treated.

Shortest Path Determination
Before the exploration of a vertex v, its earliest date h(v) is
calculated. This is done by finding the predecessor vi of v
such that the value hi = h(vi) + d(vi, v) is minimum, which
is equivalent to determine the shortest path from origin O
to vertex v.

The determination of shortest paths during the
construction of the network has two advantages: First, it
guarantees at each step the optimality of the used paths and

second, it avoids making a shortest path search after the
network construction. In fact, when the progression is
stopped at the final point F, the shortest path of the
network is completely determined and its length (which is
the optimal makespan of the two-job scheduling problem)
is equal to h(F).

Complexity Results
The following algorithm TGA allows building network
N = (V, E, d) associated with the shortest path
determination.

Algorithm 1: TGA

Data: Two jobs and unavailability periods of the
machines

Result Optimal schedule and associated makespan

Step 1: Initialization
- V = {O = ((1, 0), (1, 0))} /* set of vertices */
- E = ∅ /* set of created arcs */

Step 2: Construction
While V ≠ {F} Do

2.1. Select the first vertex s of V and
 compute h(s).

2.2. Remove s from V : V = V \ {s}.
2.3. Apply the progression method to obtain

 successors of s:
For each successor vi Do

- Insert vi in the sorted set V :
V = V ∪ {vi}.

- Add arc (s, vi) in E:
E = E ∪ {(s, vi)}.

End For.
End While.

Step 3: The makespan value is given by the earliest
date h(F) of F.
The optimal schedule is obtained by a
backward scanning.

Theorem 1. The set of vertices and the weights of arcs
constructed by algorithm TGA are sufficient to determine a
shortest path in the plane and so an optimal solution for the
scheduling problem J, NCwin | n = 2 | Cmax.

Proof. For sake of shortness, we only give the basic ideas
of the proof. We refer to (Aggoune 2002) for the complete
demonstration. It consists in showing that a shortest path in
the plane with obstacles is only composed by series of arcs
that belong to the network constructed by the algorithm.

Let Copt = (v0 = O, v1, v2,…, vs = F) be the optimal path
obtained by algorithm TGA, where vi = (xi, yi, h(vi)) and
consider a shortest path C. We suppose without loss of
generality that C is chosen so as the common part between
Copt and C is maximal. Let v = vk be the first point of Copt
such that arc (v, v’) does not belong to the network

constructed by algorithm TGA, v’ being the successor of v
in path C. Note that in the worst-case v = O.

If k = s, then the proof is finished. Otherwise k < s, and
arc (v, v’) (and eventually vertex v’) does not belong to the
path constructed by the algorithm as illustrated in Figure 7.

vk

C

O

F

vk+1

v’

Copt

v’’

Path constructed
by TGA

Figure 7: Shortest paths

In (Aggoune 2002), it is proved that, whatever nature of
successor vk+1 of vk in the network is, the shortest path C
can be transformed in a path with a shorter or equal length,
but having an additional arc of the network. This allows
contradicting hypothesis on the maximality of index k. As
a consequence vk cannot be the first vertex of path Copt
such that arc (vk, v’) does not belong to the network
obtained by our approach. By repeating this argument
(considering vk+1 and its successor v’’ in path C, etc.) we
finally reach point F and we can conclude that a shortest
path is only composed by series of arcs that belong to the
network constructed by algorithm TGA. �

Theorem 2. The scheduling problem J, NCwin | n = 2 | Cmax
is polynomial and its complexity is at most equal to
O(Ks4), where K is the maximum number for all the
machines of the unavailability periods, and s = max {n1,
n2}.

Proof. The determination of a shortest path in the network
from the origin O to a vertex v being calculated before v is
explored; the complexity of the approach depends on the
time that is necessary to explore all the vertices.

The vertices of the network are the regular, the singular
and the waiting ones. An upper bound on the number of
regular vertices that can be generated is O(n1 × n2), which
represents the number of obstacles. The number of waiting
vertices that can be generated by the exploration defined
by algorithm TGA is proportional to O(n1 × n2),
representing the number of crossings between horizontal
and vertical lines. However, to compute an upper bound on
the singular vertices, we must determine the number of
vertices generated from an arbitrary vertex v = ((x, ∆1), (y,
∆2)). Starting from v, and before reaching point F, the path
goes in the worst case successively on a vertical and a
horizontal line, and we can add at most one vertex, each
time. So, vertex v can generate at most (n1 – x) + (n2 – y)
vertices, which is bounded by (n1 + n2).

As a consequence, the cardinality of the set of vertices V
is at most equal to (n1 × n2) (4 + n1 + n2). The number of

availability tests performed from a vertex is at most equal
to (n1 + n2) + K max{n1, n2}, the first term corresponding
to the diagonal progressions, the second to horizontal and
vertical ones. So, the number of elementary operations
performed by the algorithm is at most equal to (K s4),
where s = max{n1, n2}. �

The Resumable Model
We focus in this sub-section on the case where operations
are resumable (Lee 1996), that is to say they can be
interrupted by unavailability periods and completed
without penalties. We propose an extension of the
temporized geometric approach to deal with this
assumption.

The basic principles of the approach developed in the
previous sub-section remains applicable to the resumable
model. In fact, the non-preemption assumption is only
considered in the progression method and more precisely
during the availability tests. In the non-preemptive model,
if at a given time T the machine, which must process an
operation, is unavailable, then this operation can start at
the earliest when the machine becomes available (see
Figure 8.a).

In the resumable model, it is possible to start processing
operation Op from time T and until time S, then to achieve
it from time I, as shown in Figure 8.b.

Op

time
0

T

I S

Op

time
0

T

I S
(a) non-preemptable operation (b) resumable operation

Figure 8: Availability tests

The problem that appears is then the systematic marking,
in the plane representation of the scheduling problem, of
the portions of operations executed before and after the
availability periods.

To settle this situation, we propose to decompose each
interval corresponding to an operation. More precisely, a
grid is inserted on the classical plane representation, such
that unit-length intervals are obtained. In this way, any
interruption in the execution of operations can be modeled
by adding new vertices and by changing the direction of
the path representing the realization of jobs. Moreover, all
the vertices are then located on at least one line of the new
grid.
Example. The following Figure 9 represents a part of the
plane with obstacles, namely the two first operations of
two jobs J1 and J2. Let us consider operations O11 and O21,
which processing times are respectively equal to 5 and 6
units. The machine (not defined here) that must execute
O11 is supposed to be unavailable between times 2 and 4,
and the one that must process O21, between times 4 and 5.

At time 0, the two operations can start and the
progression is made in diagonal direction. Then, at time 2,
the execution of O11 is interrupted during two time units
and only O21 can continue, what corresponds to a vertical
progression. The execution of O11 restarts at time 4 (there
is a part of 3 units to produce left), but operation O21 must
be interrupted during one time unit. The progression goes
on the horizontal direction then starts again at time 5 in the
diagonal direction. Finally, at time 7, the two first
operations are finished and the path progression can
continue with the next two operations.

As is the non-preemptive model, the number of vertices
obtained by this progression method is bounded. In fact,
from a regular vertex, we can generate at most 2 K s
vertices before reaching point F. Moreover, the additional
grid is only used to mark out the coordinates of the
generated vertices. It does not make the number of vertices
increase. The result is that:

Theorem 3. The scheduling problem J, NCwin | rs, n = 2 |
Cmax is polynomial and its complexity is at most equal to
O(Ks4), where rs indicates that operations are resumable.

J1

J2

O
O11 (5)

5

0

4

2

7

O12 (4)

O21 (6)

O22 (2)

Figure 9: Shortest path with resumable operations

Conclusion and Perspectives
We have investigated in this paper two-job shop
scheduling problems under availability constraints. The
strictly non-preemptive problem has first been considered.
After having recalled the classical geometric approach, we
have proposed an extension of this approach to deal with
the machines availability. This extension is based on a new
characterization of the vertices, on the introduction of
additional vertices, and mostly on the taking into account
of time evolution during the scheduling procedure.

The developed algorithm, namely the temporized
geometric approach, is polynomial, in function of numbers
of operations and availability periods. It allows exactly
solving the non-preemptive job shop scheduling problem

with two jobs and availability constraints. An extension of
this algorithm to the resumable model was then described.

The proposed approaches can be used to develop quite
powerful solution methods, exact as well as heuristic ones,
for the general job shop scheduling problem with more
than two jobs (Aggoune 2002).

As future research, we are studying a similar approach
for solving scheduling problems under limited availability
in the case where operations can be interrupted by
availability periods and resumed after, with some penalties.

References

Adiri, I.., J. Bruno, E. Frostig, and , A. H. G. Rinnooy Kan
(1989). Single machine flow-time scheduling with a single
breakdown. Acta Informatica, 26, 679-696.
Aggoune, R. (2002). Ordonnancement d’Ateliers sous
Contraintes de Disponibilité des Machines. Ph.D. Thesis,
Universite de Metz, France.
Akers, S. B. and J. Friedman (1955). A non-numerical
approach to production scheduling problems. Operations
Research, 3, 429-442.
Blazewicz, J., J. Breit, P. Formanowicz, W. Kubiak and G.
Schmidt. (2001). Heuristic algorithms for the two-machine
flowshop problem with limited machine availability.
Omega Journal, 29, 599-608.
Brucker, P. (1988). An efficient algorithm for the job-shop
problem with two jobs. Computing, 40, 353-359.
Kubiak, W., J. Blazewicz, P. Formanowicz, J. Breit. and
G. Schmidt. (2002). Two-machine flow shops with limited
machine availability. European Journal of Operational
Research, 136, 528-540.
Lee, C. Y. (1996). Machine scheduling with an availability
constraint. Journal of Global Optimization, 9, 395-416.
Lee, C. Y. (1997). Minimizing the makespan in two-
machine flowshop scheduling problem with an availability
constraint. Operations Research Letters, 20, 129-139.
Lee, C. Y. (1999). Two-machine flowshop scheduling with
availability constraints. European Journal of Operational
Research, 114, 420-429.
Schmidt, G. (1984). Scheduling on semi-identical
processors. Z. Oper. Res., A28, 153-162.
Schmidt, G. (1988). Scheduling independent tasks with
deadlines on semi-identical processors. Journal of
Operational Research Society, 39, 271-277.
Schmidt, G. (2000). Scheduling with limited machine
availability. European Journal of Operational Research,
121, 1-15.
Sotskov, Y. N. (1985). Optimal servicing two jobs with a
regular criterion, In: Automation of Designing Processes,
Minsk, 86-95 (in Russian).

