
Decision-Theoretic Military Operations Planning

Douglas Aberdeen
National ICT Australia

Canberra, Australia
doug.aberdeen@anu.edu.au

Sylvie Thiébaux
National ICT Australia &

The Australian National University
Canberra, Australia

sylvie.thiebaux@anu.edu.au

Lin Zhang
Defence Science and

Technology Organisation
Edinburgh, South Australia
lin.zhang@dsto.defence.gov.au

Abstract

Military operations planning involves concurrent actions, re-
source assignment, and conflicting costs. Individual tasks
sometimes fail with a known probability, promoting a
decision-theoretic approach. The planner must choose be-
tween multiple tasks that achieve similar outcomes but have
different costs. The military domain is particularly suited to
automated methods because hundreds of tasks, specified by
many planning staff, need to be quickly and robustly coor-
dinated. The authors are not aware of any previous planners
that handle all characteristics of the operations planning do-
main in a single package. This paper shows that problems
with such features can be successfully approached by real-
time heuristic search algorithms, operating on a formulation
of the problem as a Markov decision process. Novel auto-
matically generated heuristics, and classic caching methods,
allow problems of interesting sizes to be handled. Results are
presented on data provided by the Australian Defence Sci-
ence and Technology Organisation.

Introduction
Operations planning is concerned with assigning appropriate
tasks and resources for a mission, while minimising multi-
ple, and possibly conflicting, costs. Task effects vary with
probabilistic success or failure. The objective is to find a
policy with the minimum expected cost, sensibly trading-off
the individual cost criteria.

Existing planning codes schedule concurrent actions in
probabilistic settings (Younes, Musliner, & Simmons 2003),
but do not consider resources and conflicting costs. Other
planners cope with concurrent tasks and multiple conflict-
ing costs (Do & Kambhampati 2002), but do not consider
probabilistic action outcomes. This paper deals with con-
current tasks, uncertainty, resources, task redundancy, and
conflicting costs in a single planning tool. It demonstrates
that using real-time heuristic search on a Markov decision
process (MDP) formulation of the problem is a simple and
effective approach to handling domains with these features.

Specifically, the planner uses the labelled real time dy-
namic programming (LRTDP) heuristic search algorithm
(Bonet & Geffner 2003) as the core optimisation method.
LRTDP starts with a factored (PDDL-like) representation of

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the domain and incrementally generates and explores parts
of the search space, guided by an admissible heuristic.

Approximately optimal policies are guaranteed to be
found in finite time. The degree of approximation can be
chosen. In practice, good plans are generated quickly and
improve as more planning time is devoted to them. Optimi-
sation of the policy can be based on minimising the proba-
bility of failure, makespan (policy duration), resource costs,
or any ranking of those criteria. Optimised policies describe
which tasks to start based on the history of task success and
failure to the current point in time.

The quality of the heuristic has a large impact on the per-
formance of LRTDP. A common theme in recent papers, also
exploited here, is the automatic generation of good admissi-
ble heuristics.

This paper provides a description of the domain and pre-
vious work. It then explains how operations planning can
be cast as an MDP, followed by a review of LRTDP and a
description of the automatically generated heuristics. Exper-
imental results are presented on synthetic and real operations
planning scenarios, finishing with ideas for future work.

Military Operations Planning

Australian Defence Force planning doctrine stipulates four
phases in the planning process (Zhang et al. 2002): (1)
mission analysis, i.e., desired operational outcomes are de-
scribed; (2) course-of-action development, i.e., tasks are
chosen which may depend on previous operational outcomes
and establish new outcomes; (3) course-of-action analysis,
i.e., weaknesses in the course-of-action are identified and
corrected; (4) decision and execution, the commander im-
plements the most appropriate course of action. The four
phase process repeats as new information becomes avail-
able. The planner described in this paper fits into phases
(2) and (3), taking tasks created by planning staff, or using a
repository of tasks, and generating a course-of-action along
with low-level analysis.

Tasks are the basic planning unit, ranging from logistical,
such as “Establish forward base”, to strategic or front line
operations, such as “Amphibious assault on island”. Tasks
are grounded durative actions. The outcome of a task is to
set facts to true or false. Each task has a set of precondition
facts, effect facts, resource requirements, a fixed probability

(:durative-action refuel-convoy

:duration (= ?duration 10)

:condition (and (at start convoy-needs-fuel)

(at start convoy-at-rendezvous)

(at start (>= cash 100))

(at start (>= tankers 1)))

:effect (and (at start convoy-delayed

(at start (decrease cash 100))

(at start (decrease tankers 1))

(at end

(probabilistic

0.95 (and (not convoy-needs-fuel)

(increase tankers 1))

0.05 (tanker-destroyed))))))

Figure 1: PDDL-like operations planning task description

of failure, and a fixed duration.1 Tasks are assumed to run
for exactly their specified duration, regardless of whether
they succeed or fail. This is a conservative assumption be-
cause a commander might, in reality, react much earlier to
a failure. A task can begin when its preconditions are sat-
isfied and sufficient resources are available. A starting task
removes resources from the global pool and may have some
immediate effects. As each task ends a set of effects appro-
priate to success or failure are applied. These may set facts
to true or false. Typically, but not necessarily, succeeding
tasks set some facts to true, while failing tasks do nothing or
negate facts. Resources are occupied during task execution
and a variable fraction of these resources are permanently
consumed when the task ends. Failure typically consumes
more resources than success. See Figure 1 for a PDDL-like
description of a task.

The policy objective is to make a subset of the facts true,
corresponding to achieving all the desired operational ef-
fects. The form of the policy is a tree of contingency plans,
termed a schedule tree. It describes which tasks should be
started given the history of the operation up to the current
time. Each branch, or contingency, in the schedule tree can
be labelled with the probability that the contingency will
be needed, the probability of achieving the operational ob-
jectives, the current truth values of the facts (sub-goal out-
comes), and resource usage. Such information about possi-
ble outcomes is useful during the plan analysis phase.

Using this feedback the planner can be used in a semi-
interactive fashion. If the schedule tree reveals that a pol-
icy is poor in terms of probability of success, makespan, or
resource use, the tradeoff between these costs can be ad-
justed in a way designed to be intuitive to planning staff. A
new schedule tree is generated using the same basic tasks,
but with altered perception of the importance of achieving
the objectives compared to time and resource use. The cost
tradeoff mechanism will be described in detail.

Military planning staff can build redundancy into the task
specifications, i.e., they may specify multiple tasks with sim-
ilar effects. They may also specify tasks that can be repeated

1The domain model used by the Defence Science and Tech-
nology Organisation allows for variable duration tasks, but this is
simplified to a fixed duration for this paper.

if they fail — the default is that tasks are not repeatable,
which contrasts with the default assumption in AI planning
that allows multiple applications of actions. The planning
software chooses the best tasks given previous successes and
failures. Automated planning can also reveal inconsisten-
cies, and remove duplicated effort, which might arise when
multiple staff work on hundreds of tasks.

Existing Domain Tools
This paper extends the capabilities of the Course Of Action
Scheduling Tool (COAST) developed by the Australian De-
fence Science and Technology Organisation (Zhang et al.
2002). COAST allows planning staff to describe the tasks
that might be needed to carry out an operation. It includes a
Coloured Petri Net (CPN) module for finding feasible plans.
However, in its current form the CPN module does not take
into account the probability of task failure or the cost of re-
sources. Also, the analysis does not scale because it explic-
itly enumerates the entire planning state space.

JADE (Joint Assistant for Deployment and Execution)
constructs plans for deploying military assets (Mulvehill &
Caroli 2000). The user positions resources on a geographic
map and a STRIPS style planner generates operations to de-
ploy the resource to that location. JADE also makes use of a
case based approach to re-use previous deployment plans. It
does not take probabilities of success into consideration.

TOPFAS is a planning tool developed for the North At-
lantic Treaty Organisation (Thuve 2001). A set of rich
graphical interfaces guides commanders through the plan-
ning process but does not fully automate it.

Anecdotal evidence indicates that Microsoft Project re-
mains a popular tool within the domain.

Related AI Planning Work
The AI planning community has long been interested in
planning concurrent tasks under temporal and resource con-
straints (Tate, Drabble, & Dalton 1996). Somewhat inde-
pendently, the machine learning community has developed
Markov decision process (MDP) algorithms (Howard 1960)
to cope with the uncertainty in feedback systems. The mix-
ing of these two fields, termed decision-theoretic planning
(Blythe 1999), provides the benefits of factored state and ac-
tion descriptions, with the real world necessity of dealing
with uncertainty.

Closest to the present paper is that of Younes, Musliner,
& Simmons (2003), who adopt a generalised semi-Markov
process to describe concurrent actions. This allows them
to model uncertainty in state transitions (task consequences)
and state durations (task durations), but only the former is
considered in this paper. Younes, Musliner, & Simmons
apply a continuous stochastic logic plan verification-repair
method, which uses heuristics to guide the repair phase, but
does not consider resources and cost tradeoffs.

Previous work involving conflicting makespan and re-
source costs includes that of Do & Kambhampati (2002),
who hard-wire a linear tradeoff between costs. Haslum &
Geffner (2001) attempt to optimise for both makespan and
resources assuming there is no interaction between the two.
Both of those papers, and Younes, Musliner, & Simmons,

make use of automatically generated heuristics to accelerate
planning. The heuristics developed here share some ideas
with those used by Gerenini & Serina (2002) in a Graphplan
context.

In general, previous research has combined temporal
planning with uncertainty (Precup, Sutton, & Dasgupta
2001), and in some instances with resources as well (Atkins
1999), but without concurrency.

Other applications of planning to the military are diverse.
Meuleau et al. (1998) shows how a complicated multiple-
target limited-weapons assignment problem can be decom-
posed into simple subproblems, each of which achieves a
sub-goal of destroying one target. Each sub-problem is
solved using a value-iteration approach, similar to this pa-
per. The sub-problems are later recombined heuristically.
The assumption is that concurrent tasks are nearly indepen-
dent, which is not the case for general operations planning.
Laskey et al. (2000) propose a heirarchical Baysian net-
work for fusing many sources of uncertain information in
real time. The military application is to fuse intelligence
sources to alert commanders to important changes on the
battlefield.

MDP Formulation of Operations Planning

This section explains how operations planning can be cast as
an MDP. This involves describing the MDP framework, and
then defining, in the particular case of operations planning,
the MDP state and action spaces as well as the cost structure.

Definition 1. A finite Markov decision process consists of:

1. a finite state space S;

2. a finite set of actions A;

3. an initial state s0 ∈ S;

4. a set of terminal states T ⊆ S;

5. computable probabilities Pr[s′|s, a] : S ×S ×A → [0, 1]
of making state transition s → s′ under applicable action
a;

6. the cost of each state c(s) : S → R.

In the context of this paper, an action is a decision to start
a subset of the tasks, explained in detail below. Also, termi-
nal states in T have associated costs representing operation
success or failure and should not be confused with the oper-
ation goal states.

A solution to an MDP is a stationary policy π(s) : S \
T → A, mapping non-terminal states to actions. This paper
assumes that all policies reach terminal states in finite time
when executed from s0. This is enforced by limiting the
maximum makespan.

The aim of MDP algorithms is to find the optimal policy
to move from s0 to a terminal state in T . Such a policy
incurs the minimum expected sum of costs, also called the
optimal value of the state s0. After optimisation, the action
with the optimal value in each state defines the policy, which
therefore specifies the “best” action to choose at each step.

More formally, the value of state s ∈ S \ T can be com-
puted using value iteration2 (Howard 1960):

Vt+1(s) = c(s) + min
a

∑

s′∈S

Pr[s′|s, a]Vt(s
′). (1)

LRTDP is essentially an efficient implementation of (1).
One efficiency gain arises from using the Q form of values

Qt+1(s, a) = c(s) +
∑

s′∈S

Pr[s′|s, a] min
a′

Qt(s
′, a′), (2)

which reduces computation time at the expense of storing
values for each (state,action) pair. Only the actions valid
from each state are considered. In following sections, Vt(s)
is used as shorthand for mina Qt(s, a). The values Q(s, a)
are considered converged when Vt+1(s0) cannot change by
more than ε from Vt(s0). The final policy is formally defined
by π(s) = argmina Q(s, a).

Operations Planning State Space
For operations planning the state description contains: the
state’s time, a queue of impending events, a list of eligible
tasks, the truth value of each fact, the available resources,
and each cost component.

Any task that has not yet been started, or failed and is
repeatable, is considered an eligible task for the purposes of
the state description. In a particular state, only a subset of
the eligible tasks will satisfy all preconditions for execution.
This subset is called the enabled task list.

Operations Planning Action Space
The enabled list of a state is used to determine the available
actions. The set of valid actions is the power set of the en-
abled tasks. Any action that violates resource limits or other
mutual exclusion requirements, as in PDDL 2.1, is removed
from the action set. For n enabled tasks the state has a max-
imum of 2n valid actions, including 0 task starts. Starting
no task can be useful if delaying to the next event allows a
better task to be started.

An alternative to the power set of enabled tasks is to con-
sider each task in turn. An independent decision is made for
each of the n enabled tasks. The fundamental branching fac-
tor is the same because there are 2n outcomes of making n
binary decisions. However, making independent decisions
can be sub-optimal because of resource constraints. Start-
ing one task may leave insufficient resources for preferable
tasks yet to be considered. Bacchus & Ady (2001) adopt the
independent decision approach, avoiding resource and other
conflicts by relying on the domain writer to block conflicting
actions through use of preconditions.

The generation of these action sets is shown in Algo-
rithm 1. The findSuccessors() routine determines the
successor states and their probabilities for each action. Thus,
line 10 stores a distribution of possible successor states for
action a.

2Equation (1) is often expressed with a discount factor in the
second term. However, this artificially attributes more weight to
short-term costs and is not necessary if all policies terminate in
finite time.

Successor State Generation

The generation of successor states is shown in Algorithm 2.
The algorithm first checks termination conditions (lines 2-
13). Then, the next event for state s is processed. Events
have probabilistic consequences. For example, tasks can
end in two ways: success or failure. Enhanced task defi-
nitions may include more than two outcomes. Line 15 of
Algorithm 2 loops over all possible outcomes of the event.

Future states are only generated at points where tasks can
be started. Thus, if an event outcome is processed and no
tasks are enabled, the search recurses to the next event in
the queue. In the worst case no new tasks are enabled un-
til all events on the queue are processed (see lines 19-22).
E.g., if n tasks-ends are on the event queue, the worst case
can return up to 2n new reachable states. The actual num-
ber of successor states is usually much less. For example,
if a task is enabled regardless of the success or failure of
the next event, the findSuccessor() search will return
immediately with exactly 2 successor states.

Event queues have previously been used in temporal plan-
ning (Bacchus & Ady 2001; Do & Kambhampati 2002).
This setting extends the event queue to decision-theoretic
planning.

Algorithm 1 findActions(State s)

1: Variables: Action a, State s′, State newState, StateList
successors, Task t

2: for each a=subset of non-mutex tasks do
3: newState = s.copy()
4: for each t=task started by a do
5: newState.startTask(t)
6: newState.addEvent(end of t)
7: end for
8: newState.prob = 1.0
9: findSuccessors(newState, successors)

10: s.addAction(a, successors)
11: end for

State Costs

MDP algorithms generally assume a single scalar cost per
state c(s). However, operations planning involves multiple
conflicting costs, e.g., minimising operation duration may
require expending more resources. The costs components
for the MDP states are: (1) a fixed failure cost if the goal
conditions become unreachable; (2) the duration of a state;
and (3) the resources consumed over the duration of the
state. These individual components are computed as a side-
effect of Line 17, Algorithm 2.

A scalar cost could be formed by an explicit linear combi-
nation of individual costs (Do & Kambhampati 2002), how-
ever, military commanders are unwilling to assign specific
weights to each of these costs. They are more willing to
rank the costs.

Risk adverse MDP algorithms (Geibel 2001) could be ex-
tended to this setting. These algorithms successively re-
plan, starting with the most important cost and working

Algorithm 2 findSuccessors(State s, StateStack successors)
1: Variable: State newState, Stochastic Event event
2: if s.time > maximum makespan then
3: successors.pushFailGoal(s)
4: return
5: end if
6: if s.operationGoalsMet() then
7: successors.pushSuccessGoal(s)
8: return
9: end if

10: if s.eventQueueEmpty() & ¬s.findEnabledTasks() then
11: successors.pushFailGoal(s)
12: return
13: end if
14: event = s.nextEvent()
15: for each event.outcome do
16: newState = copyState(s)
17: newState.implementEffects(event.outcome.effects)
18: newState.prob = s.prob × event.branch.prob
19: if newState.tasksEnabled() then
20: successors.push(newState)
21: else
22: s.findSuccessors(newState, successors)
23: end if
24: end for

down the ranking. Such algorithms guarantee that more im-
portant costs are never traded for less important costs.

This paper takes a less restrictive and computationally
faster approach. A cost function is constructed that places
exponentially more weight on more important costs. If the
exponent α is sufficiently large the state cost c(s) will reflect
the desired ordering exactly. A smaller exponent α allows
large but low-importance costs to have equal weight with
small but important costs. Thus, the exponent can act as a
tuning parameter, allowing the planning staff to specify how
strong the cost ordering should be.

Let c(s, i) be cost component i ∈ 0, . . . , C − 1 in state s.
Define i = 0 as the least important cost, i = 1 the next least
important cost, and so on. The state cost function is

c(s) =

i=C−1∑

i=0

c(s, i)αi. (3)

Suppose planning encounters a state s with cost components
c(s, 0) = 2, c(s, 1) = 71, c(s, 2) = 1. If α = 100 then
c(s) = 17102. The costs in this example represent 2 re-
source units, 71 duration units, and 1 failure unit. So c(s)
has been constructed to ensure the cost of operation fail-
ure dominates all other costs. For smaller α, for example
α = 50, using 71 duration units would dominate the cost
of failure. Depending on the needs of the commander, this
might be a sensible tradeoff.

However, the long-term values Q(s, a) computed with (2)
and (3) are not guaranteed to maintain the ordering on costs
in the sense that

Q(s, a) ≥

C−1∑

i=0

Q(s, a, i)αi, (4)

where Q(s, a, i) is the long-term value computed with cost
component i only. To see this, consider how the mina oper-
ator in (2) induces a single policy for value function Q(s, a)
but may select different, and independently minimising,
policies for each value function Q(s, a, i), i = 0, . . . , C −1.
Practically, the final policy may not be the policy that com-
pletely minimises the costs in strict order. Rather, there is
always some trade-off between the costs, decreasing as α in-
creases. To guarantee strictly ordered costs, slower risk ad-
verse algorithms can be used (Geibel 2001). For operations
planning, the ability to trade-off costs is desirable. Planning
staff initially define an order on costs and chooses a large
α. If analysis of the first policy reveals high probability of
undesirably large lower-importance costs, then α can be de-
creased and a new policy regenerated.

This scheme is essentially just a linear weighting scheme,
however the weights are chosen to reflect a soft ordering on
the costs. The degree of softness is controlled by α.

Finally, the experiments in this paper all resources are of
equal weight, although the cost ordering can be trivially ex-
tended to each resource.

LRTDP
LRTDP (Bonet & Geffner 2003) is an efficient implemen-
tation of value iteration (2). Efficiency gains come from:
using greedy simulation to focus on relevant states, using ad-
missible heuristics, and labelling converged states. Further-
more, this implementation relies on efficient data structures
and memory management policies to store visited states.

Alternative heuristic search algoriths, such as LAO*
(Hansen & Zilberstein 2001), could also be used. LRTDP
was chosen because there is some evidence that it can be
more efficient than LAO* (Bonet & Geffner 2003).

Greedy Simulation
LRTDP starts with a factored representation of the state
space, i.e., probabilistic planning operators. Starting at s0,
it simulates the current greedy policy, explicitly generating
reachable states along the way, and updating their values.
The order of state updates ensures rapid convergence of the
values for states that are reached when following the current
greedy policy.

Convergence to the optimal policy is guaranteed despite
the use of a greedy action selection policy. Because values
monotonically increase to their true long-term expectation,
all poor actions are eventually exposed and rejected in favour
of actions that lead to smaller state values. Good admissible
heuristics can reduce the number of updates by orders of
magnitude (Bonet & Geffner 2003), also reducing the num-
ber of states that are explicitly generated.

LRTDP is described by Algorithm 3. The action
= s.greedyAction() routine returns π(s). If this
is the first time a transition out of s has occurred,
s.greedyAction() invokes Algorithm 1 to find pos-
sible successor states for each eligible action. The
s.update() routine evaluates (2) for state s. Finally, the
s.pickNextState(a) randomly chooses the next state
according to the distribution induced by Pr[·|s, a] and re-
turns this state.

Labelling

The checkSolved(s,ε) function check does a conver-
gence check on all states seen during a simulation trial.
An algorithm for this routine is given by Bonet & Geffner
(2003). If Q(s, a) changed by less than ε, and all possible
state trajectories from s encounter only solved states, s is
labelled as solved. Thus, the algorithm terminates when all
states encountered by the current policy cannot change their
value by more than ε in one update. The ‘real-time’ name
is used because the policy improves rapidly early on, then
converges to the ε-optimal policy. Thus, early termination
results in a useful policy.

Memory Management

States visited by LRTDP are stored in a hash table3 for fu-
ture use. This implementation also stores information about
transitions for which Pr[s′|s, a] > 0. This is done in Al-
gorithm 1, which adds successor states to the global hash
table (line 10). If the state already exists in the hash then
alternative branches of the policy have merged and the state
is not added again. Algorithm 1 is only run the first time
a transition out of the state s is requested. All subsequent
transitions out of state s retrieve the previously computed
successor state distribution for the desired action. Such stor-
age is useful for MDP methods because any given state s
is visited many times, updating its value Q(s, a) each time.
Recomputing the state variables and searching for successor
states every time is too slow. At the very least, values for
“interesting” states must be stored.

Although the majority of the state space is typically not
visited, even modest operations planning scenarios with
around 25 tasks still visit millions of states. Further mea-
sures are needed to ensure planning does not consume all
available memory. When values Q(s, a) indicate an action
is very expensive, LRTDP’s greedy policy ignores that state
and its descendents for the rest of the search. Such obso-
lete states can account for the majority of memory use and
should be ejected. However, it is possible for an obsolete
state to become active again. States that move in and out of
the active policy demonstrate strong temporal locality. That
is, if a state has not been part of the active policy for a long
time, it is highly unlikely to be part of the active policy in
the future. This motivates a least recently used replacement
policy for states in memory. The hash table is checked for
obsolete states when memory is low. A state is deleted if it
is not part of the active policy and is in the bottom 30% of
most recently visited states. If a deleted state is revisited it
is regenerated, but its value must be learnt from the begin-
ning. Overall, the benefit of keeping states is retained while
avoiding an explosion of states in memory.

3The hash key is a string representation of the state, summarised
using the MD5 message digest algorithm. The final key is a 32
bit hexadecimal string which can be hashed quickly and reduces
memory usage per state compared to the full string. The probability
of two states mapping to the same key is negligible.

Algorithm 3 LRTDP(State s0, Real ε)
1: Variables: State s, StateStack visited, Action a
2: while ¬s0.solved do
3: visited = EMPTY STACK
4: s = s0

5: // Simulation loop
6: while ¬s.solved do
7: visited.push(s)
8: if s.goal then break
9: a = s.greedyAction()

10: s.update(a)
11: s = s.pickNextState(a)
12: end while
13: while visited 6= EMPTY STACK do
14: s = visited.pop()
15: if ¬ checkSolved(s, ε) then return
16: end while
17: end while

Heuristics
The aim of heuristics is to provide the best possible guess
of V0(s) more efficiently than LRTDP could converge to
the same value. Admissible heuristics compute initial values
such that V0(s) ≤ V (s) for all s. If a heuristic mistakenly
sets V0(s) > V (s) then that state and its descendents may
never be searched because of the greedy action selection pol-
icy. If those states turn out to be the best path to the goal, the
mistake will cause the final policy to be non-optimal.

This section provides separate heuristics for comput-
ing lower bounds on the probability of failure V (s, fail),
makespan V (s, makespan), and resource consumption
V (s, resource). If a non-terminal leaf state is encountered
during the LRTDP search then successor states are com-
puted for each valid action (Algorithm 2). Heuristic values
are computed for each successor and combined using (3),
forming a heuristic successor state value that is the same
for all actions. The successor values are propagated back
to the original leaf state by a value update for all choices of
leaf-state action. This provides a different heuristic value for
each action, hence guiding the selection of actions. The new
successor states are now leaf states. In some instances the
heuristics can detect if an operation success goal has become
unreachable, allowing the successor state to be labelled as
a failure terminal state. All the heuristic lower bounds are
computed from a list of tasks that satisfy each desired out-
come. Outcomes are expressed as the setting of goal facts to
true or false.

Probability of Success
Tasks set facts to true or false, depending on the success or
failure of that task. If all the tasks that can establish the
goal state of a fact fail, then the operation goal cannot be
reached. Detecting this situation can be done neatly by ex-
pressing the overall goal state as conjunctive normal form
boolean equation of facts. Each clause represents a goal,
written as a fact being true or false. Each clause is then ex-
panded into the task successes or failures that set that fact to

the desired value. For example, suppose there are two goal
facts F1 = true, written as just F1; and F2 = true, written
as just F2. Suppose task t1 succeeding asserts F1 and F2; t2
failing asserts F2 ; and t3 succeeding asserts F2. Embedded
in a boolean equation, ti should be read as true if the task
completed successfully, and false if it failed, thus

success = F1 ∧ F2

= (t1 ∨ t3) ∧ (t1 ∨ ¬t2).

If a task ti is yet to run, or is repeatable, any clause contain-
ing ti or its negation immediately evaluates to true because
it may be true at a later time. The boolean expression is triv-
ial to compute before optimisation begins. If it evaluates to
false at state s, the operation goal is no longer reachable and
state s is a failure terminal state.

An upper bound on the probability of reaching a success
state is

Pr[success] = Pr[F1 = true ∧ F2 = true]

= Pr[F1 = true] Pr[F2 = true|F1 = true]

< (1 − Pr[t1 = fail] Pr[t3 = fail])× 1.

Terms Pr[ti = fail] are known from the task description.
The term for Pr[F2 = true|F1 = true] evaluates to 1 be-
cause t1 can satisfy both F1 and F2, i.e., the probability that
t1 succeeds has been integrated into computing the probabil-
ity that F1 is true. To avoid double counting Pr[t1 = fail],
while still maintaining the upper bound, t1 is assumed to
have succeeded. Better heuristics could remove this assump-
tion. Tasks that have already succeeded or failed have their
probabilities set to 0 or 1 accordingly.

The required lower bound on failure is the upper bound on
success subtracted from 1. This bound ignores the fact that
tasks cannot run until all their preconditions are met, which
can only increase the probability that a task will not run, and
hence only increases the probability of failure.

Makespan and Resource Bounds
These bounds are loose but fast to compute given the list
of which tasks assert which facts. The makespan bound is
the maximum of all the durations required to establish each
goal fact. The duration for each goal fact is the minimum
remaining duration for each task establishing the fact. If F
is the set of goal facts, TF is the set of tasks that assert F ,
and dur(t) is the duration of task t, then

V (s, makespan) ≥ max
F∈F

min
t∈TF

dur(t).

A simple resource bound is the sum of the minimum re-
sources that would be consumed establishing each goal fact.
This assumes the task that uses the least resources will suc-
cessfully establish the fact. However, tasks that contribute
to multiple goal facts must not have their resources counted
twice. Exactly computing the subset of tasks that assert
all goal conditions, with minimal resources, is an NP-hard
problem. A sub-optimal solution is to divide the resources
for a task by the number of goal facts the task asserts, then
allow task resources to be re-counted. If a task has the low-
est resource use for all the facts it asserts, then that task will

contribute exactly its true resource usage. If a task has the
lowest resource use for only some of the facts it asserts, then
it contributes less than the true resource use. If res(t) is the
minimum resources consumed by task t, then

V (s, resources) ≥
∑

F∈F

min
t∈TF

res(t)

|{F : t ∈ TF }|
.

If the minimum resources needed is greater than the mini-
mum resources available and tied up in running tasks, then
the operation success state is unreachable.

Experiments
Initial testing was performed on 85 synthetic planning sce-
narios. A second set of experiments focuses on two sce-
narios provided by the Australian Defence Science and
Technology Organisation, based on de-classified informa-
tion from military exercises.

Synthetic Scenario Generation
Synthetic scenarios are a poor substitute for real domain
data. However, in the absence of a large database of do-
main scenarios, synthetic scenarios were useful for testing
the methods presented in this paper.

Synthetic scenario generation attempts to mimic the do-
main. Each scenario consists of 25 tasks and 25 facts. The
goal state of the synthetic scenarios is to assert all facts to be
true. Redundancy is introduced into the planning scenario
by allowing tasks to satisfy multiple facts. On average, half
the tasks set one fact and half set two facts. For example,
Task 1 might set Fact 3 and Task 2 might set Facts 3 and
4. A good policy would be to try Task 2 first — because it
satisfies multiple facts — and only try Task 1 if Task 2 fails.

Tasks depend on a subset of the facts affected by previ-
ously generated tasks. Generation also ensures that there is
scope for concurrent tasks.

The resources occupied by tasks are drawn from a ini-
tial pool of 10 types of resource, each with 20 units. Each
task uses a random amount from up to 5 resources types.
The resources consumed on failure are also generated ran-
domly, possibly consuming all allocated resources. On suc-
cess, a maximum of half the allocated resources are con-
sumed. Resource usage is high enough to constrain the
feasible policies. All resources are assumed to have equal
cost, so the maximum cost of a task’s consumed resources
is 5 × 20 = 100 units. Task durations are drawn randomly
from [1, 100]. The maximum makespan permitted is 2500
units, despite the fact that repeating tasks allow the goal to
be reached after 2500 units. Tasks fail with 0 to 40% proba-
bility. One tenth of tasks are designated as repeatable.

To summarise, these synthetic planning scenarios are rel-
atively small, but do have scope for choosing tasks instead
of merely scheduling them. All synthetic scenarios are guar-
anteed to have at least one policy which will reach the oper-
ation goal assuming all tasks succeed.

A loose upper bound on the number of states for any
scenario is O(MdT 2CuR) where M is the maximum
makespan, d is the maximum task duration, T is the number
of tasks, C is the number of conditions, u is the maximum

Table 1: Results averaged over 85 sythetic scenarios, with 25
tasks each. The H column indicates if heuristics were used.
MS is the average makespan, Res is the average resource
consumption, Secs is the mean optimisation time, and |S|
is the number of visited states. Each policy is tested with
100,000 simulations of the scenario.

H Fail % MS Res Secs |S|
No Opt 96.5 346 47.8
No Opt • 88.6 355 51.0
Time/Res 78.4 335 53.2 231 197000
Time/Res • 76.8 332 52.0 131 120000
Res/Time • 77.0 383 49.9 144 86400
α = 1 • 83.6 231 44.5 81 54900

resource units over all resource types, and R is the num-
ber of resource types. For 25 tasks, maximum duration 100,
makespan limit 2500, 25 conditions, and 20 units for each
of 10 resource types, there are 6× 1073 representable states.
Although only a small faction of these states can ever be re-
alised, it demonstrates the potential for huge state spaces and
the importance of efficient heuristic search.

LRTDP optimisation was performed with various settings
and compared to a hard-wired ‘No Opt’ policy which always
starts one task. Failure was always the the most important
cost, with an individual component of c(s, 2) = 1000 for
failure and 0 otherwise. The actual cost of failure is much
higher after applying (3). For the ‘Time/Res’ optimisations
makespan is more important than resource use. Similarly,
‘Res/Time’ optimisations make resources more important
than time. The exponent α used in (3) was set to 1000 for
all optimisations except those labelled ‘α = 1’, for which
individual costs are simply added. Optimisations were run
with and without heuristic initial values. Heuristics can also
be used to modify the ‘No Opt’ policy, choosing the set of
tasks with the lowest heuristic value as the final policy.

The ε parameter was set to 1, thus optimisation halts when
the initial state value Vt(s0), and all descendant state values,
cannot change by more than 1. Out of 85 scenarios, 5 failed
to halt within a 10 minute time limit. Optimisations were
performed on a cluster of 85 Pentium III 800MHz Copper-
mine CPUs, each with 384Mb of memory.

Results Table 1 shows the final value of the three cost cri-
teria averaged over the 85 planning scenarios. The cost for
each scenario was the average over 100,000 test runs. The
results show that optimisation reduces the probability of op-
eration failure and the makespan of the operation. Figure 2
shows, for each scenario, the ‘Time/Res’ improvement in
probability of failure. Most of the unoptimised policies fail
because resources run out. The lowest failure rate is still
high at 76.8%, reflecting the true difficulty of the scenar-
ios rather than the optimisation algorithm failing. When re-
sources are more important than duration there is a reduction
in the resource usage and increase in duration. This demon-
strates the ability of the planner to trade-off cost criteria.

A decrease in duration and resource use was observed
when α was decreased from 1000 to 1. A corresponding in-
crease in the probability of failure demonstrates the desired

0.4

0.6

0.8

1
P

r(
fa

il)

Figure 2: For each synthetic operation the top of the bar is
the pre-optimisation failure probability, and the bottom is
post ‘Time/Res’ heuristic optimisation failure probability.

effect of trading failures for a decrease in the lesser costs.
Initialising V0(s) using the automatic heuristics had a

benefit even without optimisation. Using heuristics during
optimisation reduced both optimisation time and the number
of states explored. The slightly different average costs using
heuristics are expected if the optimisation does not run to
ε = 0 convergence.

Island Assault Scenario

Figure 4 lists 20 tasks, provided by the Defence Science and
Technology Organisation, modelling an assault on an enemy
occupied island. There is a large amount of redundancy in
the tasks, making this scenario much more complex than the
synthetic planning scenarios. For example, “Amphibious as-
sault on island”, and “Airborne ops to occupy island”, both
achieve the final goal which is to set fact “Objective island
secured” to true. Also, each fact can be asserted by up to 3
tasks. However, none of the tasks are repeatable. Very few
resources are consumed in this scenario. Thus, while re-
source allocation constrains the policy space, resource con-
sumption costs do not differ much over the feasible policies.

For this scenario the maximum makespan was set to 300
hours. Choosing the lowest reasonable makespan minimises
the search space. As before, optimisations were limited to
10 minutes with ε = 1. All the optimisations ran to the
10 minute time limit. The real time qualities of LRTDP
are demonstrated by Figure 5. After 10 minutes V (s0) has
reached 88% of the value obtained after 22 minutes. This
indicates that truncating optimisation at 10 minutes still pro-
vides a reasonable policy.

Results Table 2 summarises results obtained for various
optimisation parameters after 30 optimisations and 100,000
test runs of each optimised policy. As observed for synthetic
scenarios, adding heuristics immediately improves the re-
sults. Applying LRTDP optimisation further improves the
results, especially the makespan.

Some standard deviations appear quite high. Figure 3
provides an indication of the true spread of makespan and
resources after one optimisation, revealing multiple modes
which tail off towards high values of time and resources.
This kind of analysis of possible outcomes can be useful to
planning staff.

Table 2: Results on the Assault Island scenario. The ± quan-
tities indicate one standard deviation over 30 optimisations
runs. Each policy is tested with 100,000 simulations of the
scenario.

H Fail % MS Res
No Opt 13.5 213 9.11

No Opt • 12.5 204 9.00

Time/Res • 7.47 ± 0.867 119 ± 14.9 9.83 ± 1.12

Time/Res 7.92 ± 0.728 123 ± 10.6 10.2 ± 1.63

Res/Time • 7.65 ± 0.828 162 ± 31.1 10.9 ± 1.89

α = 1 • 7.48 ± 0.704 117 ± 14.2 .040 ± .004

50 100 150 200 250 300
0

1

2

3

4

x 10
4

0 10 20 30 40

Makespan Resources

Figure 3: Histogram of makespans and resource use for
100,000 trial runs of one ‘Time/Res’ optimisation of the As-
sault Island scenario.

A schedule tree is a graphical representation of a policy
for durative actions with uncertain consequences.4 Nodes
represent action decision points in the policy. Arcs are la-
belled with the tasks to begin and the tasks which are as-
sumed to succeed or fail in that period. The length of an arc
represents the period until the next action point. Figure 4
provides the task list and schedule tree that results from a
Time/Res optimisation on the Assault Island scenario. To
save space, only the nodes with probability greater than 0.1
have been shown. The first node can be interpreted as: start
with anti-submarine operations using submarines and dis-
rupt enemy air capabilities with fighter jets. The next action
point is 12 hours later, when enemy air capability has been
knocked out with probability 60%.

Webber Island Scenario
The second set of provided tasks also models the capture of
an Island, however this scenario is more detailed. A full de-
scription of this scenario would require more space. In brief,
there are 41 tasks and 51 facts. Tasks range from “Insert spe-
cial forces”, to “Provide air-to-air refuelling”. There are 19
resource types. Two examples include an airborne battal-
ion and 6 mine counter measure ships. The operation goal
is for the “Enemy Forces on Webber Island evicted” fact to
become true. There are 8 tasks that establish this goal, and

4Visualisation of complex policies with probabilistic contingen-
cies is an interesting problem. Schedule trees provide one solution,
but do not scale well and are not friendly to planning staff trying to
interpret results.

0: Amphibious assault on island
1: Air combat patrol
2: Anti sub ops by air
3: Anti sub ops with frigates
4: Anti sub ops with subs
5: Airborne ops to secure landing
6: Maritime escort operation
7: Mine clearance with ships
8: Offensive counter air
9: Disrupt enemy air capability
10:Surveillance op with SF
11:Establish forward base
12:Establish refuelling point
13:Provide air-air refuelling
14:Suppress enemy air defence
15:Secure beach with SF and helo
16:Secure beach with SF and sub
17:Airborne Surveillance
18:Mine clearance with divers
19:Airborne ops to occupy island
SF=Special Forces

t0 r246
1.000

t12 r243
0.600

B: 4 9
S: 9

t12 r240
0.400

B: 4 9
S:

F: 9

t22 r215
0.570

B: 6 10 18
S: 6

t32 r241
0.320

B: 12
S: 4

t52 r217
0.317

B: 11 18
S: 12

t92 r203
0.314

B: 16
S: 11

t22 r217
0.427

B: 3
S: 10

t22 r216
0.142

B: 3
S:

F: 10

t26 r204
0.385

B: 16
S: 3

t26 r217
0.128

B: 12
S: 3

t32 r202
0.308

B: 7
S: 4

t74 r205
0.277

B: 11
S: 7

t82 r218
0.235

B: 12
S: 16

t92 r219
0.221

B: 0
S: 0 11

Figure 4: Truncated schedule tree for the Assault Island op-
eration; optimised for probability of failure, duration, then
resources. The diamond is a goal state. The numbers ‘t0
r246 1.00’ are the state time stamp, remaining resource
units, and the state probability. The arc labels such as ‘B:
4 9 S: 9 F: 4’ are the tasks to begin, successful tasks,
and failed tasks respectively.

many ways to establish the preconditions for those 8 tasks.
This dataset approaches the complexity that will be encoun-
tered during real operations planning.

Optimisation and testing was performed identically to the
Assault Island scenario, except that the maximum makespan
was increased to 1000 hours to account for tasks that take up
to 288 hours to complete.

Results This data set proved extremely challenging. The
results presented in Table 3 are preliminary only. A large
number of states are generated very quickly. There are often
9 or more tasks that can run at any one time, resulting in

0 200 400 600 800 1000 1200 1400
2

3

4

5

6

7

8
x 10

4

Seconds

V
(s

0)

Figure 5: Convergence of the initial state value V (so) for
one ‘Time/Res’ optimisation of the Assault Island scenario.
The quoted result is based on 600 seconds of optimisation.

Table 3: Results on the Webber Island scenario. Results are
presented identically to Table 2.

H Fail % MS Res
No Opt 58.4 675 4.73

No Opt • 58.3 670 4.74

Time/Res • 58.1 ± 0.217 239 ± 22.3 4.52 ± 0.587

Time/Res 58.0 ± 0.275 235 ± 23.9 4.44 ± 0.349

Res/Time • 58.1 ± 0.245 257 ± 39.0 4.28 ± 0.336

α = 1 • 58.0 ± 0.268 237 ± 20.3 0.016 ± .001

several hundred valid actions at some decision points. It was
noted that the majority of the 10 minutes of optimisation
time was spent doing operating system memory allocation
and deallocation. This will be rectified by writing dedicated
memory allocation routines for the planning code.

When optimisation is used there is a small decrease in the
probability of failure, and a large decrease in the makespan.
A small degree of tradeoff occurs between runs where the
importance of time and resources are reversed. A single-
sided t-test indicates 98% confidence that the observed
tradeoff is significant, for both time and resources. The no-
heuristic optimisation result is under investigation because
it seems to do slightly better than the heuristic version. A
t-test shows indicates a 94% confidence that this is true for
probability of failure, and a 75% confidence that this is true
for both makespan and resources.

For both the Assault and Webber Island scenarios, and
to some degree the synthetic scenarios, unexpectedly good
performance was observed when α = 1, especially for re-
sources. In this case no cost ranking was performed, al-
though minimising the probability of failure was still im-
portant because failure had a fixed cost of 1000. One possi-
bility is that over-separating the cost components may have
adverse numerical effects. Small but interesting variations
in cost can be lost during floating point calculations when
costs are in the order of 1 × 109 and probabilities are small.

The source code and examples for this paper are currently
available from http://csl.anu.edu.au/˜daa.

Conclusions and Future Work
LRTDP, combined with good heuristics and sensible state
storage, is a practical way to perform decision-theoretic
planning under the general framework of concurrent tasks,
resources, and conflicting costs.

Unfortunately no direct comparisons with other planning
methods were possible because no existing planning pack-
ages handle all the characteristics of this domain. Work is
underway extending existing planners, and developing alter-
native planning methodologies, for the probabilistic opera-
tions planning domain.

Current work is applying a probabilistic version of Graph-
Plan (Blum & Langford 1999) to generate better heuris-
tic values. The advantage of GraphPlan is its ability to
efficiently propagate the consequences of trying multiple
actions in an admissible fashion, potentially directing the
LRTDP search much more efficiently and greatly reducing
the number states of states generated.

Using factored representations of values, such as alge-
braic decision diagrams (Hoey et al. 1999), or symbolic
LAO* (Feng & Hansen 2002) could improve convergence
and decrease the number of values that need to be stored.

A related approach might assign a simple planning agent
to each task. Each agent has a simple job: it learns the opti-
mal conditions under which its task should begin. The idea
is to factor a complex policy into a group of simple agent
policies. Multi-agent MDP methods provide the training
tools (Tao, Baxter, & Weaver 2001).

A small change in task failure probability can have a large
impact on the final policy. Unfortunately, it is hard to accu-
rately predict the probability of failure of a task. Using a
possibilistic Markov decision process could reduce the sen-
sitivity of the policy to the initial task failure probabilities.

Acknowledgements
The authors thank the reviewers for their helpful sugges-
tions. National ICT Australia is funded by the Australian
Government’s Department of Communications, Information
Technology and the Arts, and the Australian Research Coun-
cil through Backing Australia’s Ability and the ICT Centre
of Excellence program. This project was also funded by the
Australian Defence Science and Technology Organisation.

References
Atkins, E. M. 1999. Plan Generation and Hard Real-Time
Execution With Application to Safe, Autonomous Flight.
Ph.D. Dissertation, University of Michigan.
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. In IJCAI,
417–424.
Blum, A., and Langford, J. 1999. Probabilistic planning in
the graphplan framework. In ECP, 319–332.
Blythe, J. 1999. Decision-theoretic planning. AI Magazine
1(20).
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proc. ICAPS.

Do, M. B., and Kambhampati, S. 2002. Planning graph-
based heurisitcs for cost-sensitive temporal planning. In
Proc. AIPS.
Feng, Z., and Hansen, E. A. 2002. Symbolic LAO* search
for factored markov decision processes. In AIPS Workshop
on Planning via Model Checking.
Geibel, P. 2001. Reinforcement learning with bounded
risk. In Proc. ICML, 162–169.
Gerenini, A., and Serina, I. 2002. LPG: A planner based
on local search for planning graphs with action costs. In
Proc. AIPS.
Hansen, E., and Zilberstein, S. 2001. Lao*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35—62.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. ECP, 121–132.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. ICML, 279–288.
Howard, R. A. 1960. Dynamic Programming and Markov
Processes. Cambridge, MA.: MIT Press.
Laskey, K. B.; D’Ambrosio, B.; Levitt, T. S.; and Ma-
honey, S. 2000. Limited raionality in action: Decision
support for military situation assessment. Minds and Ma-
chines 10:53—77.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.;
Kaelbling, L.; Dean, T.; and Boutilier, C. 1998. Solv-
ing very large weakly coupled markov decision processes.
In AAAI/IAAI, 165–172.
Mulvehill, A. M., and Caroli, J. A. 2000. JADE: A tool for
rapid crisis action planning. In 5th International Command
and Control Research and Technology Symposium.
Precup, D.; Sutton, R. S.; and Dasgupta, S. 2001. Off-
policy temporal-difference learning with function approxi-
mation. In Proc. ICML, 417–424.
Tao, N.; Baxter, J.; and Weaver, L. 2001. A multi-agent,
policy-gradient approach to network routing. In Proceed-
ings of the Eighteenth International Conference on Ma-
chine Learning, 553–560. Morgan Kaufmann.
Tate, A.; Drabble, B.; and Dalton, J. 1996. Advanced Plan-
ning Technology. Menlo Park, CA: AAAI Press. chapter
O-Plan: A Knowledge-Based Planner and its Application
to Logistics.
Thuve, H. 2001. TOPFAS (tool for operational planning,
force activation and simulation). In 6th International Com-
mand and Control Research and Technology Symposium.
Younes, H. L. S.; Musliner, D. J.; and Simmons, R. G.
2003. A framework for planning in continuous-time
stochastic domains. In Proc. ICAPS, 195–204.
Zhang, L.; Kristensen, L. M.; Janczura, C.; Gallasch, G.;
and Billington, J. 2002. A Coloured Petri Net based tool for
course of action development and analysis. In Workshop on
Formal Methods Applied to Defence Systems, volume 12.
Australian Computer Society.

