
Two-Job Shop Scheduling Problems with Availability Constraints 

Riad Aggoune 
 

Laboratoire des Technologies Industrielles 
Centre de Recherche Public Henri Tudor 

BP 144, L-4002 Esch-sur-Alzette, G.D. Luxembourg 
Riad.Aggoune@tudor.lu 

 
 
 

Abstract 
This paper addresses the complexity of scheduling problems 
considering two jobs to schedule and availability constraints 
imposed on the machines. A polynomial algorithm called 
temporized geometric approach is first proposed for the 
minimization of the makespan, under the non-preemption 
constraint. Then, a generalization to the preemptive case is 
developed. These algorithms are extensions of the 
geometric approach, which allows solving the classical two-
job scheduling problem. 

Introduction  
The classical scheduling literature commonly assumes that 
the machines are never unavailable during the planning 
horizon. However, in actual workshop, this assumption 
may turn false. In fact, one or several machines might 
become unavailable for processing jobs after a breakdown 
or when a preventive maintenance such as washing or 
control operations is scheduled. 

This paper addresses the two-job shop scheduling 
problem under availability constraints. We consider the 
deterministic model of fixed and known in advance 
unavailability periods. Moreover we assume unless 
specified that the jobs are strictly non-preemptable. This 
means once an operation is started, its execution can be 
interrupted neither by an unavailability period, nor by 
another operation. The objective function is the 
minimization of the makespan. 

As compared to the literature dedicated to classical 
scheduling problems, studies dealing with limited machine 
availability are very rare. Availability constraints have 
been firstly introduced in single machine (see Adiri et al. 
1992) and parallel machines (Schmidt 1984, 1988) 
environments. Lee extensively investigated flow shop 
scheduling problems with two machines (Lee 1996, 1997 
and 1999). In particular, the author defined the resumable, 
non-resumable and semi-resumable models. An operation 
is called resumable if it can be interrupted by an 
unavailability period and completed without penalty as 
soon as the machine becomes available again. If the part of 
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the operation that has been processed before the 
unavailability period must be partially (resp. as a whole) 
re-executed, then the operation is called semi-resumable 
(resp. non-resumable). Recently, flow shop scheduling 
problems with two machines and resumable jobs have been 
treated in (Blazewicz et al. 2001), and (Kubiak et al. 
2002). For more details, we refer to the survey of (Schmidt 
2000), where existing methods for solving scheduling 
problems under availability constraints as well as 
complexity results are reviewed. To the best of our 
knowledge, there is no theoretical study in the scheduling 
literature for the two-job scheduling problems with 
availability constraints addressed in this paper. 

The remainder of this paper is organized as follows. We 
first describe, in the following section, the considered 
problem. Secondly, the classical geometric approach is 
presented. It is a polynomial algorithm for solving classical 
scheduling problems with two jobs. Then, we propose an 
extension of the geometric approach, which allows dealing 
with unavailability periods of the machines. This 
extension, developed for the non-preemptive case, is 
finally generalized to the resumable model. 

Problem Definition 
The non-preemptive job shop scheduling problem with two 
jobs and availability constraints can be stated as follows:  
• Two jobs J1 and J2 have to be processed on a set of m 

machines M = {M1, M2,…, Mm}. 
• Each job Ji is composed by a linear sequence of ni 

operations {Oi1, Oi2,…, Oini
}. 

• Each machine Mj can perform at most one operation at a 
time and each operation Oij needs one machine, during 
pij time-units. 

• A maximum of K unavailability periods may occur on 
each machine. The starting times and durations of these 
tasks are known in advance and fixed. 

• Operations are strictly non-preemptable, which means 
that their executions can be interrupted neither by 
unavailability periods, nor by other operations. 

• The objective is to determine starting times of operations 
on each machine, such that the above constraints are 
satisfied and the makespan is minimized. 



According to the terminology concerning the machines 
availability introduced in (Schmidt 2000), the studied 
problem can be denoted by J, NCwin | n = 2 | Cmax, where 
NCwin means that non-availability periods are arbitrarily 
distributed on the machines. 

Classical Geometric Approach 
The geometric approach has been firstly introduced in 
(Akers and Friedman 1955). It consists in reducing the 
two-job shop scheduling problem in a shortest path one. Its 
exact complexity for the minimization of any regular 
criterion is stated in (Sotskov 1985) and (Brucker 1988). 
We describe in the following, the basic ideas of the 
geometric approach with the makespan criterion. 

The problem J | n=2 | Cmax can be represented into a two-
dimension plane with obstacles, defined as follows: 
• Each axis representing one job Ji= {Oi1, Oi2, …, Oini

} is 
decomposed into ni sub-intervals. The length Lij of sub-
interval Iij is proportional to the processing time pij of 
operation Oij. 

• The rectangle defined by intervals I1j and I2k is an 
obstacle if the associated operations O1j and O2k share 
the same machine. 

• The right and upper borders of the rectangle defined by 
the origin point O and the final point F, which 
corresponds to the completion of the two jobs, is the 
final obstacle. 

A feasible solution of the scheduling problem is then a 
path going from the origin O to the point F. Such a path 
consists of horizontal, vertical and diagonal legs. A 
horizontal (resp. vertical) leg represents the exclusive 
progression of job J1 (resp. J2), whereas diagonal legs 
correspond to simultaneous executions of the two jobs. 
Moreover, any path must avoid the interior of the 
obstacles. This is due to the fact that two operations can 
not be executed simultaneously on the same machine and 
are not preemptable. The length L of a path, which is equal 
to the makespan of the associated schedule, is given by the 
formula: 

L = L(Hor) + L(Vert) + L(Diag) / √2, (1) 
where L(Hor) (resp. L(Vert), L(Diag)) is the total length of 
horizontal (resp. vertical, diagonal) legs. 
As a consequence, the search of the schedule that 
minimizes the makespan is equivalent to the search of the 
shortest path in the plane with obstacles. Figure 1 shows, 
in bold, the shortest path obtained for a two-job shop 
scheduling problem defined by the following linear 
sequences, where each number in brackets represents the 
processing time pij of job Ji on machine Mj:  
• J1 : M1 (1) M2 (3) M3 (3) 
• J2 : M2 (2) M3 (2) M1 (1) 
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Figure 1: Shortest path in the plane 

The search of a shortest path in the plane previously 
defined can be reduced to the search of the shortest path in 
an appropriate acyclic network N, this last problem being 
solvable in a linear time, in function of the number of 
obstacles. The network N = (V, E, d) is constructed as 
follows: 
• V is the set of vertices, composed by the origin O, the 

final point F, and all the south-east (SE) and north-west 
(NW) corners of the obstacles. 

• Each vertex i ∈ V \ {F} coincides with at most two legs 
going from i. These legs are obtained by progressing 
diagonally (in the north-west direction) from i, until the 
border of the rectangle defined by O and F, or an 
obstacle D, is hit: 

• In the first case, F is the unique successor of i and the leg 
(i, F) is composed by the path going diagonally from i to 
the final border and then going along it (see Figure 2.a). 

• If an obstacle D is met, then two legs (i, j) and (i, k) are 
created, where j and k are the NW and SE corners of 
obstacle D, these two vertices being the direct 
successors of vertex i (Figure 2.b). 

• The length d(i, j) of a leg (i, j) is equal to its horizontal or 
vertical part, to which is added the projection on one of 
the axis of its diagonal part. 
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 (a) 1st case (b) 2nd case 

Figure 2: Directs successors of a vertex i 

An O-F path in this network corresponds to a feasible 
schedule for the problem J | n=2 | Cmax and its length is 
equal to the makespan. So, finding the optimal makespan 
is equivalent to the search of a shortest path in the 
constructed network. Figure 3 represents the acyclic 
network associated with the shortest path provided by 
Figure 1. 
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Figure 3: Acyclic network N 

In (Brucker 1988), it was shown that the network N could 
be constructed in O(r log r) steps, where r is the number of 
obstacles, at most equal to O(n1 n2). Moreover, the shortest 
path in an acyclic network can be found in a time 
proportional to O(r). So, the complexity of the problem 
J | n=2 | Cmax is at most equal to O(r log r). Since the works 
of Sotskov (1985), several generalizations of the method 
have been proposed in the literature. Applications of the 
geometric approach are reviewed in (Aggoune 2002). 

Temporized Geometric Approach 
We develop in this section an extension of the geometric 
approach which exactly solve the problem J, NCwin | n=2 | 
Cmax. This extension, called temporized geometric 
approach, allows to integrate the evolution of time and so 
the availability of the machines. It is based on the 
definition and the introduction of new vertices, as well as a 
new and dynamic way to progress from one vertex to its 
successors. 

Vertices Characterization and Definitions 
In the classical geometric approach, vertices of the 
network are the north-west (NW) and south-east (SE) 
corners of the obstacles hit when going diagonally in the 
plane. These corners are located at the extremities of the 
intervals corresponding to operations in conflict. Each 
vertex can then be defined thanks to its coordinates in the 
plane: the x-coordinate (resp. y-coordinate) of the vertex 
corresponds to operation of job J1 (resp. J2) to be executed 
(Figure 4.a). 
In our approach, some vertices can be located between two 
lines bounding an operation that is to say inside intervals. 
So, we add, for each coordinate of the vertices, an 
additional information related to the duration already 
processed of the associated operation (Figure 4.b). 
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Figure 4: Vertices characterization 
Furthermore, an earliest date, noted h(v), is combined with 
each vertex v obtained by a progression in the plane with 
obstacles. This value corresponds to the smallest duration 
which is necessary to reach vertex v starting from the 
origin O (note that h(O) = 0). The earliest date h(v) is then 
equal to the length of the shortest path going from O to v. 

In order to take into account the unavailability periods of 
the machines, tests are realized at each consideration of a 
vertex, so as to verify if the machines needed for 
processing the next operations are available. Knowing the 
earliest date h(v) of vertex v, we try to process at the 
earliest, and if it is possible simultaneously, operations of 
the two jobs to be started. An availability test on direction 
J1 (resp. J2) consists in determining the availability time 
T1,h(v) (resp. T2,h(v)) of the machine associated with the next 
operation of job J1 (resp. J2). 
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Figure 5: Availability test on direction J1 

In the example provided by Figure 5, operation O1j can not 
be processed at time h(v), since it can not be completed 
before the first availability period of the machine. 
Operations being strictly non-preemptable, the execution 
of O1j can start (at the earliest) at time T1,h(v) which is equal 
to the time in which the problematical availability period is 
finished. 

We describe in what follows the principle of the 
temporized geometric approach, namely the set of vertices, 
the progression method from one vertex to its successors, 
and the way to calculate the distance between two vertices. 
Then, the construction of the network associated with the 
shortest path determination is developed. 

Set of Vertices 
The set of vertices V of the network constructed by our 
approach is composed by the three following kinds of 
vertices: 
• Regular vertices, located at the intersection of horizontal 

and vertical lines, whose NW and SE corners of 
obstacles belong to. They correspond to the end of at 
least one operation. 

• Singular vertices, located on a horizontal (resp. vertical) 
line, which means that the execution of the operation of 
job J1 (resp. J2) has already started (see Figure 4.b). 
They correspond to the fact that the execution of one job 
is going on, while the other is starting. 



• Waiting vertices, also located at the intersection of two 
lines, for which the execution of operations of jobs J1 
and J2 has not started yet. 

A singular vertex is created if at the current time t, the 
progression of only one job is possible, whereas waiting 
vertices are created if the progression is possible for none 
of the two jobs. In the two-dimension plane, a waiting 
vertex is always a duplication of the regular vertex having 
the same geometric coordinates. 

Progression Method 
Let us consider a vertex v =((j, ∆1), (k, ∆2)), and its earliest 
date h(v). Availability tests are first realized on the 
operations of the two jobs to execute. According to these 
tests results, several ways to progress and to determine the 
successors of v are to be considered: 
First Case. If the operations of the two jobs can not start at 
time h(v), vertex v is duplicated. A waiting vertex 
vw = ((j, 0), (k, 0)) is then created, and vw is the only 
successor of v. 
Second Case. If there is an availability problem in the 
direction J1 (resp. J2), the progression is made along the 
vertical (resp. horizontal) line, that corresponds to only 
execute the operations of job J2 (resp. J1), until job J1 (resp. 
J2) becomes available again. A singular vertex s, from 
which a diagonal progression is possible, is added as the 
unique successor of v. 
Third Case. If there is no availability problem, that is to 
say if the operations of the two jobs can be executed at 
time h(v), the progression works as in the classical 
geometric approach. It is made in the diagonal direction 
until an obstacle is hit. If this obstacle represents a 
machines conflict, its NW and SE corners are the two 
direct successors of vertex v. If the hit obstacle is the final 
one, point F is added as the unique successor of v. 

Distance Between Two Vertices 
Let v = ((j, ∆1), (k, ∆2)) be an arbitrary vertex that belongs 
to a path of the plane with obstacles, and let v’= ((j’, ∆1’), 
(k’, ∆2’)) be one of its direct successors. If v’ is a 
duplication of vertex v (see 1st case), then the distance 
between v and v’ corresponds to the waiting time of the 
availability of one of the two jobs, which is given by the 
formula:  

d(v, v’) = min {T1v, T2v} – h(v). (2) 
If v and v’ have not the same geometric coordinates 
(Figure 6), let us suppose without loss of generality that 
they are located on horizontal lines, that is to say 
∆2 = ∆2’ = 0. 
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Figure 6: Distance between two vertices 

In this case, d(v, v’) = ∑
−

=

1r

jx
P1x - ∆1 + ∆1’, (3) 

where ∑
−

=

1r

jx
P1x is the distance between lines j and r. 

Construction of the Network N = (V, E, d)  
We have described in the previous parts the progression 
method from one vertex. Each time a new vertex v’ (that is 
to say a successor of an explored vertex v) is generated, it 
is inserted in the set V of the vertices. A leg connecting the 
two vertices is created and the associated weight is equal to 
the distance d(v, v’). 

The initial vertex of network N is the origin point O. Its 
successors are generated, following the progression 
method, and added to the set V of vertices to be explored. 
Vertices of V are ordered according to their coordinates in 
the plane with obstacles. 

More precisely, let us consider two vertices v = ((j, ∆1), 
(k, ∆2)) and v’ = ((j’, ∆1’), (k’, ∆2’)). Vertex v is inserted 
before v’ in the set V if one of the following conditions is 
verified: 
• (i): j < j’ and k < k’: v is located at the left and below v’. 
• (ii): j < j’ and k = k’: v is at the left of v’ on the plane. 
• (iii): k < k’ and j = j’: v is below v’ on the plane. 
• (iv): j = j’, k = k’ and (∆1 < ∆1’ or ∆2 < ∆2’): v is regular 

vertex and v’ is a singular one. 
The set V of vertices to be explored being partially 
ordered, the first vertex of V is the one selected at each 
step of the network construction. The explored vertex is 
then deleted from V and its successors are added to the set, 
if it is not already done. Note that this exploration method 
guarantees for every selected vertex, that its predecessors 
have been previously treated. 

Shortest Path Determination  
Before the exploration of a vertex v, its earliest date h(v) is 
calculated. This is done by finding the predecessor vi of v 
such that the value hi = h(vi) + d(vi, v) is minimum, which 
is equivalent to determine the shortest path from origin O 
to vertex v. 

The determination of shortest paths during the 
construction of the network has two advantages: First, it 
guarantees at each step the optimality of the used paths and 



second, it avoids making a shortest path search after the 
network construction. In fact, when the progression is 
stopped at the final point F, the shortest path of the 
network is completely determined and its length (which is 
the optimal makespan of the two-job scheduling problem) 
is equal to h(F). 

Complexity Results  
The following algorithm TGA allows building network 
N = (V, E, d) associated with the shortest path 
determination. 

Algorithm 1: TGA 

Data:  Two jobs and unavailability periods of the 
machines 

Result  Optimal schedule and associated makespan 

Step 1: Initialization 
- V = {O = ((1, 0), (1, 0))}  /* set of vertices */ 
- E = ∅  /* set of created arcs */ 

Step 2: Construction 
While V ≠ {F} Do 

2.1. Select the first vertex s of V and 
  compute h(s). 

2.2. Remove s from V : V = V \ {s}. 
2.3. Apply the progression method to obtain 

  successors of s: 
For each successor vi Do 

- Insert vi in the sorted set V : 
V = V ∪ {vi}. 

- Add arc (s, vi) in E: 
E = E ∪ {(s, vi)}. 

End For. 
End While. 

Step 3: The makespan value is given by the earliest 
date h(F) of F. 
The optimal schedule is obtained by a 
backward scanning. 

 
Theorem 1. The set of vertices and the weights of arcs 
constructed by algorithm TGA are sufficient to determine a 
shortest path in the plane and so an optimal solution for the 
scheduling problem J, NCwin | n = 2 | Cmax. 

Proof. For sake of shortness, we only give the basic ideas 
of the proof. We refer to (Aggoune 2002) for the complete 
demonstration. It consists in showing that a shortest path in 
the plane with obstacles is only composed by series of arcs 
that belong to the network constructed by the algorithm. 

Let Copt = (v0 = O, v1, v2,…, vs = F) be the optimal path 
obtained by algorithm TGA, where vi = (xi, yi, h(vi)) and 
consider a shortest path C. We suppose without loss of 
generality that C is chosen so as the common part between 
Copt and C is maximal. Let v = vk be the first point of Copt 
such that arc (v, v’) does not belong to the network 

constructed by algorithm TGA, v’ being the successor of v 
in path C. Note that in the worst-case v = O. 

If k = s, then the proof is finished. Otherwise k < s, and 
arc (v, v’) (and eventually vertex v’) does not belong to the 
path constructed by the algorithm as illustrated in Figure 7. 
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Figure 7: Shortest paths 

In (Aggoune 2002), it is proved that, whatever nature of 
successor vk+1 of vk in the network is, the shortest path C 
can be transformed in a path with a shorter or equal length, 
but having an additional arc of the network. This allows 
contradicting hypothesis on the maximality of index k. As 
a consequence vk cannot be the first vertex of path Copt 
such that arc (vk, v’) does not belong to the network 
obtained by our approach. By repeating this argument 
(considering vk+1 and its successor v’’ in path C, etc.) we 
finally reach point F and we can conclude that a shortest 
path is only composed by series of arcs that belong to the 
network constructed by algorithm TGA. � 

Theorem 2. The scheduling problem J, NCwin | n = 2 | Cmax 
is polynomial and its complexity is at most equal to 
O(Ks4), where K is the maximum number for all the 
machines of the unavailability periods, and s = max {n1, 
n2}. 

Proof. The determination of a shortest path in the network 
from the origin O to a vertex v being calculated before v is 
explored; the complexity of the approach depends on the 
time that is necessary to explore all the vertices. 

The vertices of the network are the regular, the singular 
and the waiting ones. An upper bound on the number of 
regular vertices that can be generated is O(n1 × n2), which 
represents the number of obstacles. The number of waiting 
vertices that can be generated by the exploration defined 
by algorithm TGA is proportional to O(n1 × n2), 
representing the number of crossings between horizontal 
and vertical lines. However, to compute an upper bound on 
the singular vertices, we must determine the number of 
vertices generated from an arbitrary vertex v = ((x, ∆1), (y, 
∆2)). Starting from v, and before reaching point F, the path 
goes in the worst case successively on a vertical and a 
horizontal line, and we can add at most one vertex, each 
time. So, vertex v can generate at most (n1 – x) + (n2 – y) 
vertices, which is bounded by (n1 + n2). 

As a consequence, the cardinality of the set of vertices V 
is at most equal to (n1 × n2) (4 + n1 + n2). The number of 



availability tests performed from a vertex is at most equal 
to (n1 + n2) + K max{n1, n2}, the first term corresponding 
to the diagonal progressions, the second to horizontal and 
vertical ones. So, the number of elementary operations 
performed by the algorithm is at most equal to (K s4), 
where s = max{n1, n2}.  � 

The Resumable Model 
We focus in this sub-section on the case where operations 
are resumable (Lee 1996), that is to say they can be 
interrupted by unavailability periods and completed 
without penalties. We propose an extension of the 
temporized geometric approach to deal with this 
assumption. 

The basic principles of the approach developed in the 
previous sub-section remains applicable to the resumable 
model. In fact, the non-preemption assumption is only 
considered in the progression method and more precisely 
during the availability tests. In the non-preemptive model, 
if at a given time T the machine, which must process an 
operation, is unavailable, then this operation can start at 
the earliest when the machine becomes available (see 
Figure 8.a). 

In the resumable model, it is possible to start processing 
operation Op from time T and until time S, then to achieve 
it from time I, as shown in Figure 8.b.  
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Figure 8: Availability tests 

The problem that appears is then the systematic marking, 
in the plane representation of the scheduling problem, of 
the portions of operations executed before and after the 
availability periods. 

To settle this situation, we propose to decompose each 
interval corresponding to an operation. More precisely, a 
grid is inserted on the classical plane representation, such 
that unit-length intervals are obtained. In this way, any 
interruption in the execution of operations can be modeled 
by adding new vertices and by changing the direction of 
the path representing the realization of jobs. Moreover, all 
the vertices are then located on at least one line of the new 
grid. 
Example. The following Figure 9 represents a part of the 
plane with obstacles, namely the two first operations of 
two jobs J1 and J2. Let us consider operations O11 and O21, 
which processing times are respectively equal to 5 and 6 
units. The machine (not defined here) that must execute 
O11 is supposed to be unavailable between times 2 and 4, 
and the one that must process O21, between times 4 and 5. 

At time 0, the two operations can start and the 
progression is made in diagonal direction. Then, at time 2, 
the execution of O11 is interrupted during two time units 
and only O21 can continue, what corresponds to a vertical 
progression. The execution of O11 restarts at time 4 (there 
is a part of 3 units to produce left), but operation O21 must 
be interrupted during one time unit. The progression goes 
on the horizontal direction then starts again at time 5 in the 
diagonal direction. Finally, at time 7, the two first 
operations are finished and the path progression can 
continue with the next two operations. 

As is the non-preemptive model, the number of vertices 
obtained by this progression method is bounded. In fact, 
from a regular vertex, we can generate at most 2 K s 
vertices before reaching point F. Moreover, the additional 
grid is only used to mark out the coordinates of the 
generated vertices. It does not make the number of vertices 
increase. The result is that: 

Theorem 3. The scheduling problem J, NCwin | rs, n = 2 | 
Cmax is polynomial and its complexity is at most equal to 
O(Ks4), where rs indicates that operations are resumable. 
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Figure 9: Shortest path with resumable operations 

Conclusion and Perspectives 
We have investigated in this paper two-job shop 
scheduling problems under availability constraints. The 
strictly non-preemptive problem has first been considered. 
After having recalled the classical geometric approach, we 
have proposed an extension of this approach to deal with 
the machines availability. This extension is based on a new 
characterization of the vertices, on the introduction of 
additional vertices, and mostly on the taking into account 
of time evolution during the scheduling procedure. 

The developed algorithm, namely the temporized 
geometric approach, is polynomial, in function of numbers 
of operations and availability periods. It allows exactly 
solving the non-preemptive job shop scheduling problem 



with two jobs and availability constraints. An extension of 
this algorithm to the resumable model was then described. 

The proposed approaches can be used to develop quite 
powerful solution methods, exact as well as heuristic ones, 
for the general job shop scheduling problem with more 
than two jobs (Aggoune 2002). 

As future research, we are studying a similar approach 
for solving scheduling problems under limited availability 
in the case where operations can be interrupted by 
availability periods and resumed after, with some penalties. 
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