
Using ABLE to Bring Planning to Business Applications

Biplav Srivastava
Email: sbiplav@in.ibm.com

IBM India Research Laboratory
Block 1, IIT Delhi, Hauz Khas,

New Delhi 110016, India.

Joseph P. Bigusand Donald A. Schlosnagle
Email: {bigus, daschlos}@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights,

New York, 10598, USA.

Problem: The success of planning in an application de-
pends as much on the planning techniques used as on the
way it is embedded into the runtime. The former represents
a knowledge engineering challenge since the formulation of
the planning problem (i.e., goal and initial states, actions,
plan evaluation metric) should be meaningful in the domain
assuming that an appropriate planning technique would be
used. The latter refers to development of tools and method-
ologies to integrate off-line reasoning with runtime so that
the most important and useful planning scenarios get effi-
ciently solved.

Planning and execution is even today tightly tied to the
specific context of the individual application which can have
its own idiosyncracies. This lack of domain independent
planning and execution infrastructure makes it hard to un-
derstand the role of planning in an application (are the
planning needs really special or was the implementation ad
hoc?), slows future upgradation to planning advancements
and inhibits solution reuse. Business applications today,
however, are built along architectures that allow componen-
tization of building blocks, large-scale reuse and easy upgra-
dation/maintenance. Hence, a domain independent plan-
ning and execution framework is needed for widely applying
planning in business applications. This is what we seek to
address and demonstrate in IBM Agent Building and Learn-
ing Environment (ABLE) toolkit(Bigus et al 2002).

As an example of business application, we will consider
the problem of Automated System Recovery of web appli-
cations that are running behind a website. In this scenario,
the web applications should be able to automatically self-
configure and self-heal in response to runtime exigencies to
keep the website available. As a very simple problem in-
stance, let the website run on two high-end machines. The
website uses two applications (e.g., servlets) that can run on
any of the two machines provided an application server (e.g.,
WebSphere Application Server) is running on that machine.
The applications access a database server (e.g., DB2) and a
directory server (e.g., SecureWay), which may run on any
machine. The initial state has the two machines running and
all the software servers installed. The goal is to have both
the applications running over time. If any software server
or machine were to fail, the system should be able to in-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

fer and initiate actions to migrate the computation in a way
that the web applications continue to run. A typical business
website runs tens of applications on similarly large number
of machines and follows a multi-tiered architecture integrat-
ing components from differents part of the firm’s business -
Products, Accounting and Finance, Supply Chain, Customer
Relationship Management, etc.

To our knowledge, ABLE is the first publicly available
toolkit that provides general purpose planning and execution
support. It is being used to solve a variety of planning ap-
plications in IBM including the self-management/autonomic
computing scenarios.

Solution Approach: We provide a domain independent
planning and execution environmentin ABLE. ABLE1 is a
toolkit for building multiagent autonomic systems. It pro-
vides a lightweight Java agent framework, a comprehen-
sive JavaBeans library of intelligent software components,
a set of rule development and test tools, and an agent plat-
form. ABLE supports various type of rules (e.g., If-then-
else, Fuzzy rules, Prolog rules) and their corresponding
rule engines. A developer can build a composite JavaBean
(called anagent) by mixing different types of rules and em-
bed the resulting component in an application.

The ABLE Rule Language (ARL) is a rule-based pro-
gramming language that provides tight integration with Java
objects and the ability to externalize business logic using
simple business rules or more complex inferencing rules.
ABLE provides a set of rule engines ranging from light-
weight procedural scripting to medium weight forward and
backward chaining, up to the power and speed of advanced
AI inferencing techniques. ARL also supports templates to
allow customization of rulesets by non-technical users.

We have extended ABLE with a new type of rule that
we call planning rules, and it is compliant with the plan-
ning community’s Planning Domain Description Language
(PDDL). Since PDDL comes in various flavors, i.e. levels,
the planning rules cannot be tied for processing to any spe-
cific planning engine. Therefore, we have developed a gen-
eral planning framework called Planner4J (Srivastava 2004)
comprising of a set of common interfaces2, and any planner

1Available at http://www.alphaworks.ibm.com/tech/able.
2It also has utility functions and reference planner

implementations.



that is compliant with it can be used to process the planning
rules, provided it can handle the corresponding level of ex-
pressivity (e.g., PDDL level). The planning framework also
provides a common infrastructure so that a variety of plan-
ners are available to the developer and new ones can be eas-
ily built by reusing much of the existing code. As proof of
concept, we have implemented a PDDL1 classical planner
and a limited metric planner3.

The planning ARL consists of specifications about pred-
icates, variables, expressions, inputs and outputs. The im-
portant rule blocks areinit() to initialize the domain in-
formation, process() to initialize problem information
and invoke the planner, andpostProcess() to cleanup.
Control parameters are provided to specify the Objects in
the planning problem, and the initial and goal states. In the
planning rule block (calleddoPlanning() in the exam-
ple), each action in the domain is specified as a rule. The
planning rule semantics are equivalent to the Planning Do-
main Definition Language (PDDL) action and very similar
in syntax.

The Planning engines incorporated in ABLE process As-
sertion and Planning rules. This engine makes use of pred-
icates to represent states and uses Java class hierarchies to
reason about types. The planning rule semantics are equiv-
alent to the Planning Domain Definition Language (PDDL)
action syntax. Control parameters are provided to specify
the Objects in the planning problem, and the initial and goal
states.

The processing sequence is to:

1. Process all Assertion rules in their declaration order.

2. Build a planning problem specified by the initial condition
predicates.

3. Select and fire planning rules (actions) until the goal state
is reached.

4. Return a plan solution, a sequence of actions with param-
eters to operationalize the plan.

The actions in the generated plan are now executed in
the given order and basic exception handling is supported to
handle runtime errors. See details in the full paper(Srivas-
tava et al 2004). Since actions to carry out a plan are always
domain specific, one must provide these actions as methods
in a Java class that one writes. The methods must be public,
static, return a boolean indicating whether the action worked
(true) or not (false), and correspond one-for-one to the plan-
ning rules in the ARL file. The ABLE distribution contains
a working example of how a plan can be dynamically syn-
thesized and executed.

Related work: The planning area has seen a rush of ap-
plications recently. There is also a wide variety of plan-
ners available, e.g., LPG4, Sapa(Do & Kambhampati 2001).
However, the success of planning in an application depends
as much on the planning techniques used as on the way it
is encoded and embedded into the runtime. Tools for build-
ing intelligent agents are few and those supporting domain-

3The ABLE 2.0.1 version on Alphaworks contains only the
classical planner.

4http://zeus.ing.unibs.it/lpg/

independent planning and execution are fewer. Soar5 is
a well known architecture in academia to build intelligent
agents. It provides tools to build agents in multiple lan-
guages and provides support for knowledge representation
and inferencing. ABLE is a Java-based toolkit customized
for building autonomic and business applications incorpo-
rating a range of rules.

For planning, GIPO (Graphical Interface for Planning
with Objects) is an experimental GUI and tools environ-
ment for building planning domain models(McCluskey et al
2003). It can serve a complementary role with ABLE of
helping the user analyze the business environment so that a
planning model can be built using the ARL representation.

Discussion: The key benefits of using the planning-
enabled ABLE are:

• It provides the applications with a common planning and
execution platform to embed, test and evolve with state-
of-the art planners.

• It supports arbitrary customization of an action’s
execution-time behavior using Java methods. Further-
more, the action set can be modified in the dynamic envi-
ronment and a new planning problem posed quite easily.

• It contains a planning framework to develop new planners
by reusing existing components.

• The existing range of learning beans, rule types and data
filters can be used to build complex planning agents.

In future, we intend to extend the planning and execu-
tion capabilities in two directions. On the planning front,
we want to improve the current implemetation with better
heuristics and tighter ABLE and Planner4J integration, pro-
vide newer types of planners (e.g., HTN) and incorporate ex-
ternal planners e.g., Sapa. On the execution front, we want
to include fine-grained plan monitoring and execution sup-
port so that partially-executed, world-altering actions can be
taken into account during replanning.

References
Bigus, J., Schlosnagle, D., Pilgrim, J., Mills, W., and Diao,
Y. 2002. ABLE: A Toolkit for Building Multiagent Auto-
nomic Systems.IBM Systems Journal, Vol. 41, No. 3.
Do, B., and Kambhampati, S. 2001. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner.Proc. Eu-
ropean Conference on Planning.
McCluskey, T.L., Liu,L., and Simpson, R. 2003. GIPO II:
HTN Planning in a Tool-supported Knowledge Engineer-
ing Environment.Proc. Intl Conf. on Automated Planning
and Scheduling (ICAPS).
Srivastava, B., Bigus, J., Schlosnagle, D. 2004. Bringing
Planning to Autonomic Applications with ABLE.To Ap-
pear in Proc. IEEE International Conference on Autonomic
Computing (ICAC-04), New York, USA.
Srivastava, B. 2004. A Software Framework for Apply-
ing Planning Techniques.IBM Technical Report RI04001.
Available athttp://domino.watson.ibm.com/library/CyberDig.nsf/Home.

5http://www.eecs.umich.edu/ soar/


