
Knowledge of Other Agents and Communicative Actions in the Fluent Calculus

Yves Martin
Fakultät Informatik

Technische Universität Dresden
01062 Dresden (Germany)

ym1@inf.tu-dresden.de

Iman Narasamdya
Department of Computer Science

The University of Manchester
M13 9PL Manchester (UK)
in@cs.man.ac.uk

Michael Thielscher
Fakultät Informatik

Technische Universität Dresden
01062 Dresden (Germany)

mit@inf.tu-dresden.de

Abstract

The Fluent Calculus has largely been focused on building
agents that work individually. However, agents often need to
interact with each other to learn more about their environment
as well as to achieve their goals. One form of interaction is by
means of communication. Effective, goal–oriented commu-
nication requires knowledge of other agents. This paper stud-
ies the problem of endowing agents with the ability to reason
about the knowledge of other agents and with communication
skills. Our formalism for the knowledge of other agents gen-
eralizes the existing notion of knowledge in the Fluent Cal-
culus. Communication is treated as actions which are called
communicative actions. The specification of communicative
actions is based on the formalism for the knowledge of other
agents. We have also developed an implementation of the
theory as an extension to FLUX, which is a programming
method that allows to design intelligent agents based on the
Fluent Calculus.

INTRODUCTION

Agents that are able to act autonomously under incomplete
information in dynamically changing environments must
maintain a representation of their surroundings. Then, us-
ing their reasoning capabilities, these agents can draw infer-
ences on the basis of the knowledge that they have. Most of
the work so far on the theory and implementation of logic-
based agents has been concerned with single agents.

A first approach for agents to treat communication as ac-
tions in the context of reasoning about actions was intro-
duced by Cohen and Perrault in (Cohen & Perrault 1979).
The formalism chosen in their paper is the STRIPS notation,
and they do not consider agents in a multi-agent setting—
rather they take only one single system consisting of many
agents.

Another approach to communication in multi-agent sys-
tems is based on the agent-programming language GOLOG,
which is rooted in the logical theory of action of the Situa-
tion Calculus (Lespérance et al. 1995; Shapiro, Lespérance,
& Levesque 1997). However, there are several restrictions
to the method described in these papers. In (Lespérance et
al. 1995), the individual agents have no information about
the executed actions of other agents. As a consequence,

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

each agent has to assume a possibly infinite number of ex-
ogenous actions which have been performed and could po-
tentially affect any fluent. This could lead to a complete
loss of knowledge about the world, and therefore the ap-
proach can only be applied to specially designed domains.
This deficiency was eliminated by the approach described
in (Shapiro, Lespérance, & Levesque 1997). Nevertheless,
the implementation of (Shapiro, Lespérance, & Levesque
1997) does not allow for systematic knowledge about other
agents. In turn, it is not possible to have separate programs
for the individual agents because it is not clear how to deal
with queries about the mental states of agents. Moreover, the
GOLOG implementation used in (Lespérance et al. 1995;
Shapiro, Lespérance, & Levesque 1997), employs regres-
sion to infer the knowledge state of an agent. For longer
communication sequences, this entails that the knowledge
has to be regressed over the whole sequence back to the ini-
tial situation. The effort for doing this will increase with
each new communicative action.

In this paper, we extend the theory for reasoning about
action and change of the Fluent Calculus to deal with agents
in multi-agent settings. We also show how this theory can
be effectively implemented in the high-level agent program-
ming language FLUX. A major motivation for this work is
to prepare logically reasoning agents for the Semantic Web.
For example, imagine a software agent which goes shopping
on the Internet on behalf of its user. The goal of this agent is
to buy all required items with a minimal amount of money.
In order to achieve this goal, this shopping agent may have
to communicate with other agents which manage the virtual
stores. Of course, the communication will be much more
effective if the shopping agent has knowledge of these sell-
ing agents. For example, knowing that some agent sells only
electronic devices will prevent our shopping agent from ask-
ing for books in this virtual store. With our method, the
shopping agent can build up more and more knowledge of
others each time he communicates. For subsequent commu-
nications, he would then become better in asking the right
questions to the right agents.

The approach described in this paper shows how to ex-
tend the knowledge of an agent in the Fluent Calculus to
contain information of arbitrarily many other agents. Our
axiomatization is proved to be sound wrt. basic properties
of knowledge. These properties are also shown to be valid

for knowledge updates for both “regular” actions as well as
knowledge-producing (i.e., sensing) actions. Based on the
knowledge of other agents, we develop a set of communica-
tive actions which allow agents to ask questions, to provide
information, or to request the execution of actions from each
other. Knowledge of other agents helps eliminate unneces-
sary communication. For example, if one agent wants to
know a property and knows that another agent knows it, then
the former should ask the latter about this property. Having
this knowledge of the other agent will be defined as a pre-
condition for querying the agent.

In addition to the theoretical framework, we have devel-
oped an implementation of knowledge about other agents
and the communicative actions in the high-level program-
ming language FLUX. Using the paradigm of constraint
logic programming and the notion of incomplete states, we
show how knowledge about other agents can be represented
in a succinct way within a single knowledge state. This leads
to a very nice computational behavior as all the knowledge
is immediately available for checking action preconditions
and other conditions that are of interest to the agent (see
also (Thielscher 2004)).

Our initial treatment of agents in multi-agent setting rests
on the following assumptions, which should be relaxed in
future extensions of this work: 1. Agents are homogeneous,
i.e., share the same ontology, actions and communication
protocol. 2. We are dealing with knowledge, thus ignoring
the problem of (possibly incorrect) beliefs. We therefore as-
sume that all actions are public. 3. Actions affecting the
shared fluents are assumed not to be executed concurrently.

After this introduction, we briefly recapitulate the essen-
tials of the Fluent Calculus and FLUX. Following the reca-
pitulation, we present an extension of the calculus that al-
lows agents to represent and reason about the knowledge
of other agents. Afterwards, we give an axiomatization
of actions for agent communication based on agent knowl-
edge. The implementation of our theoretical framework in
the agent programming language FLUX is described sub-
sequently. We conclude by summarizing the main features
of our approach and showing some paths for future re-
search. All programs are available on our web site: http:
//www.fluxagent.org.

THE FLUENT CALCULUS

The Fluent Calculus shares with the standard Situation Cal-
culus the basic notion of a situation. The initial situation is
usually denoted by the constant S0. The function Do(a, s)
denotes the situation which is reached by performing ac-
tion a in situation s. In order to specify what holds in a
situation, the expression Holds(f, s) is used, where f is a
fluent (i.e., term of sort FLUENT); e.g.,

Holds(OnTable(Book), S0)∧
(∀x)¬Holds(Carrying(Agent, x), S0)

(1)

The Fluent Calculus extends the Situation Calculus by the
notion of a state. The function State(s) denotes the state (of
the environment of an agent) in situation s. By definition,
every FLUENT term is a state (i.e., term of sort STATE), and

if z1 and z2 are states then so is z1◦z2. The foundational ax-
ioms Σstate of the Fluent Calculus stipulate that function “◦”
shares essential properties with the union operation for sets
(see, e.g., (Thielscher 2001) for details). This allows the
definition of the Holds-expression as a mere macro thus:

Holds(f, s)
def
= Holds(f, State(s)) and

Holds(f, z)
def
= (∃z′) z = f ◦ z′

With this, specification (1) entails the following equation for
State(S0):

(∃z) (State(S0) = OnTable(Book) ◦ z ∧
(∀x)¬Holds(Carrying(Agent, x), z))

(2)

Based on the notion of a state, the frame problem is solved
in the Fluent Calculus by state update axioms, which define
the effects of an action a as the difference between some
State(s) and the successor State(Do(a, s)); e.g.,

Poss(Pickup(x, y), s) ⊃
State(Do(Pickup(x, y), s)) =

(State(s)− OnTable(y)) + Carrying(x, y)
(3)

The standard predicate Poss(a, s) means that action a is
possible in situation s. The functions “−” and “+” de-
note, respectively, removal and addition of fluents to states.
They have a purely axiomatic characterization in the Flu-
ent Calculus (we again refer to (Thielscher 2001)). For ex-
ample, tacitly assuming Poss(Pickup(Agent, Book), S0) and
uniqueness-of-names for fluents OnTable and Carrying, the
instance {x/Agent, y/Book, s/S0} of the state update axiom
just mentioned applied to equation (2) yields, with the help
of the foundational axioms,

(∃z) (State(Do(Pickup(Agent, Book), S0)) =
Carrying(Agent, Book) ◦ z∧
¬Holds(OnTable(Book), z)∧
(∀x)¬Holds(Carrying(Agent, x), z))

Representing State Knowledge

The knowledge an agent has of its environment can be rep-
resented in the Fluent Calculus using the notion of possible
states. Let the predicate KState(s, z) denote that, according
to the knowledge of the agent, z is a possible state in situ-
ation s. The following axiom, for example, says implicitly
that in the initial situation all that is known is that the agent
does not hold any object:

(∀z) (KState(S0, z) ≡
(∀x)¬Holds(Carrying(Agent, x), z))

Formally, a property is defined to be known in a situation if
it holds in all possible states:

Knows(f, s)
def
= (∀z)(KState(s, z) ⊃ Holds(f, z)) (4)

The effects of actions, including knowledge-producing ac-
tions, are specified by knowledge update axioms, which re-
late the possible states between successive situations; e.g.,

Poss(SenseOnTable(x), s) ⊃
(KState(Do(SenseOnTable(x), s), z) ≡

KState(s, z)∧
[Holds(OnTable(x), z) ≡ Holds(OnTable(x), s)])

That is to say, a state z is still possible after
SenseOnTable(x) just in case it was possible beforehand and
OnTable(x) holds in z iff it holds in the actual State(s).

FLUX

The Fluent Calculus provides the formal underpinnings
of the logic programming method FLUX, whose purpose
is to design agents that reason about their actions and
sensor information in the presence of incomplete knowl-
edge (Thielscher 2004). FLUX is based on the representa-
tion of knowledge states of agents by open-ended lists of flu-
ent terms Z=[F1,...,Fk|_] accompanied by constraints
which encode negative and disjunctive information:

Constraints Semantics

not_holds(F,Z) ¬Holds(f, z)
not_holds_all(F,Z) (∀~x)¬Holds(f, z)

~x variables in f
or_holds([F1,...,Fn],Z)

∨n

i=1
Holds(fi, z)

As an example, this is a FLUX encoding of the knowledge
state which corresponds to the Fluent Calculus axiom (2):

Z0 = [on_table(book)|Z],

not_holds_all(carrying(agent,X),Z)

The agent infers knowledge of a particular property in
such a knowledge state by examining whether the negation
of the property is unsatisfiable under the given constraints.
To this end, a system of Constraint Handling Rules 1 has
been defined in (Thielscher 2004) by which a set of FLUX
constraints is solved in accordance with the foundational ax-
ioms of the Fluent Calculus.

Agent programs in FLUX are constraint logic programs
consisting of three components Pkernel ∪ Pdomain ∪ Pstrategy.
The domain-independent Pkernel provides an encoding of the
foundational axioms and macros of the Fluent Calculus, in-
cluding a definition of how incomplete states are updated
according to positive and negative effects. The environ-
ment of an agent is specified in Pdomain, which in particu-
lar contains the precondition and knowledge update axioms
for the possible actions of the agent. Finally, Pstrategy de-
scribes the task-oriented behavior of the agent, according
to which it reasons, plans, and executes actions. The se-
mantics of a FLUX program is given as a combination of
the Fluent Calculus and the standard semantics of logic pro-
gramming: The computation tree for Pstrategy and a given
query contains nodes representing the execution of actions.
The ordered sequence of these nodes determines a particu-
lar situation term. With the help of the Fluent Calculus this
situation can be formally verified against desired properties
of the agent. For more details on syntax and semantics of
FLUX we refer to (Thielscher 2004).

KNOWLEDGE OF OTHER AGENTS

Environments might contain more than one agent. Instead of
building an environment along with the inhabiting agents,
we are aiming at building agents that are capable of com-
municating with each other. The agent we are currently de-
veloping will subsequently be called “our agent”. Know-
ing what other agents know is important to have efficient

1Constraint Handling Rules (CHRs) are a general method
of specifying, in a declarative way, rules to process con-
straints (Frühwrith 1998).

communication. For example, our agent will only ask an-
other agent about the truth value of some property, if our
agent knows that the other agent knows about the property;
whether the property holds or does not hold in the environ-
ment.

Representing Knowledge of Other Agents

Our approach to representing the knowledge of other agents
is by treating the knowledge as yet another information of
the environment. In general, fluents are atomic components
of states that represent some particular information of the
environment. Thus, the knowledge of other agents shall be
represented using a special fluent, which is called knowledge
fluent:

KF : AGENT × STATE 7→ FLUENT

This fluent function is added to the basic Fluent Calculus
signature. The fluent KF(r, zr) means that the state zr is a
state of which our agent thinks that agent r might think to
be actual.

To give a relation between the possible states of our agent
and the possible states of other agents, we introduce a new
ternary predicate to the basic Fluent Calculus signature, that
is,

KFState : STATE × AGENT × STATE

The relation KFState(z, r, zr) is meant to hold iff the state
zr is a possible state of agent r given that z is a possible state
of our agent. A knowledge fluent state is a formula

KFState(z, r, zr) ≡
Holds(KF(r, zr), z) ∧ Φ(zr) ∧
(∀y, z′y)¬Holds(KF(y, z′y), zr)

The above formula says that the predicate KFState(z, r, zr)
relates the possible state zr of agent r with the possible
state z of our agent. This is denoted by the expression
Holds(KF(r, zr), z) saying that the fluent KF(r, zr) holds
in z. Moreover, the state zr is defined using a state formula
Φ(zr)

2 and no nested knowledge fluent in the state zr.
The relation K(r, φ) denotes that agent r knows some

property φ. Throughout this paper, properties are associated
with fluents. Given a possible state z of our agent, K(r, φ)
holds in z iff φ holds in all possible states belonging to agent
r in the state z. On this basis, our agent knows that agent r
knows property φ if the property K(r, φ) holds in all possible
states of our agent:

Knows(K(r, φ), s)
def
=

(∀z) (KState(s, z) ⊃
(∀zr)(KFState(z, r, zr) ⊃ Holds(φ, zr)))

where the property φ does not contain any relation of the
form K(r′, φ′).

Example 1 Consider a very simple world with only two
fluents F and G. Suppose that in the initial situation S0,
our agent knows that agent R knows that fluent G is true (or

2A state formula Φ(z) is a first-order formula with free state
variable z and without any occurrences of states other than in ex-
pressions of the form Holds(f, z).

F ◦ G ◦ KF(R, F ◦ G)

G ◦ KF(R, G)

j

j

Figure 1: Our agent knows K(R,G) ∧ (K(R,F) ∨
K(R,¬F)) in the initial situation S0.

agent r knows G). In addition, our agent knows that agent
R knows F or agent R knows ¬F . The following describes
the knowledge state of our agent:

KState(S0, z) ≡
z = F ◦G ◦ KF(R,F ◦G) ∨
z = G ◦ KF(R,G)

(5)

The above formula is described pictorially in Figure 1. The
small circles in the figure denote the possible states of our
agent. Our agent knows that agent R knows G because flu-
ent G holds in all knowledge fluents, or formally,

(∀z)(KState(S0, z) ⊃
(∀zr)(KFState(z,R, zr) ⊃ Holds(G, zr)))

In one possible state, fluent F holds in the states of all
knowledge fluents of agent R, but in the other, fluent F
does not hold in any states of knowledge fluents of agent
R. This denotes that our agent has disjunctive knowledge
K(R,F)∨K(R,¬F). Fluents that hold in the possible states
of our agent are determined by Corollary 1, which will be
explained later. 2

In the presence of many agents, the universal validity of
knowledge has to be preserved. For example, it would be in-
consistent if our agent knows that agent r knows that prop-
erty φ is true, but our agent itself knows that property φ is
false. The validity of knowledge is captured by the follow-
ing foundational axioms Σknows:

KState(s, State(s))

KFState(z, r, z−)

where z− is defined using the axiom of state exis-
tence (∀P)(∃z)(∀f)(Holds(f, z) ≡ P (f)) 3 with the
predicate variable P substituted by {P/λf.Holds(f, z) ∧
(∀x, z′)(f 6= KF(x, z′))}. The first axiom, which is inher-
ited from (Thielscher 2000), says that the actual state is al-
ways possible in any situation. The second axiom says that a
possible state of our agent, without any knowledge fluent, is
also a possible state of any other agent. From those axioms,
the following corollary can be derived:

3This axiom is a foundational axiom in the Fluent Calculus
which stipulates a state for any combination of fluents (Thielscher
2001).

Corollary 1 Let f be a fluent and s be a situation, then
Σstate ∪ Σknows entails

(∃r1)Knows(K(r1, φ), s) ⊃
(∀r2)(¬Knows(K(r2,¬φ), s)) ∧
Knows(φ, s) ∧ ¬Knows(¬φ, s) ∧
Holds(φ, s)

The above corollary says that if there is another agent of
which our agent knows that this other agent knows φ, then
our agent knows φ too, but does not know ¬φ. Moreover,
there cannot be any agent r2 of which our agent knows that
agent r2 knows ¬φ. Finally, property φ itself must be true
in the environment (i.e., the actual state).

Example 1 (continued) Equation (5) satisfies the founda-
tional axioms. In accordance with Corollary 1, if our agent
knows K(R,G), then our agent knows G too. The knowl-
edge state in equation (5) shows that fluent G holds in all
possible states of our agent. Therefore, our agent knows G.
2

Knowledge Update Axioms

Knowledge of other agents might have to be updated as well
upon updating knowledge states. For example, suppose that
our agent knows K(R,G). Our agent performs an action that
makes fluent G become false. Without updating the knowl-
edge of agent R, our agent’s knowledge becomes inconsis-
tent with the foundational axioms Σknows, that is, our agent
knows ¬G∧K(R,G) (recall Corollary 1). To define knowl-
edge update axioms appropriately, the approach taken in this
paper is based on the following assumptions:

• Agents are homogenous. It means that these agents have
the same set of actions, and those actions are axiomatized
in the same way, in terms of their preconditions and up-
date actions. Moreover, these agents share the same on-
tology and communication protocol.

• The physical effects of actions to the environment are ob-
servable by every agent inhabiting the environment.

The first assumption makes preconditions and knowledge
update axioms simple to axiomatize, since the precondition
and effects of every action do not have to be quantified over
agents. The second assumption is needed because our agent
inhabits dynamic environments which include other active
entities, that is, its fellow agents. Consequently, some state
properties are not under the sole control of our agent. There-
fore, our agent must take into account actions besides its
own when maintaining the state of the environment. One
way of addressing this problem is by treating some actions
as exogenous actions 4.

Updating knowledge of other agents involves removal and
addition of infinitely many knowledge fluents to knowledge
states. However, the removal operation “−”, explained in
the previous section, was only defined for the subtraction of
finite states (Thielscher 2001). In this paper, we introduce
function “⊖” generalizing “−” to the subtraction of infinite
states, that is, z1 ⊖ τ = z2 where z2 is defined using the

4Exogenous actions are actions which are not performed by our
agent but do affect some relevant fluents.

axiom of state existence with the predicate variable P sub-
stituted by {P/λf.Holds(f, z1) ∧ ¬Holds(f, τ)}.

Knowledge update axioms can now be formally de-
fined. The following definition generalizes the definition
in (Thielscher 2004), in the sense that the knowledge of
other agents is now taken into consideration.

Definition 2 A knowledge update axiom for action A(~x) is
a formula

Knows(Poss(A(~x)), s) ⊃
(∃~y)(∀z′)(∃z∗) (KState(Do(A(~x), s), z′) ≡

(∃z) (KState(s, z) ∧Ψ(z∗, z))
∧Π(z′, z∗, Do(A(~x), s)))

where

• the physical effect Ψ(z∗, z) is of the form

n∨

i=1

(∃~yi) (Φi(z) ∧ z∗ = z ⊖ ϑ̂−

i + ϑ̂+

i)

where

– Φi(z) is a state formula;

– ϑ̂−

i = ϑ− ◦ z−kf , where ϑ− contains the negative phys-

ical effect and z−kf contains all knowledge fluents in z;

and

– ϑ̂+

i = ϑ+ ◦ z+

kf , where ϑ+ contains the positive physi-

cal effect and z+

kf contains all knowledge fluents in z−kf

whose states have been updated according to the phys-
ical effects ϑ− and ϑ+.

• the cognitive effect Π(z′, z∗, Do(A(~x), s)) is of the form
∧k

i=1
[Πi(z

∗) ≡ Πi(State(Do(A(~x), s)))]
∧∧l

i=1
Holds(Fi(~ti), z

∗) ∧ Holds(Fi(~ti), Do(A(~x), s))
∧

(z′ = z∗ ⊖ ϑ∗ ∨ z′ = z∗)

where Πi(z
∗) is a state formula and ϑ∗ contains all knowl-

edge fluents of some agent in z∗ whose states do not con-

form to Πi(z
∗) or fluent Fi(~ti) does not hold therein.

2

Note that the physical effect is modelled by updating the
possible states of our agent including the states of the knowl-
edge fluents. The cognitive effect is modelled by constrain-
ing the set of possible states so as to agree with the actual
state on the sensed properties and fluent values. Usually, ac-
tions with no physical effect do not involve any knowledge
fluent, although they might affect the knowledge of other
agents. For example, in sensing its own location, our agent
gets to know its location regardless of whether his fellow
agents get to know his location or not. Sensing actions usu-
ally do not have any physical effect and do not involve any
knowledge fluent, but they might affect the knowledge of
other agents (see the following for an example). In particu-
lar, communication does not give any physical effect to the
environment, but its cognitive effect might involve removal
of some knowledge fluents of some agent from the possible
states of our agent. This case is handled by the last conjunct
of the cognitive effect part of the above definition.

Example 1 (continued) Consider again Formula (5). Sup-
pose our agent performs action MakeGFalse whose negative
physical effect involves fluent G. According to our assump-
tions, agent R can observe the action, so that our agent is
obliged to update the knowledge fluent states of agent R.
The following is the precondition and knowledge update ax-
iom of action MakeGFalse:

Poss(MakeGFalse, z) ≡ ⊤

Knows(Poss(MakeGFalse), s) ⊃
(∀z′) (KState(Do(MakeGFalse, s), z′) ≡

(∃z) (KState(s, z) ∧ z′ = z ⊖ ϑ̂− + ϑ̂+))

where ϑ̂− and ϑ̂+ correspond to those in Definition 2 with
ϑ− = G and ϑ+ = ∅. Thus, after having performed action
MakeGFalse, the knowledge state of our agent is as follows:

KState(S1, z) ≡ z = F ◦ KF(R,F) ∨ z = KF(R, ∅)

where S1 = Do(MakeGFalse, S0). The above knowledge
state says that our agent knows ¬G ∧ K(R,¬G) in S1. The
knowledge K(R,F) ∨ K(R,¬F) remains since the action
did not affect fluent F .

Afterwards, our agent performs action SenseF which is
used to sense whether fluent F is true or not in the environ-
ment. The action is defined as follows:

Poss(SenseF, z) ≡ ⊤

Knows(Poss(SenseF), s) ⊃
(∀z′) (KState(Do(SenseF, s), z′) ≡

(∃z) (KState(s, z) ∧ z′ = z)∧
[ΠF (z′) ≡ ΠF (State(Do(SenseF, s)))])

where ΠF (z) def= Holds(F, z). Suppose, for the sake of argu-
ment, that fluent F is actually true, then the knowledge state
of our agent becomes as follows:

KState(S2, z) ≡ z = F ◦ KF(R,F)

where S2 = Do(SenseF, S1). The disjunctive knowledge
has now vanished, that is, our agent knows K(R,F). This
shows that actions having no physical effect might affect the
knowledge of other agents. The evolution of the set of pos-
sible states is depicted in Figure 2. 2

COMMUNICATIVE ACTIONS

The approach to modelling the communication process is to
treat communication itself as constituted by actions. This
approach is in the spirit of the formal theory of speech
acts (Austin 1962; Searle 1969). This theory treats com-
munication as actions that might alter the knowledge of the
communication participants. The actions used for the com-
munication are called communicative actions. The specifi-
cation of the actions will benefit greatly from the formalism
for the knowledge of other agents.

There are four types of communicative actions developed
here. The first type is ask action. Communicative actions of
this type are used to get some knowledge from other agents.
Action function AskIf with signature

AskIf : AGENT × FLUENT 7→ ACTION

F ◦ G ◦ KF(R, F ◦ G)

G ◦ KF(R, G)

S0

F ◦ KF(R, F)

KF(R, ∅)

F ◦ KF(R, F)

S1 S2

j

*

s

j

jj

j

j

Figure 2: The evolution of the set of possible states while
performing action MakeGFalse followed by action SenseF.
In the initial situation S0, our agent knows K(R,G) ∧
(K(R,F) ∨ K(R,¬F)).

is a function to construct ask actions that are used to ask an-
other agent about the truth values of fluents. Suppose, for ex-
ample, the fluent On(A,B) denotes the condition that block
A is on block B. The action AskIf (R, On(A,B)) is meant
to ask agent R if block A is on block B. Another ask action
is the action scheme AskValF(r, ~p1, ~p2, ~v2) which is used to
ask the values of the arguments of fluent F. The arguments in
question are denoted by positions ~p1. The arguments whose
values ~v2 are known, are denoted by positions ~p2. For ex-
ample, the action AskValOn(R, [1], [2], [B]) is meant to ask
agent R which block is on block B. For convenience, this
action is simply written as AskValOn(R, [x], On(x,B)).

The second type of communicative actions is tell action.
Communicative actions of this type are used to reply to those
of type ask action. Action function TellIf with signature

TellIf : AGENT × FLUENT × {−1, 0, 1} 7→ ACTION

is a function to construct tell actions that are used to tell an-
other agent about the status of fluents. The value 1 means
that the fluent in question holds, value 0 means that the
fluent does not hold, otherwise value −1 denotes that the
teller does not know the status of the fluent. To reply to the
action AskValF(r, ~p1, ~p2, ~v2), there is a scheme of tell ac-

tions TellValF(r, ~p1, ~p2, ~v2, ~~v1), where ~~v1 contains all pos-
sible values for the arguments ~p1. For example, the ac-
tion TellValOn(R, [1, 2], [], [], [[A,B], [B,C]]) is meant to
tell agent R that block A is on block B, which in turn is
on block C. For clarity, this action shall be written as

TellValOn(R, [x, y], On(x, y), On(A,B) ◦ On(B,C))

To achieve its goal, our agent may need some help from
other agents, that is, to perform actions which our agent is
unable to perform. The action Request(r, a) is a commu-
nicative action of type request that is used to request agent
r to perform action a. The last communicative action is the
action Listen of type listen. Since all communicative actions
discussed so far have no physical effect, they are unobserv-
able by other agents in the environment. Thus, the action
Listen is needed by our agent to listen to other communica-
tive actions directed to him.

The following exemplifies how the specification of com-
municative actions benefit from the formalism for the
knowledge of other agent. Our agent shall ask agent r about
the status of fluent f only if our agent does not know the sta-
tus of fluent f and our agent knows that agent r knows that
fluent f holds or knows that fluent f does not hold. This is
formalized as the precondition of action AskIf (r, f):

Poss(AskIf (r, f), s) ≡
¬Knows(f, s) ∧ ¬Knows(¬f, s) ∧
Knows(K(r, f) ∨ K(r,¬f), s)

The above precondition axiom shows that, to ask agent r
about the status of fluent f , our agent must infer the knowl-
edge of agent r about fluent f . This results in an efficient
communication, in the sense that our agent will not ask ev-
ery agent about the status of fluent f , but only those who
know the status of the fluent.

Our agent has to follow some rules while it is communi-
cating with other agents. A protocol specifies the rules of en-
counter governing a dialogue between agents. We develop a
simple binary protocol involving the communicative actions
that we have already specified. A communication protocol
is a set of rules determining the would–be performed actions
for each communicative action. Here, we are aiming at de-
veloping honest and sincere agents. Thus, the protocol will
also reflect the honesty and sincerity of our agent. For exam-
ple, the action AskIf (r2, f) performed by agent r1 is replied
by agent r2 with the action TellIf (r1, f, v), where the value
of the variable v depends on the knowledge of agent r2 about
fluent f .

The semantics of communicative actions defined here has
a different perspective from the semantics of standard agent
communication languages, such as FIPA Communicative
Acts Language (FIPA:The Foundation for Intelligent Phys-
ical Agents 2000). Our approach to the semantics of the
language is purely subjective, while FIPA takes an objec-
tive approach. For example, the action TellIf defined here
corresponds to the primitive action Inform defined in the
FIPA specification. The postcondition of TellIf says that,
after telling agent r about some property, our agent gets to
know that agent r knows the property. Unlike TellIf , the
postcondition of action Inform is specified as follows: af-
ter informing agent r about some property, agent r knows
the property. Since FIPA Communicative Acts Language
is now a standard for agent communication languages, for
future work, we have to build an interface bridging our com-
municative actions and FIPA’s language. The interface will
allow our agent to communicate with other agents which are
not implemented in FLUX.

KNOWLEDGE OF OTHER AGENTS IN

FLUX

This section presents the implementation of our Fluent Cal-
culus approach to communication in FLUX. First, the en-
coding of knowledge of other agents is described. This de-
scription also shows the semantics of FLUX expressions in
terms of knowledge of other agents. Furthermore, an ex-
tension to the FLUX constraint system is given to handle

knowledge of other agents. Afterwards, this section dis-
cusses how knowledge of other agents is inferred in FLUX.
The inference method then enables us to encode the com-
municative actions developed in this paper. For example,
the precondition of action AskIf (r, f) requires inferring the
knowledge of agent r. Finally, the encoding of knowl-
edge update axioms, which respects the knowledge of other
agents, is explained.

Encoding Knowledge of Other Agents in FLUX

To begin with, the following explains the notations that we
use in this section. Following the Prolog convention, the
fluent variable f in the Fluent Calculus corresponds to the
term variable F in FLUX. Fluent F in the Fluent Calculus
is associated with the fluent term f in FLUX. Likewise for
variables and constants denoting agents.

We have already mentioned that knowledge states of
agents are represented as open-ended lists of fluent terms.
A FLUX state is a list Z=[F1,...,Fk|_] of pairwise dif-
ferent fluents along with finite number of constraints repre-
senting the knowledge that our agent has. In other words,
a FLUX state represents all possible knowledge states that
our agent has. Therefore, if fluent f is among F1,...,Fk,
then the fluent holds in all possible knowledge states of our
agent. Thus, it means that our agent knows F .

Encoding the knowledge of other agents is not as straight-
forward. The problem is that there could be infinitely many
knowledge fluents, so that it is impossible to enumerate
them. The approach taken here is to encode all knowledge
fluents belonging to the same agent as one single knowledge
fluent, the second argument of which is a FLUX state. To
accommodate this, it is required that, for each agent r, there
exists at most one fluent kf(R,ZR) that holds in the list Z.
Similar to the list Z, the list ZR is a FLUX state. The fluent
kf(R,ZR) is the encoding of all knowledge fluents belong-
ing to agent r. Thus, if fluent F holds in ZR, then the fluent
holds in all knowledge fluents of agent r. Consequently, it
means that our agent knows K(r, f). Moreover, applying
state constraints to the list ZR gives the following semantics,
where each item in the second column denotes the knowl-
edge of agent r that our agent has in some situation:

Constraints Semantics

not_holds(F,ZR) K(r,¬f)

or_holds([G1,...,Gm],ZR) K(r,
∨m>0

j=1
gj)

or_holds([k(R,G1),
∨k>0

j=1
K(r, gj)

...,k(R,Gk), ∨

k(R,neg(Gl)),
∨m>0

j=l K(r,¬gj)
...,k(R,neg(Gm))]

It is worth mentioning that knowledge of the form ¬K(r, f)
is not yet expressible in FLUX.

According to the above description, the following is the
encoding for Example 1:

init(Z0) :-

Z0 = [kf(r,[g|_]) | _],

or_holds([k(r,f),k(r,neg(f))],Z0),

duplicate_free(Z0).

cons_state(Z) <=> nonvar(Z) | cons_kf(Z,Z). %1a

cons_kf(Z1,_) <=> var(Z1) | cons_state(Z1). %2a

cons_kf([F|Z1],Z2) <=> %3a

F\=kf(_,_) | cons_kf(Z1,Z2).

cons_kf([kf(R,ZR)|Z1],Z2) <=> %4a

cons_kf1(ZR,Z2),

cons_kf(Z1,Z2).

cons_kf1(ZR,Z) <=> var(ZR) | true. %5a

cons_kf1([F|ZR1],Z) <=> %6a

holds(F,Z), cons_kf1(ZR1,Z).

Figure 3: FLUX CHRs for knowledge–consistent state.

The specification of the initial conditions is encoded in
FLUX by the definition of the predicate init(Z0). There
is only one knowledge fluent kf(r,ZR) belonging to agent
r, and fluent g holds in the list ZR. This encodes the fact
that our agent knows K(R,G). The disjunctive knowledge
of agent R about fluent F is encoded using the disjunc-
tive constraint or_holds([k(r,f),k(r,neg(F))],Z0).
The constraint will be described in detail later. The auxiliary
constraint duplicate_free(Z0) ensures that there are no
multiple occurrences of fluents in the list Z0 (Thielscher
2004). In the presence of other agents, the definition of
this constraint is extended. The extended definition in-
cludes the application of the constraint to the list ZR of ev-
ery knowledge fluent kf(R,ZR). Thus, no multiple occur-
rences of fluents appear in the list ZR. The extended def-
inition of duplicate_free moreover includes imposing
the constraint not_holds_all(kf(X,ZX),ZR) to every
knowledge fluent kf(R,ZR). This guarantees that there will
be no occurrences of nested knowledge fluents in ZR.

At this point, nothing prevents us from constructing a
FLUX state that does not obey Corollary 1. For example,
the following FLUX state is allowed:

Z = [kf(r,[f|ZR]) | _], not_holds(f,Z),

duplicate_free(Z)

The above state describes that our agent knows ¬F , but
knows K(R,F). In what follows, a FLUX state is said to
be knowledge–consistent if it respects Corollary 1.

To keep FLUX states knowledge–consistent, another aux-
iliary constraint cons_state(Z) is introduced. The con-
straint is applied to our agent’s FLUX state. Figure 3 shows
part of the definition of the constraint. Essentially, the con-
straint examines every knowledge fluent kf(R,ZR) in the
list Z using rules 1a − 4a. For any fluent F, if it holds in
the list ZR, then the constraint cons_kf1(ZR,Z) ensures
that the fluent also holds in the list Z. This means, whenever
our agent knows K(r, f), then he knows f too. This makes
the FLUX state obey Corollary 1 for positive knowledge of
other agents. Other forms of knowledge of other agents can
be treated similarly. Having the problem fixed, the previous
encoding of Example 1 is revised to

init(Z0) :-

Z0 = [kf(r,[g|ZR]) | Z],

or_holds([k(r,f),k(r,neg(f))],Z0),

cons_state(Z0), duplicate_free(Z0).

However, it is inefficient to keep FLUX states
knowledge–consistent every time a knowledge assertion
occurs. The approach taken here is that the constraint
cons_state is only applied to the initial state, and it is
left to the assertion methods to ensure that assertions do not
make the state inconsistent. This means, if our agent asserts
that he knows that other agent knows about some property,
then our agent has to assert that he knows the property as
well. The issue of knowledge–consistency suggests the fol-
lowing FLUX program for asserting the knowledge of other
agents:

holds_kf(R,F,Z) :-

holds(kf(R,ZR),Z),

holds(F,ZR), holds(F,Z).

The above program says as follows: upon asserting that
agent r knows fluent f using the predicate holds(F,ZR),
our agent also asserts that he knows fluent f using the pred-
icate holds(F,Z).

It has been shown already that disjunctive knowledge is
handled using the constraint or_holds([T1,...,Tk],Z).
The knowledge of other agents is encoded such that some
of the Ti’s are of the form k(R,F) (see the encoding of
Example 1 above). However, the current constraint handling
rules are not sufficient to resolve the term k(R,F) such that
the whole FLUX state is knowledge–consistent. Therefore,
not only do the current rules have to be modified, but some
new rules have to be added to the FLUX constraint solver.

Figure 4 depicts the new rules along with the modifica-
tion of the existing rules in (Thielscher 2004). There are
two additional terms used internally in the encoding of the
disjunctive knowledge of other agents. The first additional
term is of the form k(R,F,ZR), the meaning of which is
the same as the term k(R,F). Moreover, the list ZR denotes
the knowledge fluent states belonging to agent r. The sec-
ond additional term is of the form h(R,F), which is used to
designate that the fluent F holds in our agent’s FLUX state.

To begin with, variables F and R denote, respectively, a
fluent variable and an agent variable. In addition, variables
Z and ZR denote, respectively, our agent’s FLUX state and
agent r’s FLUX state of knowledge fluent kf(R,ZR). CHR
1b simplifies a singleton disjunction of a non–knowledge

fluent, that is,
∨n=1

i=1
Holds(fi, z) ≡ Holds(f1, z). CHR

2b− 4b are used to assert the fluent F in the list Z if the term
k(R,F,ZR) is the only remaining disjunct. This reduction
is justified by our explanation of knowledge assertion, that
is, whenever our agent gets to know K(r, f), then he should
know f as well.

CHR 5b is used to reduce the term k(R,F,[G|ZR]) to
k(R,F,ZR) if the fluent G is not equal to the fluent F or
neg(F). The reduction is useful for the following CHRs.
Rule 6b says that, having reduced by CHR 5b, if g is equal
to f , then the whole disjunction is true. This rule is justified
by Σstate ∪ Σknows, which entails

Knows(K(r, f), s) ∧ [Knows(K(r, f), s) ∨Ψ] ≡
Knows(K(r, f), s)

Knows(K(r, f), s) ⊃ Knows(f, s)

In contrast, CHR 7b will remove term k(R,neg(F),ZR)

from the disjunction if F holds in ZR. Correspondingly, CHR

or_holds([F],Z) <=> F\=eq(_,_), F\=k(_,_,_) %1b

| holds(F,Z).

or_holds([D],Z) <=> D=k(R,F,ZR), F\=neg(_) %2b

| holds(F,ZR),holds(F,Z).

or_holds([D1,D2],Z) <=> D2=k(R,F,ZR), %3b

D1=h(R,F), F\=neg(_)

| holds(F,ZR).

or_holds([D],Z) <=> D=k(R,F1,ZR), F1=neg(F) %4b

| not_holds(F,ZR), not_holds(F,Z).

or_holds(V,Z) <=> member(k(R,F,ZR),V,V1), %5b

nonvar(ZR), ZR=[F1|ZR1],

F\=F1, F\=neg(F1)

| or_holds([k(R,F,ZR1)|V1],Z).

or_holds(V,Z) <=> member(k(R,F,ZR),V), %6b

nonvar(ZR), ZR=[F1|_], \+ F\=F1

| (member(h(R,F),V,V1) -> true

; holds(F,Z)).

or_holds(V,Z) <=> member(k(R,F,ZR),V,V1), %7b

nonvar(ZR), ZR=[F1|_],\+ F\=neg(F1)

| or_holds(V1,Z).

or_holds(V,Z) <=> member(h(R,F1),V), %8b

member(k(R,F,ZR),V,V1),

\+ F\=neg(F1) | or_holds(V1,Z).

or_holds(V,Z), not_holds(F,ZR) <=> %9b

member(k(R,F,ZR1),V,V1), ZR\==Z, ZR==ZR1

| (member(h(R,F),V1,V2) -> or_holds(V2,Z)

; or_holds(V1,Z)).

not_holds(F, Z) \ or_holds(V, Z) <=> %10b

member(k(R,F1,_), V, W), F1==F,

\+ member(h(R,F1),V)

| or_holds(W, Z).

not_holds_all(F, Z) \ or_holds(V, Z) <=> %11b

member(k(R,F1,_), V, W),

inst(F1, F), \+ member(h(R,F1),V)

| or_holds(W, Z).

or_holds(V, W, [F1|Z]) <=> %12b

member(D, V, V1), D=k(R,F), F1=kf(R,ZR)

| or_holds(V1,[k(R,F,ZR)|W],[F1|Z]).

or_holds(V, W, [F1|Z]) <=> %13b

member(D, V, V1),

(D=k(R,F1) ; D=k(R,F1,ZR)),

\+ member(h(R,F1),V,_)

| or_holds(V1,[h(R,F1), D|W],[F1|Z]).

or_holds(V, W, [F1|Z]) <=> %14b

member(D, V, V1),

(D=k(R,neg(F1)); D=k(R,neg(F1),_)),

| or_holds(V1,W,[F1|Z]).

Figure 4: An extension and modifications of FLUX CHRs
for disjunction.

9b removes the term k(R,F,ZR) from the disjunction if
F does not hold in ZR. These rules are also sanctioned by
Σstate ∪ Σknows, which entails

Knows(K(r, f), s) ∧ [Knows(K(r,¬f), s) ∨Ψ] ≡
Knows(K(r, f), s) ∧Ψ

Knows(K(r, f), s) ⊃ Knows(f, s)

Rule 8b removes the term k(R,neg(F),ZR) from the
disjunction, but the removal is caused by the term h(R,F)

denoting that F holds in Z. This rule is entailed by Σstate ∪
Σknows, which implies

Knows(f, s) ∧ [Knows(K(r,¬f), s) ∨Ψ] ≡
Knows(f, s) ∧Ψ

CHRs 10b − 11b are used to remove the term k(R,F,ZR)

from the disjunction if the fluent F does not hold in Z. This
group of rules is justified by the fact that Σstate ∪ Σknows en-
tails

Knows(¬f, s) ∧ [Knows(K(r, f), s) ∨Ψ] ≡
Knows(¬f, s) ∧Ψ

(∀~x)Knows(¬f1, s) ∧ [Knows(K(r, f2), s) ∨Ψ] ≡
(∀~x)Knows(¬f1, s) ∧Ψ

where ~x are the variables of f1 and given that f1θ = f2 for
some θ.

CHR 12b is used to evaluate knowledge fluents against
all fluents in Z. Upon the evaluation, every term k(R,F) is
replaced by its ternary form k(R,F,ZR) if the encountered
fluent is kf(R,ZR). CHR 13b is used to tag Knows(f, s) by
the term h(R,F) if there exists a term k(R,F) or its ternary
form in the disjunction. Finally, CHR 14b denotes the uni-
versal property of knowledge, namely, if our agent knows f ,
then he does not know that there is another agent knows ¬f .

Example 2 Suppose our agent knows G and ¬F . More-
over, he knows that agent R knows F or knows G. For
simplicity, the following reflects the state without the con-
straints duplicate_free and cons_state:

?- Z=[g,kf(r,ZR) | Z1], not_holds(f,Z),

or_holds([k(r,f),k(r,g)],Z).

ZR = [g | ZR1]

Z1 = Z1

Z = [g, kf(r,[g|ZR1]) | Z1]

Yes

not_holds(f,Z1)

The above derivation shows that the disjunctive constraint is
simplified to the fact that our agent knows K(R,G). 2

Inferring Knowledge of Other Agents in FLUX

By definition, our agent knows K(r, f) if K(r, f) holds
in every possible state z of our agent. This means that
fluent f holds in the state zr of every knowledge fluent
KF(r, zr) occurring in z. However, it is impractical to
check whether K(r, f) holds in all possible states of our
agent. The approach taken here is adapted from (Thielscher
2004), that is, our agent knows K(r, f) if asserting

K(r,¬f) fails. Formally, suppose that a knowledge state
KState(s, z) ≡ Φ(z) is identified with the state specification
Φ(z). Then our agent knows that agent r knows fluent f
iff {Φ(z), KFState(z, r, zr),¬Holds(f, zr)} is unsatisfiable.
This can be verified using negation–as–failure to prove that
the constraint solver derives an inconsistency upon asserting
the state constraint not_holds(F,ZR). The following pro-
gram exemplifies how K(R,G) is inferred from Example 1:

?- init(Z0), holds(kf(r,ZR), Z),

\+ not_holds(g,ZR).

Yes

Disjunctive knowledge of other agents is inferred in a
slightly more complicated way. Our agent knows K(r, φ1)∨
K(r, φ2) if it is not true that there is a possible state z of
our agent, in which there are knowledge fluents KF(r, zr1)
and KF(r, zr2) (possibly the same knowledge fluent), such
that φ1 does not hold in zr1 and φ2 does not hold in zr2.
However, since all agent r’s knowledge fluents in the Flu-
ent Calculus are encoded in FLUX as one single knowl-
edge fluent, there is no way of accessing particular knowl-
edge fluents in FLUX. Thus, we cannot use the same ap-
proach that we have used beforehand. Fortunately, there is
also a feasible alternative to infer such knowledge. The al-
ternative has already been hinted by the correctness of the
constraint or_holds([T1,...,Tk],Z). Informally, if our
agent knows K(r, φ1) ∨ K(r, φ2), then when it is assumed
that our agent additionally knows ¬φ1, he indeed knows
K(r, φ2). Likewise, when it is assumed that our agent knows
¬φ2, then he knows K(r, φ1). This approach is justified by
Corollary 1. The methods for asserting knowledge φ and in-
ferring K(r, φ) have already been shown before. Therefore,
it is easy to implement the method for inferring disjunctive
knowledge of other agents in FLUX.

Example 3 The precondition of the action AskIf (r, f) re-
quires inferring disjunctive knowledge of agent r. The fol-
lowing shows how the precondition is encoded and its appli-
cation to Example 1:

poss(ask_if(R,F),Z) :-

\+ (knows(R,F); knows_not(R,F)),

\+ (\+ (holds(kf(R,ZR), Z),

holds(F,Z),

\+ not_holds(F,ZR)),

\+ (holds(kf(R,ZR),Z),

not_holds(F,Z),

\+ holds(F,ZR))).

?- init(Z0), poss(ask_if(r,f),Z0)

Yes

2

Knowledge Update Axioms in FLUX

It has been shown in the previous section that knowledge up-
date axioms must consider the knowledge of other agents as
well. This demands that the encoding of knowledge update
axioms in (Thielscher 2004) be extended. Firstly, the exten-
sion is due to the disjunctive knowledge of other agents. For
example, suppose it is specified that our agent has some dis-

junctive knowledge
∨k>1

i=1
ti, where for some i (1 ≤ i ≤ k),

minus(Z, [], Z).

minus(Z, [F|Fs], Zp) :-

(\+ not_holds(F, Z) ->

holds(F, Z, Z1),

cancel_knows(F,Z1) ;

\+ holds(F, Z) -> Z1 = Z ;

cancel(F, Z, Z1), cancel_knows(F,Z1),

not_holds(F, Z1)),

minus(Z1, Fs, Zp).

plus(Z, [], Z).

plus(Z, [F|Fs], Zp) :-

(\+ holds(F, Z) -> Z1=[F|Z] ;

\+ not_holds(F, Z) -> Z1=Z ;

cancel(F, Z, Z2), add_holds(F,Z2),

not_holds(F, Z2), Z1=[F|Z2]),

plus(Z1, Fs, Zp).

update(Z1, ThetaP, ThetaN, Z2) :-

minus(Z1, ThetaN, Z), plus(Z, ThetaP, Z2).

Figure 5: FLUX clauses for updating incomplete states.

ti = K(r, f). Once our agent performs an action whose
negative physical effects include the fluent f , then by the
assumption of exogenous actions, agent r does no longer
know f . In the same manner as the approach in (Thielscher
2004), if the status of the fluent is not entailed by the current
state specification Φ(z), such that KState(s, z) ≡ Φ(z), then
the partial knowledge of f in Φ(z) does not transfer to the
resulting state z ⊖ f .

Figure 5 depicts a set of clauses for updating in-
complete states. These clauses are similar to those
in (Thielscher 2004), except that there are two new pred-
icates, cancel_knows(F,Z) and add_holds(F,Z). The
former one is used to cancel disjunctive knowledge if there
exists some K(r, f1) in the disjunctive knowledge, such that
the fluent f can be unified with the fluent f1. The cancel-
lation is due to the negative physical effects which involve
the fluent f . The latter predicate is used to add the term
h(R,F) to the disjunctive knowledge (recall the use of the
term h(R,F) in the encoding of disjunctive knowledge of
other agents). The addition is due to the positive physical
effects of some action which involve the fluent f .

Thus far, the encoding of update has only addressed our
agent’s state and the knowledge of other agents in the form

of disjunctive knowledge
∨k>0

i=1
K(r, fi). In Definition 2, the

states of knowledge fluents are also updated. Therefore, for
knowledge update axioms, there are two updates, the first
one is to update our agent’s state, which does not involve
any knowledge fluent, and the second one is to update every
knowledge fluent in our agent’s state.

As all knowledge fluents are encoded as one single knowl-
edge fluent, removing (updating) one single knowledge flu-
ent in FLUX means removing (respectively, updating) all
corresponding knowledge fluents in the Fluent Calculus.
The above encoding of the predicate update can be read-
ily used for updating the states of knowledge fluents. With
many agents, there are many single knowledge fluents. This

suggests the following scheme of recursive clauses for up-
dating the knowledge of other agents with respect to some
action A:

UpdateKF(z,A, z)← ¬Holds(KF(r, zr), z).
UpdateKF(z1, A, [KF(r, zr2)|z2])←

Holds(KF(r, zr1), z1, zt),
Φ1(z1)→ Update(zr1, ϑ

+

1 , ϑ−

1 , zr2); . . . ;
Φn(z1)→ Update(zr1, ϑ

+
n , ϑ−

n , zr2);
UpdateKF(zt, A, z2).

where each Φi(zi) is a state specification, and ϑ+

i and ϑ−

i

are, respectively, positive and negative effects. This scheme
is then attached to the encoding of knowledge update ax-
ioms.

Example 4 Consider again Example 1. Actions
MakeGFalse and SenseF can be encoded as follows:

state_update(Z1,makegfalse,Z2,[]) :-

update(Z1,[],[g],ZT),

update_kf(ZT,makegfalse,Z2).

update_kf(Z1,makegfalse,[kf(R,ZR2)|Z2]):-

holds(kf(R,ZR1),Z1,ZT), \+ nonground(R),

update(ZR1,[],[g],ZR2),

update_kf(ZT,makegfalse,Z1).

update_kf(Z,makegfalse,Z) :-

\+ holds(kf(_,_),Z).

state_update(Z,sensef,Z,[F]) :-

F=true -> holds(f,Z) ; true.

Provided that fluent F is true in the world, then the follow-
ing describes the encoding of the evolution of possible states
shown in the example:

?- init(Z0),

state_update(Z0,makegfalse,Z1,[]),

state_update(Z1,sensef,Z2,[true]).

Z0 = [kf(r,[g|ZR]),g | ZT]

Z1 = [kf(r,ZR) | ZT]

Z2 = [kf(r,[f|ZR]),f | ZT]

not_holds(g,ZR), not_holds(f,ZR),

not_holds(g,ZT), not_holds(f,ZT)

...

The result described above is the same as what Example 1
has shown. In the last situation, our agent knows K(R,¬G)
due to the presence of the constraints not_holds(g,ZR)

and not_holds(g,ZT). Moreover, since fluent f holds in
both the list Z2 and the list [f|ZR] of kf(r,[f|ZR]), our
agent also knows K(R,F). 2

DISCUSSION

We have introduced a formalism for the knowledge of other
agents and communication in the Fluent Calculus. The
knowledge of other agents is represented as knowledge flu-
ents. These fluents represent the possible states that our
agent thinks that other agents think to be in. The represen-
tation of the knowledge of other agents and the knowledge
updates have been shown to respect the universal validity of
knowledge.

Communication is treated as a set of communicative ac-
tions. The specification of communicative actions bene-
fits from the formalism for the knowledge of other agents.
Moreover, the ability to reason about the knowledge of other
agents is important to have efficient communication. This
paper has shown one example, that is, to ask another agent
about some property, our agent has to infer the knowledge
of the agent he asks. In multi-agent settings, where actions
of other agents need to be planned as well and these actions
have knowledge preconditions, the capability of reasoning
about the knowledge of other agents will be crucial.

We have shown how the formalism for knowledge and
communicative actions has been implemented in FLUX.
This paper has shown that knowledge fluents can be en-
coded in a succinct way. All knowledge fluents belong-
ing to the same agent are encoded as one single knowl-
edge fluent, whose second argument is a FLUX state. To
handle this fluent, an extension to the existing FLUX sys-
tem (Thielscher 2004) is given. Inferring knowledge of other
agents in FLUX is also presented. The inference method is
necessary to encode the communicative actions developed
in this paper. In particular, due to the encoding of knowl-
edge fluents, disjunctive knowledge of other agents cannot
be inferred using the principle of negation–as–failure. This
paper has described a feasible alternative using the universal
validity of knowledge. Finally, the encoding of knowledge
update axioms consists of two stages. The first stage is used
to update our agent’s state without involving any knowledge
fluent. The next stage accounts for updating the states of
knowledge fluents.

Related approaches to treating communication as actions
are (Acqua, Sadri, & Toni 1999; Cohen & Perrault 1979;
Kowalski & Sadri 1999; Lespérance et al. 1995; Shapiro,
Lespérance, & Levesque 1997). The main difference be-
tween these and our approach is as follows. Our approach
takes a purely subjective perspective, whereas the other
formalisms take an objective perspective, that is, the ap-
proaches view the system consisting of many agents as one
system. In other words, the other formalisms are mainly
used to prove properties of multi–agent systems rather than
for building individual agents.

An important limitation of our approach is that agents
cannot reason about what other agents know of other agents.
This limitation, however, was necessary to obtain an effec-
tive encoding of the knowledge of other agents in FLUX.
Moreover, the negative knowledge of other agents has not
been encoded in FLUX. For example, our agent knows
¬K(r, φ) (agent r does not know φ), has not been encoded
in FLUX and is left for future work.

References

Acqua, D.; Sadri, F.; and Toni, F. 1999. Communicat-
ing Agents. In Proceedings of the Workshop on Multi–
Agent Systems in Logic Programming. In conjunction with
ICLP’99.

Austin, J. L. 1962. How to Do Things with Words. London:
Oxford University Press.

Cohen, P. R., and Perrault, C. R. 1979. Elements of a plan-

based theory of speech acts. Cognitive Science 3(3):177–
212.

FIPA:The Foundation for Intelligent Physical Agents.
2000. FIPA communicative act library specification.
URL:http://www.fipa.org.

Frühwrith, T. 1998. Theory and practice of Constraint Han-
dling Rules. Journal of Logic Programming 37(1–3):95–
138.

Kowalski, R. A., and Sadri, F. 1999. From logic program-
ming towards multi–agent systems. Annals of Mathematics
and Artificial Intelligence.

Lespérance, Y.; Levesque, H. J.; Lin, F.; Marcu, D.; Reiter,
R.; and Scherl, R. B. 1995. Foundation of a logical ap-
proach to agent programming. In Wooldridge, M.; Müller,
J. P.; and Tambe, M., eds., Proceedings of IJCAI ’95 ATAL
workshop LNAI, volume 1037, 331–345. Springer-Verlag.

Searle, J. R. 1969. Speech Acts: An Essay in The Phi-
losophy of Language. Cambridge: Cambridge University
Press.

Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 1997.
Specifying communicative multi–agent systems with con-
golog. In Working Notes of the AAAI Fall 1997 Symposium
on Communicative Action in Humans and Machines, vol-
ume 1037, 72–82. Cambridge, MA: AAAI Press.

Thielscher, M. 2000. Representing the knowledge of a
robot. In Cohn, A.; Giunchiglia, F.; and Selman, B., eds.,
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR), 109–
120. Breckenridge, CO: Morgan Kaufmann.

Thielscher, M. 2001. The Qualification Problem: A solu-
tion to the problem of anomalous models. Artificial Intelli-
gence 131(1–2):1–37.

Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agent. Journal of Theory and Practice of
Logic Programming.

