
Planning Graphs and Knowledge Compilation∗

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Paseo de Circunvalación 8
08003 Barcelona, Spain

hector.geffner@upf.edu

Abstract

One of the major advances in classical planning has been
the development of Graphplan. Graphplan builds a layered
structure called theplanning graph, and then searches this
structure backwards for a plan. Modern SAT and CSP ap-
proaches also use the planning graph but replace the regres-
sion search by a constrained-directed search. The planning
graph uncovers implicit constraints in the problem that re-
duce the size of the search tree. Such constraints encode
lower bounds on the number of time steps required for
achieving the goal and account for the huge performance
gap between Graphplan and its predecessors. Still, the form
of local consistencyunderlying the construction of the plan-
ning graph is not well understood, being described by vari-
ous authors as a limited form of negative binary resolution,
k-consistency, or 2-j consistency. In this paper, we aim to
shed light on this issue by showing thatthe computation
of the planning graph corresponds exactly to the iterative
computation of prime implicates of size one and twoover
the logical encoding of the problem with the goals removed.
The correspondence between planning graphs and a precise
form of knowledge compilation provides a well-founded
basis for understanding and developing extensions of the
planning graph to non-Strips settings, and suggests novel
and effective forms of knowledge compilation in other con-
texts. We explore some of these extensions in this paper
and relate planning graphs with bounded variable elimina-
tion algorithms as studied by Rina Dechter and others.

Introduction
One of the major advances in classical planning has been
the development of Graphplan. Given a Strips planning
problem, Graphplan builds a layered structure called the
planning graph, and then searches this structure back-
wards for a plan (Blum & Furst 1995). Modern SAT
and CSP approaches also use the planning graph but
replace the regression search by a constrained-directed
search (Kautz & Selman 1999; Do & Kambhampati 2000;
Rintanen 1998; Baioletti, Marcugini, & Milani 2000). The
planning graph uncovers implicit constraints in the prob-
lem that reduce the size of the search tree. Such con-
straints are known to encode lower bounds on the num-
ber of time steps required for achieving the goal and ac-
count for the huge performance gap between Graphplan

∗I thank Rina Dechter, Javier Larrosa, Pedro Meseguer, and
Alvaro del Val for valuable comments. Partial support from grant
TIC2002-04470-C03-02, MCyT, Spain.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and its predecessors. Still, the form oflocal consistency
underlying the construction of the planning graph is not
well understood, being described as a limited but efficient
form of negative binary resolution (Kautz & Selman 1999;
Brafman 2001), k-consistency (Smith & Weld 1999), or
2-j consistency (Lopez & Bacchus 2003). In this paper,
we aim to shed light on this issue by showing thatthe
computation of the planning graph corresponds exactly to
the iterative computation of prime implicates of size one
and twoover the logical encoding of the problem with
the goals removed. The correspondence between plan-
ning graphs and a precise form of knowledge compilation
(Selman & Kautz 1996; Cadoli & Donini 1997) provides a
well-founded basis for understanding and developing ex-
tensions of the planning graph to non-Strips settings, and
suggests novel and efficient forms of knowledge compi-
lation in other contexts. The resulting knowledge com-
pilation scheme is also closely related to bounded vari-
able (bucket) elimination algorithms as studied by Rina
Dechter and colleagues over the last few years (Dechter
1999; 2003). We analyze this relation and compare in par-
ticular bounded directed resolution (Rish & Dechter 2000)
with the inference method underlying the computation of
the planning graph.

The paper is organized as follows. We start reviewing
the planning graph and how it encodes lower bounds for
Strips planning problems. We then analyze how lower
bounds can be defined from logical encodings of planning
problems, and how the two types of lower bounds are re-
lated. We do so by considering what we call thePI-k task:
the computation of the sets of prime implicates of size
bounded by a parameterk over the layers of a general class
of stratifiedpropositional theories. Stratified theories pro-
vide a suitable, logical abstraction of the theories found in
planning. They are defined over a set of indexed boolean
variablesxi, for i = 0, . . . , n and comprise clauses that
involve variablesxi from the same layer or from adjacent
layers only. We show that for the stratified theories that
encode Strips planning problems, the planning graph com-
putation solves thePI-k taskexactly fork = 2. We con-
clude discussing extensions for dealing with conditional
effects, an alternative scheme for deriving lower bounds
from planning theories, and related work.

The Planning Graph
Consider a Strips planning problem with initial situation
I = {p0}, goal G = {pn} and operatorsai with pre-

conditionpi and postconditionpi+1 for i = 0, . . . ,m for
m ≥ n. Clearly, this problem has cost equal ton; namely,
n actionsa0, a1, . . . ,an−1 are needed in order to achieve
G from I. While in general determining the cost of a plan-
ning problem is intractable (Bylander 1994), there are sim-
ple and efficient procedures for obtaining lower bounds.
Lower bounds are critical for optimal planning and search
as they can prune large parts of the search space from con-
sideration.

We represent Strips planning problems by tuples of the
form P = 〈A,O, I, G〉, whereA is the set of all possible
(ground) atoms,I ⊆ A andG ⊆ A represent the initial
and goal situations, andO is the set of (ground) actions
a, each with a precondition, add, and delete list,pre(a),
add(a), anddel(a). A simple procedure for computing
lower bounds for a problemP can then be obtained by
constructing iteratively the following sets:

P0 = I

Ai = {a ∈ O | pre(a) ⊆ Pi}
Pi+1 = Pi ∪ {p ∈ add(a) | a ∈ Ai}

Namely,P0 contains the atoms in the initial situationI, Ai

contains all the actions applicable inPi, andPi+1 contains
all the atoms inPi along with the atoms that can be added
by the actions inAi. This construction can be continued
until a fixed pointPn = Pn+1 is reached.

We say then that a set of atomsG is reachable at level
i if i is the index of the first layerPi that containsG. It
is simple to verify that this index represents alower bound
on the number of steps needed to achieveG from I. This
lower bound, that we will denote ashmax(G), is not exact
in general because it presumes that all applicable actions
can be executed in parallel. Moreover, while the estimate
hmax(G) provides an exact bound for the problem above,
it is normally too weak to speed up the search for plans
sufficiently.

The planning graphconstructed by Graphplan is an
elaboration of this idea that yields more informative
(tighter) lower bounds and hence a more effective search.
Graphplan computesoptimal parallel planswhere sets of
non-interfering actionscan be done in parallel. Two ac-
tions are interfering in Graphplan when one deletes a pre-
condition or positive effect of the other. Plans in Graph-
plan are thus sequences of sets of actionsA0, A1, . . . ,
An−1, and Graphplan minimizes the number of time steps
n rather than the total number of actions. The measure
hmax(G) above remains a lower bound on the ‘parallel’
costh∗(G) for achievingG from I, yet the lower bound
hg(G) computed by Graphplan is more informative (i.e.,
0 ≤ hmax ≤ hg ≤ h∗).

The construction of the planning graph differs from the
construction of the setsPi andAi above in two ways. First,
in addition to these sets, Graphplan keeps track ofpairsof
propositions and actions that while ‘reachable’ individu-
ally in i steps, are not ‘jointly reachable’. These pairs are
said to bemutually exclusiveor mutexat leveli. For ex-
ample, ifp is not inPi, and some actions inAi addp but
all of them deleteq, then the pairp andq will be marked
as mutex at leveli + 1, meaning that whilep andq may
be achievable separately ini + 1 steps, the conjunction
p and q may not. Graphplan uses information about mu-
texes in one layer to infer mutexes in the next layer, start-

ing with the mutexes that correspond to interfering actions.
Then, in order to make the propagation of mutexes more
effective, atomsp in a layerPi are no longer automatically
copied into layerPi+1, rather ‘dummy’ actionsNO-OP(p)
are introduced for each atomp, with precondition and ef-
fect p, that interfere with all the actions the deletep. The
resulting sets in the planning graph are then:

P0 = I

MP0 = ∅
Ai = {a | pre(a) ⊆ Pi & pre(a) 6∩MPi}

MAi = {(a, a′) | a, a′ ∈ Ai, a 6= a′, anda⊥a′ or

[pre(a) ∪ pre(a′)] ∩MPi}
Pi+1 = {p ∈ add(a) | a ∈ Ai}

MPi+1 = {(p, q) | p, q ∈ Pi, and∀a, a′ ∈ Ai s.t.

p ∈ add(a)&p′ ∈ add(a′), (a, a′) ∈ MAi}

whereMXi stands for the sets of atom and action mu-
texes,a⊥a′ expresses thata anda′ interfere, andY ∩MXi

(Y 6∩MXi) indicates thatY contains (resp. contains no)
pair inMXi.

The iteration can be continued until a fixed pointPn =
Pn+1 and MPn = MPn+1 is reached, yet Graphplan
stops at the first layerm ≤ n at which the goals are
reached without a mutex (G ⊆ Pm andG 6∩MPm). This
indexm is a lower bound forh∗(G) which we will denote
as hg(G). Graphplan then searches the planning graph
backwards for a plan, starting with the last layer, and if the
search fails, a new layer is added, and the process repeats.
Graphplan can actually be seen as a performing an IDA*
regression search informed by the heuristichg implicitly
encoded in the planning graph for all goalsG′ with esti-
matehg(G′) no greater than the planning horizon (Bonet
& Geffner 2001).

Graphplan, introduced in (Blum & Furst 1995), was
shown to be orders of magnitude faster than previous plan-
ners, a difference that can be traced to the derivation and
use of an informative and admissible heuristic function en-
coded in the planning graph. Modern SAT and CSP ap-
proaches, make use of the planning graph but replace the
regression search by a constraint-directed search (Kautz &
Selman 1999; Do & Kambhampati 2000; Rintanen 1998;
Baioletti, Marcugini, & Milani 2000). While direct SAT
and CSP encodings of Strips problems are possible (Kautz
& Selman 1992; 1996), the planning graph encoding is
known to speed up the search by uncovering implicit con-
straints in the problem like the boundshg above. The form
of local consistencyunderlying this process, however, is
not well understood. In (Haslum & Geffner 2000) a dy-
namic programming formulation of a parametric family of
polynomial and admissible heuristicshm, m = 1, 2, . . .
was given that generalizes Graphplan’s heuristichg and
the hmax heuristic above. The heuristicshm assume re-
cursively that the cost of achieving a set of atomss is given
by the cost of achieving the most costly subset of sizem
in the set. In the parallel setting,hmax corresponds to the
h1 heuristic,hg corresponds toh2, and so on. Our aim in
this paper is to understand the form of local consistency
that yields these bounds.

Deductive Lower Bounds for Planning
The logical encoding of a Strips planning problem is a
propositional theory whose models are in correspondence
with the plans; namely, every model encodes a plan, and
every plan is reflected in some model (Kautz & Selman
1992). For a given planning problemP = 〈A,O, I, G〉
with horizonn, these encodingsT feature boolean vari-
ablesp0, p1, . . . , pn, anda0, a1, . . . , an−1 for each flu-
ent p and actiona in the problem, and clauses encoding
the initial situation, the action pre and postconditions, the
frame axioms, and the goal. Early SAT approaches fed
such encodings to a SAT solver that returned a model, and
hence a plan, when the horizon was such that the problem
was solvable. Modern SAT approaches do not work on
such direct encodings but on encodings obtained from the
planning graph. Here we consider such direct encodings
but for deriving lower bounds on the optimal costh∗(G)
of achievingG from I. For this,we remove fromT the
clauses encoding the goalG, and consider the status of
the formulasGi encoding the goal condition at the differ-
ent time pointsi = 0, . . . , n in the resultingconsistent
theory. Clearly,i is a lower bound for achievingG if ¬Gj

follows fromT for all j = 0, . . . , i− 1. This suggests the
first class of deductive lower boundshN (G) defined as:

hN (G) def=
{

min i ≤ n such thatT 6|= ¬Gi

n + 1 if T |= ¬Gi for all i ∈ [0, n] (1)

Namely,hN (G) encodes the first time point at which the
formulaGi becomes consistent withT ; if no suchi exists
before the planning horizonn, the lower bound is defined
asn + 1.

The definition of the lower boundhN (G) implies that
no matter what actions are done, G cannot be made true
in less thanhN (G) steps. We callhN (G) anegativelower
bound because it is based on the entailment of the negation
of the goal. Later on we will discuss a type ofpositive
lower bound defined in terms of the entailment of the goal
itself but from a revised theory.

Negative lower bounds may be quite informative, and
indeed for planning problems that do not involve incom-
plete information or non-determinism (as Strips), such
bounds are exact; namelyhN (G) = h∗(G). From the
results in (Bylander 1994), it follows though that the com-
putation of these bounds is intractable. We thus focus on
the definition of informative andtractable lower bounds
hW

N (G) whose general form can be captured in terms
of setsΓi(T) of deductive consequences ofT at times
i = 0, . . . , n as follows:

hW
N (G) def=

{
min i ≤ n such thatΓi(T) 6|= ¬Gi

n + 1 if Γi(T) |= ¬Gi, ∀ i ∈ [0, n] (2)

The boundshW
N are normally weaker than the boundshN

i.e., hW
N ≤ hN , yet they become equal when the sets

of deductive consequencesΓi(T) corresponds to the sets
PIi(T) of prime implicatesof T at timei. The prime im-
plicates ofT are the inclusion-minimal, non-tautological
clauses that follow fromT , and the prime implicates of
T at timei are the prime implicates ofT including vari-
ables with indexi only. Provided with such sets of prime-
implicates, it is possible to determine the boundshW

N (G)
for arbitrary goalsG efficiently; namely,Gi follows from

PIi(T) either if Gi contains complementary literals or is
subsumed by a clause inPIi(T) (Cadoli & Donini 1997;
Marquis 2000). Of course, the computation of the sets of
prime implicatesPIi(T) itself cannot be done efficiently,
yet a suitable approximation of these sets will provide us
with the tools for understanding the meaning of the plan-
ning graph from a logical point of view.

Stratified Theories
For the choice and computation of the setsΓi(T) for defin-
ing the lower boundshW

N in (2), we consider first thegen-
eral logical formof planning theories. A key characteristic
of them is their stratified nature as reflected in the defini-
tions below.

Stratified theoriesare propositional theories defined
over a language made up of a number of indexed variables
xi, i = 0, 1, . . . , n, wheren is the given horizon. We refer
to the language defined by the variablesxi for a particular
indexi, asLi, and use the notationCi, C ′

i, . . . , to refer to
clauses inLi.

A stratified theoryT is made up of layersT0, T1, . . . ,
Tn such thatT = ∪i=0,nTi. The first layerT0, is given
by a set of clausesC0 ∈ L0, while each layerTi+1 for
0 ≤ i < n is comprised of two sets of clauses: a setTri+1

of transition clausesCi ∨ Ci+1 for Ci ∈ Li andCi+1 in
Li+1, and a setRi+1 of constraintsCi+1 ∈ Li+1. For a
transition clauseCi ∨Ci+1 we assume that neitherCi nor
Ci+1 is empty, and callCi thebodyof the clause andCi+1

thehead. For uniformity, we setR0 = T0.
Stratified theoriesT are classical propositional theories

with a classical semantics and in particularT entailsa for-
mula Ai ∈ Li whenAi is true in all models ofT . It is
also useful, however, to interpret the models ofT asstate
trajectoriess0, s1, . . . , sn, wheresi is a possible world
(truth assignment) over the languageLi. A state trajectory
s0, . . . ,sn then satisfiesT = ∪i=0,...,nTi whens0 satisfies
T0 and each transitionsi, si+1 satisfiesTi+1, 0 ≤ i < n;
namely,si+1 satisfies all constraintsC ′

i+1 in Ti+1 and all
headsCi+1 of the transition clausesCi ∨ Ci+1 in Ti+1

whose bodyCi is not satisfied bysi. Clearly T entails
Ai ∈ Li when for all state trajectoriess0, . . . , si, . . . , sn

satisfyingT , si satisfiesAi.
We also say that a stratified theory islogically consistent

if there is a least one state trajectory that satisfies the the-
ory, and iscausally consistentif any partial state trajectory
s0, . . . ,si satisfying the stratified theoryT i = T0∪· · ·∪Ti

can be extended into a full state trajectorys0, . . . , si, . . . ,
sn satisfying the theoryT = T0 ∪ · · · ∪ Tn, 0 ≤ i < n.1

Clearly, ifT is causally consistent, thenT will be logically
consistent if the first layerT0 is consistent.

As an example, the clausesx0∨y0,¬x0∨x1,¬y0∨¬x1

represent a logically consistent stratified theoryT = T0 ∪
T1 with T0 = {x0∨y0} andT1 = {¬x0∨x1,¬y0∨¬x1}.
This theory, however, is not causally consistent as the state
s0 satisfyingT0 with x0 andy0 true, cannot be extended
into a full trajectory satisfyingT1. On the other hand, the
theoryT ′ that is likeT but includes inT0 the resolvent

1The notion of causal consistency is closely related to a simi-
lar notion in probabilistic and logical causal networks; see (Pearl
1988; Darwiche & Pearl 1994).

¬x0∨¬y0 of the two clauses inT1 is logically and causally
consistent.

PI-k Inference
Consider now the following setsΓi(T) of deductive con-
sequences of a stratified theoryT over the languagesLi,
defined iteratively fori = 0, . . . , n− 1 as

Γ0(T) def= PI0(T0) (3)

Γi+1(T) def= PIi+1(Γi(T) ∪ Ti+1) (4)

where PIi+1(T ′) stands for the prime implicates of
T ′ over the languageLi+1 (del Val 1999); namely
PIi+1(T ′) = PI(T ′) ∩ Li+1. It is possible to prove then
that if T is causally consistent, these sets, defined itera-
tively one in terms of the other, capture exactly the prime
implicates ofT over the various sublanguages:

Proposition 1 (Markov) If the stratified theoryT is
causally consistent thenΓi(T) = PIi(T) for i =
0, . . . , n.

The computation of these sets, however, is intractable in
general. In order to obtain informative sets that can be
computed in polynomial time, we focus on the iterative
computation of prime implicates of bounded size. If we
let PIk(T) stand for the prime implicates ofT of size at
mostk for an integerk ≥ 1, and letPIk

i (T) stand for
the prime implicates of size no greater thank over the lan-
guageLi, i.e.,PIk

i (T) = PIk(T) ∩ Li, then a sequence
of sets of clausesΓk

i (T) for i = 0, . . . , n involving the
iterative computation of prime implicates of bounded size
can be defined as:

Γk
0(T) def= PIk

0 (T0) (5)

Γk
i+1(T) def= PIk

i+1(Γ
k
i (T) ∪ Ti+1) (6)

We call these setsΓk
i (T), the iterated PI-k sets,and dis-

tinguish them from the non-iterated PI-k sets defined sim-
ply asPIk

i (T). Iterated and non-iterated PI-k sets are not
equivalent in general as the ‘markovian’ property captured
by Proposition 1 does not hold for a boundedk.

For example, for a stratified theoryT given by the
clausesx0 ∨ y0, ¬x0 ∨ z1, and¬y0 ∨ z1, and fork = 1,
Γk

1(T) = ∅ while PIk
1 (T) = {z1}. On the other hand, the

setsΓk
i (T) andPIk

i (T) coincide fork = 2.
We refer to the computation of the iterated PI-k sets, as

thePI-k task. This task is intractable in general yet we will
determine conditions under which it is tractable, and estab-
lish a formal correspondence between the iterated PI-k sets
and the sets computed by Graphplan in the construction of
the planning graph.

The first condition for making the computation of the
Γk

i (T) sets tractable has to do with the way the stratified
theory iscompiled.Basically, the compilation makes ex-
plicit certain consequences that follow in isolation from
each layerTi of the theory. We will say that a stratified
theoryT is strongly compiledif the resolvent of every pair
of clauses in each layerTi is subsumed by a clause inT
or is tautological (contains a pair of complementary liter-
als). For us, however, a weaker form of compilation suf-
fices where this condition is imposed only on resolvents
obtained over variablesxi ∈ Li:

Definition 1 A stratified theoryT = ∪i=0,nTi is com-
piled iff every clauseC obtained by resolving two clauses
in Ti upon variablesxi ∈ Li, for i = 0, . . . , n, is sub-
sumed by a clause inT or contains a pair of complemen-
tary literals.

Clearly, strongly compiled theories are compiled, but not
the other way around. For example, the theoryT with
clausesx0 ∨ y1 and¬x0 ∨ y1 is compiled as both clauses
belong to layerT1 and they cannot be resolved upon vari-
ables inL1 (i.e., variables with index equal to1). At the
same time,T is not strongly compiled because the two
clauses can be resolved upon the variablex0, leading to
the clausey1 which is not subsumed. As another example,
the theoryT ′ with clausesx0∨y1 andy0∨¬y1 is not com-
piled as the resolventx0 ∨ y0 of the two clauses inT ′

1 over
variabley1 ∈ L1 is not subsumed inT ′. Similarly for the
theoryT ′′ with clausesx0 ∨ y1 andy0 ∨ ¬y1 ∨ x1 which
lacks the resolventx0 ∨ x1.

The compilation of a stratified theoryT involves a clo-
sure operation under a restricted form of resolution where
only clauses in the same layerTi are resolved, and they
are resolved only upon non-body variablesxi ∈ Li. We
will later see that Strips theories are compiled in this way.
More generally, the compilation of a stratified theory is
intractable yet similar (intractable) compilation schemes
have been successfully used in the ‘Planning as Model-
Checking’ approach where planning theories are compiled
into OBBDs (Cimattiet al. 2003). Indeed, prime implicates
andOBDDs are two among several canonical logical forms
that are appealing as they render certain kinds of boolean
operations tractable (Darwiche & Marquis 2002). Some
important properties of compiled theories are the follow-
ing:

Proposition 2 Let T = ∪i=0,nTi be a compiled stratified
theory. Then, 1)T is logically and causally consistent if
T does not contain an empty clause; 2)PI(Ri) ⊆ Ri, for
i = 0, . . . , n.

Recall that every layerTi of a stratified theoryT , except
for T0, is given by a setRi of primitive constraintsCi ∈
Li and a setTri of transition clausesCi−1 ∨ Ci. This
proposition implies that the set of constraints in a compiled
theory is strongly compiled.

Compiled stratified theories yield also a decomposition
property useful for computing the iterated PI-k sets. We
use the notationLk

i to denote the set of clauses inLi with
size no greater thank, and assume that all the primitive
constraints inRi are inLk

i for i = 0, . . . , n. When this
is not the case, the termΓk

i (T) should be replaced by the
termΓk

i (T)∪Ri, both in the following proposition and in
(6). For simplicity, we will not consider that case further.

Proposition 3 (Decomposition)For a compiled stratified
theoryT and any clauseCt

i+1 ∈ Lk
i+1, Γk

i (T), Ti+1 |=
Ct

i+1 iff Γk
i (T), T ri+1 |= Ct

i+1 or Ri+1 |= Ct
i+1

Indeed, ifCt
i+1 belongs toΓk

i+1(T), it must follow from
Γk

i (T) ∪ Ti+1 by resolution, and moreover, the resolution
steps can be ordered so that all resolvents uponxi+1 vari-
ables are computed before resolvents uponxi variables
(Tison 1967; del Val 1999; Marquis 2000). Since the for-
mer resolvents can only involve clauses fromTi+1, due to
the compilation, they are all subsumed by clauses inTi+1

or Ri, and hence by clauses inTi+1 or Γk
i (T). Thus res-

olutions uponxi+1 variables are not needed for deriving
Ct

i+1, and therefore any such clause must be subsumed by
a clause inRi+1 or must follow from resolutions uponxi

variables involving clauses fromΓk
i (T) andTri+1 only.

Proposition 3 suggests an approach for computing the
Γk

i+1(T) sets. We initialize this set to be empty and then
consider each of the clausesCt

i+1 in Lk
i+1 in increasing or-

der of size. If the clause is subsumed by a clause already
in Γk

i+1(T), we skip it. Else, we test whetherCt
i+1 follows

from Ri+1 or Γk
i (T) ∪ Tri+1. The first part of this test

is easy in a compiled theory, where it can be checked by
subsumption. The second part is more subtle and is not
tractable in general. We provide conditions however un-
der which this second part can be computed in polynomial
time. Then, since there is a polynomial number of clauses
Ct

i+1 in Lk
i+1, it follows that the computation ofΓk

i+1(T)
from Γk

i (T) will run in those cases in polynomial time too.
A procedure for computing these sets based on these ideas
is shown in Fig. 1. The procedure exploits also an addi-
tional property that is explained next.

The PI-k Inference Procedure

Let us refer to the transition clausesCi ∨ Ci+1 in Tri+1

with Ci+1 ⊆ Ct
i+1, and to the bodiesCi of such clauses, as

thesupporting clausesandsupportsof Ct
i+1 respectively,

and let the clausetrue be the single support ofCt
i+1 when

Ct
i+1 has no supporting clauses. Then for a compiled strat-

ified theory, the following property allows us to ‘regress’ a
formulaCt

i+1 in Li+1 into a formula inLi:

Proposition 4 (Regression)Let C1
i , . . . , Cr

i be the sup-
ports of Ct

i+1 in a compiled stratified theoryT =
∪i=0,nTi. Then Γk

i (T), T ri+1 |= Ct
i+1 iff Γk

i (T) |=
¬(C1

i ∧ · · · ∧ Cr
i)

We will refer to the formula¬(C1
i ∧ · · · ∧ Cr

i) involv-
ing all the supports ofCt

i+1 as theregressionof Ct
i+1, in

analogy to the notion of regression used in planning, and
formulate conditions under which the number of clauses
encoding this formula is polynomial and the entailment of
such clauses can be checked efficiently. In relation to this
latter point we have that

Proposition 5 For a compiled theoryT , PIk(Γk
i (T)) =

Γk
i (T), and fork ≤ 2, PI(Γk

i (T)) = Γk
i (T).

The first property follows fromPIk(PIk(X)) =
PIk(X); the second from the closure of 2-CNF formulas:
the resolvent of two clauses containing two literals at most,
cannot contain more than 2 literals. This second property
is what we need, it reduces validity checks to subsumption
tests. For generalizing it to higher values ofk, let us say
that a stratified theoryT = ∪i=0,nTi is purewhen each of
the variablesxi ∈ Li, for i = 0, . . . , n appears only posi-
tively or negatively in all clauses inTi (notice that variable
xi may also occur in the body of a transition clause inTi+1

yet such occurrences are not considered). Clearly ifT is
pure, so will be theΓk

i (T) sets, and hence

Proposition 6 For a compiled stratified theoryT that is
pure,PI(Γk

i (T)) = Γk
i (T).

Consider now the regression¬(C1
i ∧ · · · ∧Cr

i) of Ct
i+1.

The CNF representation of this formula is given by the
conjunction of all the clauses∼ l1∨ ∼ l2 ∨ · · · ∨ ∼ lr

wherelj is a literal fromCj
i . The number of such clauses

is exponential in the number ofdisjunctive supportsof
Ct

i+1; namely the number of supportsCj
i of Ct

i+1 with
size|Cj

i | > 1.
Let wT (li+1) stand for the number of transition clauses

Ci∨Ci+1 in T with disjunctive bodiesCi such thatli+1 ∈
Ci+1, and letwT stand for the max such number over all
literalsli+1 in Li+1 and alli = 0, . . . , n− 1. We will call
the parameterwT , thesupport widthof T as it plays a role
analogous to the width parameter in variable elimination
algorithms (Dechter 1999). For Strips theories, we will
show their support width to be1.

The results above lead to the procedure shown in Fig. 1
for computing the setsΓk

i (T), i = 0, . . . , n defined in
(6) that we call thePI-k procedure. ThePI-k procedure
projects a setΓk

i of clauses inLk
i into a setΓk

i+1 of valid
consequences overLk

i+1 given a stratified theoryT . For
theoriesT with bounded support width,the procedure runs
in polynomial time, and if in addition, the theory is pure
and compiled, the procedure iscomplete;namely, given
a PI-k set, it computes the next PI-k set in the sequence
exactly.

Theorem 7 (Main) For a pure and compiled stratified
theoryT = ∪i=0,nTi with bounded support width, thePI-k
procedure shown in Fig. 1 computes the iterated PI-k sets
Γk

i (T), i = 0, . . . , n, in polynomial time.

The PI-k procedure can be modified slightly so that it
will always run in polynomial time at the cost of com-
pleteness. For example, in the same way that we can ap-
proximate a testA |= B1 ∨ B2 ∨ · · · ∨ Br by consid-
ering whetherA entails the disjunction of any subset of
m disjunctsBi, for m ≤ r, we can approximate the test
Γk

i |= ¬C1
i ∨ · · · ∨ ¬Cr

i implemented in the algorithm in
Fig. 1, where theCj

i ’s are the supports of the target clause
Ct

i+1, by considering whetherΓk
i entails any subset of the

disjuncts containing at mostm disjunctive supportsCj
i .

There is a polynomial number of such subsets and each
such disjunction can be checked in polynomial time. The
resulting procedure would thus use at mostm transition
clauses with disjunctive bodies at a time for projecting the
setΓk

i into Γk
i+1. We will call such a sound but incomplete

procedure,PI-k-m. Since for Strips theories the support
width is1, thePI-k-mprocedure will remain complete then
for anyk by settingm to k. Thus, when only clauses (mu-
texes) of size1 and2 are inferred, as in Graphplan, and
hencek = 2, at most two disjunctive supports will need to
be considered at a time.

Variations
Before analyzing the relation between the PI-k sets and the
planning graph, let us briefly examine the relation between
the procedures for computing them. Consider for example
the inference of the mutex pairp, q at timei + 1 when the
actionsaj addingp at timei are mutex with the actionsbl

addingq at the same time. ThePI-k procedure will draw
the same inference in this case, very much in the same way.

Set Γk
i+1 := ∅

for each non-taut clause Ct
i+1 ∈ Lk

i+1 in order of size do
if Ct

i+1 subsumed by clause in Γk
i+1, continue

if Ct
i+1 subsumed by clause in Ri+1, add Ct

i+1 to Γk
i+1

else let Cj
i , j = 1, . . . , r be the supporters of Ct

i+1 in T
if no supporters, continue,
if some Cj

i empty, add Ci+1 to Γk
i+1 and continue

if for each C′
i =∼l1i∨ ∼l2i ∨ · · · ∨ ∼lri , lji ∈ Cj

i , j=1,. . . , r
C′

i is taut or subsumed by clause in Γk
i , add Ct

i+1 to Γk
i+1

end for
Return Γk

i+1

Figure 1:PI-k Procedure: MapsΓk
i into Γk

i+1 givenT

For the target clauseCt
i+1 = ¬pi+1 ∨ ¬qi+1 there will be

two supporting clauses corresponding to the frame axioms
a1

i∨· · ·∨ar
i∨¬pi+1 andb1

i∨· · ·∨bs
i∨¬qi+1. The regression

of the target clause through these transition clauses yields
the formula¬[(a1

i ∨ · · · ∨ ar
i) ∧ (b1

i ∨ · · · ∨ bs
i)] which in

CNF becomes the set of clauses¬aj
i ∨¬bl

i for eachaj and
eachbl. If these actions are mutex at timei, then they will
be part of the setΓk

i , and hence the regression formula and
the target¬pi+1 ∨ ¬qi+1 will be both entailed.

Three optimizations in the the computation of the PI-k
sets will make the correspondence between thePI-k pro-
cedure and the planning graph algorithm even closer. The
first optimization involvesunit simplification, a procedure
akin to unit resolution. IfΓk

i contains the unit clausexi,
then transition clauses inTi+1 includingxi can be ignored,
while the literal¬xi can be removed from the remain-
ing clauses. Likewise, ifΓk

i contains the unit clause¬xi,
then the transition clauses inTi+1 including¬xi can be
ignored, while the literalxi can be removed from the re-
maining clauses. A result of this simplification is that the
regression of any formulaCt

i+1 will no longer involve vari-
ables that are known inΓk

i , and hence, while we may have
to check whether a clauseC ′

i is subsumed by a clause of
size2 of higher, we will never have to check whether one
such clause is subsumed by a unit clause. Moreover the
simplification may reduce the support width of the theory
as well.

The second optimization involves the elimination ofre-
dundant transition clauses. The notion of redundancy
needs to be defined carefully as the compilation adds en-
tailed clauses toT that are needed for completeness. A
transition clauseCi ∨Ci+1 is redundantin Ti+1 givenΓk

i ,
if there is another transition clauseC ′

i ∨C ′
i+1 in Ti+1 such

thatC ′
i+1 ⊆ Ci+1 andCi follows from Γk

i andC ′
i. Since

by construction,Ri is subsumed byΓk
i , then this last con-

dition can be safely approximated byCi being entailed by
Ri andC ′

i. We will see that in Strips, ‘delete clauses’ are
made redundant by the primitive action mutexes and the
frame clauses.

Finally, we are often interested in the consequences of
T over some target language (del Val 1999). For example,
in planning, we are commonly interested in goal condi-
tionsG expressed by a conjunction of atoms, and then, in
order to derive (negative) lower bounds fromT we care
only about thenegativeconsequences ofT that may al-
low us to disprove the encoding of such goals. For such
cases, rather working with the original, compiled theory

T , we may as well work with a simplified theoryT−,
where all transition clausesCi∨Ci+1 and constraintsCi+1

with Ci+1 6∈ L− are removed (L− is the set of negative
clauses). Under some conditions it is possible to show
that no relevant information is lost in the simplification,
namely thatΓk

i (T) ∩ L− = Γk
i (T−). We say in that case

that the restriction ofT overL− is admissible. A sufficient
condition for this is the following:

Proposition 8 The restrictionT− of a compiled theory
T over the target languageL− is admissible, namely
Γk

i (T) ∩ L− = Γk
i (T−) for i = 0, . . . , n, if the variables

xi occurring positively inTi do not occurnegativelyin the
body of a transition clause inT−

i+1, for i = 0, . . . , n− 1.

We will see that this condition holds naturally for plan-
ning theories, and hence, they can be simplified in this way
resulting in theories that arepure.

Stratified Strips Theories
A Strips planning problemP = 〈A,O, I, G〉 with horizon
N , whereA is the set of relevant atoms,O is the set of
(ground) actions (includingNO-OPs), andI andG stand
for the initial and goal situations, can be encoded by the
theory (Kautz & Selman 1996)

1. Init: p0 for p ∈ I, ¬q0 for q in A but not inI

2. Actions: For i = 0, 1, . . . , N − 1 anda ∈ O:

• pi ∨ ¬ai for eachp ∈ pre(a)
• ¬ai ∨ pi+1 for eachp ∈ add(a)
• ¬ai ∨ ¬pi+1 for eachp ∈ del(a)

3. Frame: If a1, a2, . . . ,anp are the actions inO that add
p, then fori = 0, . . . , N − 1
• a1

i ∨ a2
i ∨ · · · ∨ a

np

i ∨ ¬pi+1

4. Mutex: If a, a′ interfere,¬ai∨¬a′i for i = 0, . . . , N−1
5. Goal: pN for eachp ∈ G.

In order tostratify this theory we define first the languages
Li for each layer. We do this as in Graphplan: the lan-
guagesLi for i = 0, 2, 4, . . . , 2N representpropositional
layersand are defined in terms of the atomspi for p ∈ A;
while the languagesLj for j = 1, 3, . . . , 2N −1 represent
action layersand are defined in terms of the actionsaj

for a ∈ O. The resulting stratified theoryT = ∪i=0,nTi

for n = 2N , is a simple rearrangement of the clauses and
indices, with the goal clauses excluded:2

1. Init T0: p0 for p ∈ I, and¬q0 for q ∈ A not in I

2. Action Layers Ti+1: for i = 0, 2, . . . , n− 2
• pi ∨ ¬ai+1 for eacha ∈ O andp ∈ pre(a)
• ¬ai+1 ∨ ¬a′i+1 for interferinga, a′ in O

3. Propositional LayersTi+1: for i = 1, 3, . . . , n− 1
• ¬ai ∨ pi+1 for eacha ∈ O andp ∈ add(a)
• ¬ai ∨ ¬pi+1 for eacha ∈ O andp ∈ del(a)
• a1

i ∨ a2
i ∨ · · · ∨ a

np

i ∨ ¬pi+1 for eachp ∈ A

We call these theories,stratified Strips theories. Provided
that no atom is added and deleted by the same action, it’s
simple to establish the following property:

2The theory with the goals is stratified but is not compiled or
causally consistent.

Proposition 9 Stratified Strips theories are compiled, and
are logically and causally consistent.

Notice thatwithoutthe constraints¬ai∨¬a′i for interfering
actionsa anda′, the theory wouldnot be causally consis-
tent or compiled. Indeed, ifa addsp anda′ deletesp, then
the non-tautological clause¬ai∨¬a′i follows from resolv-
ing the transition clauses¬ai∨pi+1 and¬a′i∨¬pi+1 over
their head variablepi+1. Such a clause must be subsumed
by a constraint inRi for the theory to be compiled. On
the other hand, the clauses¬ai∨¬a′i for pairs of actionsa
anda′ such that one deletes a precondition of the other, but
none deletes an add-effect of the other, are not necessary.

It is also simple to show, using Proposition 8, that the
restriction of a stratified Strips theoryT over the target
languageL− is admissible: the only variablesxi appear-
ing positively inTi, for i = 0, . . . , n, are the propositional
variablespi in the positive clauses inT0 or in Add clauses,
and such variables do not appear negatively in the body of
any clause. As a result, we can remove the positive clauses
in T0 and the Add clauses in eachTi, for i = 2, 4, . . . , n,
without losing information about the consequences over
the target languageL−. The simplified theoryT− remains
compiled and is pure. In addition, for any literalli+1 the
number of supporting clausesCi ∨ Ci+1 with disjunctive
bodiesCi is at most one, this occurring only for the frame
clauses andli+1 = ¬pi+1. Thus the support width of strat-
ified Strips theories is1. Applying Theorem 7 we thus
obtain that:

Theorem 10 (PI-k Sets for Strips) For a stratified Strips
theoryT , thePI-k procedure computes the sets of clauses
Γk

i (T) ∩ L−, i = 0, . . . , n in polynomial time.

We note that the setsΓk
i (T) may contain clauses that are

not in L−. For example, if all the actions that addq also
addp, then the clause¬qi ∨ pi will be derivable in each
propositional layer. However, since propositionspi do not
occur negatively in the body of any transition clause in
T , such clauses do not lead to further inferences of either
positive or negative clauses.

We are finally ready to state the correspondence be-
tween iterated PI-k sets and the sets of atoms and mutexes
computed by Graphplan in the construction of the planning
graph.

Theorem 11 (Planning Graphs) Let P be a Strips plan-
ning problem, letT be the stratified theory encodingP
with horizonN , and leti = 0, . . . , 2N stand for the propo-
sitional and actions levels in the planning graph. Then

1. For xi ∈ Li, x is reachable at leveli of the planning
graph iff¬xi 6∈ Γ2

i (T)
2. For xi, yi ∈ Li, the mutex(x, y) is inferred at leveli of

the planning graph iff¬xi ∨ ¬yi ∈ Γ2
i (T).

There is also a close correspondence between the meth-
ods used for inferring these sets of propositions, in par-
ticular after the simplifications in thePI-k procedure dis-
cussed earlier. The restriction of the Strips theory over
the languageL− allows us to remove the Add and posi-
tive clauses inT0 from consideration. The deletion of sub-
sumed clauses allows us to eliminate the Delete clauses as
well. Indeed, the delete clauses¬ai∨¬pi+1 in T are made
redundant by the frame clausea1

i ∨a2
i ∨ · · · ∨a

np

i ∨¬pi+1

and the ‘mutex’ clauses¬ai ∨ ¬aj
i , as by deletingp, a in-

terferes with each of the actionsaj that addsp. As a result,
the computation of the iterated PI-k sets over the target lan-
guageL− can proceed with the precondition, frame, and
mutex clauses only. Moreover, with unit simplification,
the correspondence between the two inference procedures
draws even closer. Due to the formulation, however, the
PI-k procedure can handle a broader range of theories, in-
cluding theories not arising from planning domains. At the
same time it suggests incomplete approximations, like the
PI-k-mprocedure discussed earlier, that runs over a much
a broader set of theories in polynomial time.

Extensions
We consider briefly the application of the proposed frame-
work to a planning language that includes negation and
conditional effects, and an alternative compilation scheme
for derivingpositiverather thannegativelower bounds.

Negation and Frame Axioms

Strips does not accommodate negated literals in either the
preconditions or goals, and neither can the above logical
encodings. For example, the encoding of a problem in
which p is true initially and no action deletesp, does not
entail the truth ofp at timesi > 0; namelyp0 is entailed
but notp1 or p2. The limitation for handling negation in
Strips arises from the semantics: states are sets of atoms,
and no assumption is made about the truth of atoms not
in the set. The limitation of the logical encoding arises
from the way it handles persistence; like Graphplan and
the SAT encodings based on Graphplan, it usesNO-OP ac-
tions, which like the other actions, are assumed to be ex-
ogenous. As a result, the encodings admit ‘abnormal mod-
els’ where a fluentp true ati becomes false ati + 1 with-
out being deleted, just because the model does not make
the actionNO-OP(p) true ati. Such models do not hurt in
the Strips setting, because of amonotonicity property:any
such ‘abnormal’ modelM can always be extended into a
‘normal’ modelM ′ that encodes the same plan, where flu-
ents persist as they should. Yet ‘abnormal’ modelsdohurt
in other settings where the monotonicity property does not
hold, as for example, those includingactions with condi-
tional effects. In this sense, actions with conditional ef-
fects require a proper handling of negation, a point already
made in (Anderson, Smith, & Weld 1998). While the en-
codings can be fixed byforcing the truth ofNO-OP actions
when the corresponding fluent should persist, here we will
follow an approach that also works in Strips and is com-
monly used: for every atomp in the problem, a new atom
p̄ is added that stands for the negation ofp. To enforce
this interpretation,̄p is included in the initial situationI if
p 6∈ I, in each delete list that containsp in the add list, and
in each add list that containsp in the delete list. For an
Strips problem, we refer to the problem that results from
these modifications, the Strips problem with negation. No-
tice that in the logical encoding of the problem with nega-
tion it is not true that the equivalencēpi+1 ≡ ¬pi+1 holds
in all models. Yet as before, for any ‘abnormal’ model
where the equivalence does not hold, there is a ‘normal’
model that validates the same plan, where fluents persist
as they should and the equivalence holds.

Actions with Conditional Effects
Conditional effects are important in planning for two rea-
sons. First, from a syntactic point of view, conditional ef-
fects cannot be compiled away in Strips without causing an
exponential blow up (Nebel 2000); second, from a seman-
tic point of view, they are an essential component for plan-
ning with incomplete information (Smith & Weld 1998).
Extensions of the planning graph concept for dealing with
conditional effects have been considered in (Koehleret al.
1997) and (Anderson, Smith, & Weld 1998). These pro-
posals differ in their semantics, and while valuable compu-
tationally, they lack a clear theoretical justification. Here
we follow the semantics proposed by Anderson, Smith,
and Weld (from here on ASW), and derive the ‘planning
graphs’ from the iterated PI-k sets obtained from the cor-
responding stratified theory.

We represent a planning problem involving actions with
conditional effects by a tuplePc = 〈A,Oc, I, G〉, with
A, I, and G as before, andOc as a set of actionsac,
each represented by a precondition listpre(ac) and a set
of conditional effects〈condi(ac), addi(ac), deli(ac)〉, i =
1, . . . , nac

, with pre(ac), condi(ac), addi(ac), deli(ac)
all being sets of atoms (possibly empty). Actions with con-
ditional effects are like Strips actions but with add, delete,
and precondition lists that depend on the states where the
actions are applied, given by the active effects and con-
ditions respectively. The semantics of parallel planning
given by ASW follows from this correspondence; in par-
ticular, two different actionsac anda′c interfere in a state
s whenin the states, one action deletes a precondition or
add-effect of the other. Likewise, a valid parallel plan is a
sequence of sets of applicable and non-interfering actions
that map the initial situationI into the goalG. For sim-
plicity, we will assume that the various conditional effects
of the same action are not in conflict.

For the encoding of the problemPc we follow the in-
tuition of ASW and convert it into a normal Strips plan-
ning problem withnegationP augmented with a num-
ber of constraints.The resulting set of actionsO in P is
given by thecomponentsof Pc: namely, for each actionac

with conditional effects〈condi(ac), addi(ac), deli(ac)〉,
i = 1, . . . , nac

, O will contain the Strips actionsai with
preconditionspre(ac)∪condi(ac), and add and delete lists
addi(ac) anddeli(ac). We say in that case that actionai is
of typeac, meaning that actionai in P comes from action
ac in Pc.

The constraints must express that actions of the same
type inP are not independent; namely, that the execution
of an actiona ∈ O in a states implies the execution of all
the actionsa′ ∈ O of the same type whose preconditions
hold in s. This means that in order to encodePc in logic,
in addition to the encoding of the Strips problemP with
negation, we need for every pair of actionsa anda′ of the
same type inP , and alli = 0, . . . , n− 1, the clauses

p̄1
i ∨ . . . ∨ p̄r

i ∨ ¬ai ∨ a′i (7)

wherep1, . . . , pr are the atoms inpre(a′) − pre(a), and
p̄1, . . . , p̄r are the atoms encoding their negation.3

3Using the literals¬pj instead of the atoms̄pj would yield an
incorrect encoding for the reasons discussed above; namely, the
monotonicity property would not hold, and hence, the theory may

In order to apply our methods for characterizing and
computing the iterated PI-k sets, we need to stratify the
resulting encoding and consider its compilation. The strat-
ification works out as for normal Strips theories, with the
addition of the clauses (7) indexed as transition clauses in
theaction layers. With the addition of these new clauses,
however, the resulting stratified theory is no longer com-
piled. If as before, we restrict our attention to thenegative
clauses,the compilation yields the followingconditional
mutexes:

p̄1
i ∨ . . . ∨ p̄r

i ∨ q̄1
i ∨ . . . ∨ q̄s

i ∨ ¬a1
i+1 ∨ ¬a2

i+1 (8)

for actionsa1 of the same type asa, anda2 of the same
type asa′, such thata anda′ interfere, andp1, . . . , pr =
pre(a) − pre(a1) and q1, . . . , qr = pre(a′) − pre(a2).
That is, ifa anda′ interfere, anda1 anda2 are of the same
type asa anda′ respectively, thena1 anda2 will be mutex
unless the conditions that makea1 anda2 triggera anda′

respectively do not hold.
The compiled theoryT can be fed to thePI-k procedure

for computing the iterated PI-k setsΓk
i (T). The complex-

ity of this computation, as before, is given by the support
width of the theory; namely the max number of transition
clausesCi ∨ Ci+1 with disjunctive bodiesCi with a com-
mon literalli+1 in their heads. While for Strips, however,
this parameter is equal to1, for these theories, this param-
eter is not bounded and hence the procedure may run in
exponential time.

For example, consider two actionsac andbc with ‘con-
flicting’ conditional effects; e.g., fori = 1, . . . , r, if ci is
true, thenac addsei, and if di is true,bc deletesei. The
above encoding yields a number of conditional mutexes
of the form c̄l

i ∨ d̄j
i ∨ ¬av

i+1 ∨ ¬bw
i+1 which is quadratic

in r, and hence the support width of the theory becomes
quadratic inr as well. The extension of the planning graph
in (Anderson, Smith, & Weld 1998) is polynomial but
incomplete. The polynomial procedurePI-k-m discussed
above that considers at mostm disjunctive supports at a
time yields an stronger approximation for the samek = 2
andm = 2. In any case, stratified theories, the notion of
compilation, and the various projection procedures seem
to provide a convenient framework for studying and eval-
uating such tradeoffs.

Positive Deductive Lower Bounds
We have considered the definition and computation of
lower bounds for planning theoriesT considering the first
time pointi at which the encodingGi of a goalG is con-
sistent with the theory, or equivalently, the first time point
i at which the negation of the goal¬Gi is not entailed by
T . We called these lower boundsnegativein Section 3
for this reason. We want to consider nowpositivelower
bounds defined in terms of the first time pointi at which
the goalGi itself is entailed, rather than its negation, from
an slightly different and stronger theoryT+. We will con-
sider one such definition for the Strips setting.

For a given Strips planning problemP , we consider the
stratified encodingT ′ of the delete-relaxation ofP where
all delete effects are assumed empty. This is a common

have ‘abnormal’ models that cannot be extended into ‘normal’
models validating the same plans.

and useful relaxation in planning that has given rise to a
number of informative heuristics. The stratified theoryT ′

is thus given by the following clauses:

1. Init T0: p0 for p ∈ I, and¬q0 for q ∈ A not in I

2. Action Layers Ti+1: for i = 0, 2, . . . , n− 2:

• pi ∨ ¬ai+1 for eacha ∈ O andp ∈ Prec(a)

3. Propositional LayersTi+1: for i = 1, 3, . . . , n− 1:

• ¬ai ∨ pi+1 for eacha ∈ O andp ∈ Add(a), and
• a1

i ∨ a2
i ∨ · · · ∨ a

np

i ∨ ¬pi+1 for eachp ∈ A and the
actionsaj ∈ O that addp

Since delete clauses and mutex constraints are no longer
part of the theory, the theoryT ′ is weaker than the theory
T encoding the original problemP , and thus we cannot
expect it to yield positive lower bounds. We thus build
our target theoryT+ from T ′ by forcing the equivalences
pre(a)i ≡ ai+1, wherepre(a)i is the formula encoding
the preconditions ofa at leveli.

4. Action Closure: ¬pre(a)i ∨ ai+1, i = 0, 2, . . . , n− 2

We thus force the application of every action whose pre-
conditions hold. Due to the relaxation, the resulting theory
is consistent, and relative to the positive consequences, it is
stronger than any theory that extendsT with a valid plan,
thus leading to positive lower bounds.

Indeed, it is easy to show that the resulting stratified the-
ory T+ is compiled as the resolutions uponxi+1 variables
in each layerTi+1 all yield clauses that include comple-
mentary literals. As a result, the theory is causally con-
sistent, and sinceT0 is consistent, the theory is consistent
as well. Moreover, the theoryT+ is completein the sense
that it has a single state trajectorys0, s1, . . . , sn satisfy-
ing it. Thus, for any variablexi, eitherxi ∈ PIi(T+)
or ¬xi ∈ PIi(T+). This also implies that these sets are
equivalent to the iterated PI-k setsΓk

i (T+) for anyk ≥ 1
which are also complete. Hence for any goalGi ∈ Li,
Γk

i (T+) either entailsGi or ¬Gi. Moreover, it can also
be shown that the setsΓk

i (T+) ∩ L− are equivalent to
the setsΓk

i (T) ∩ L− obtained from the theoryT encod-
ing the original problemP with k = 1. It follows then
thatΓ1

i (T) 6|= ¬Gi iff Γk(T+) 6|= ¬Gi iff Γk(T+) |= Gi.
Thus, the positive lower bounds obtained fromT+ are
equivalent to the negative lower bounds obtained from the
original theoryT for k = 1, and hence that the former
bounds are weaker than the latter for values ofk greater
than1.

Positive lower bounds, however, may be useful in non-
Strips settings. Recently, for example, an heuristic estima-
tor for conformant planning has been proposed in (Braf-
man & Hoffmann 2004) which seems to be based on a
closed, relaxed theory likeT+ that allows for disjunctive
information in the initial situationI. However, rather than
computing a representation of the setsΓk

i (T+) using a pro-
cedure likePI-k, Brafman and Hoffmann rely on an ap-
proximation based on a compilation into 2-CNF: a closed
and tractable fragment of CNF including the clauses with
two literals at most. Indeed, any theoryT+

lb stronger than
T+ would yield positive lower bounds, and in particular,
if T+

lb is in 2-CNF, the computation of these lower bounds
is tractable. In this sense, the notion of lower bounds used
in knowledge compilation, that refers to stronger theories

(Selman & Kautz 1996), may turn out to be useful for com-
puting lower bounds in planning. The ideal compilation
target for a theory likeT+ in situations where the domain
features incompleteness or non-determinism, is theweak-
est theoryT+

lb over the target tractable language (whether
2-CNF, Horn, etc) that is as strong asT+; the so-called
greatest lower boundof T+. However, since such a com-
pilation is intractable in general, one must settle for a good
lower bound theory. The scheme developed by Brafman
and Hoffmann seems to fit this mold, building the corre-
sponding 2-CNF theory carefully and incrementally. The
reasons they don’t get a lower bound is that as in FF, they
do not use the index of the layer where the goals become
derivable but the number of actions involved in the deriva-
tion; an heuristic that appears more informative but is not
admissible.

Related Work
The ideas in this work are closely related to the idea of
variable or bucket eliminationas formulated in (Dechter
1999). In a CSP context, variable elimination algorithms
process the problem variables in a fixed orderx1, . . . ,xm

eliminating the variables one by one. The elimination of a
variablexi in a problemPi inducesa constraintΓi+1 over
the remaining variablesxi+1, . . . , xm, which is added to
the existing constraints to yield a subproblemPi+1. The
nature of this subproblem is such that its solutions can all
be extended to solutions of the problemPi involving vari-
ablexi as well. Thus after eliminating all variables, all
solutions to the original problemP = P0 can be obtained
backtrack free in reverse order starting with the subprob-
lem Pn involving only the variablexn. The computation
of the constraintsΓi+1 induced by the elimination of a
variable, however, may be exponential in time and space.
A tractable alternative is aboundedform of variable elim-
ination in which the elimination of a variablexi induces
constraints of size at mostk among the remaining vari-
ablesxi+1, . . . , xn. Such weak form of elimination runs
in polynomial time but the backward search for solutions is
no longer backtrack free: the constraints that are inferred
and posted as variables are eliminated remove some but
not necessarily all the backtracks. This is actually what
Graphplan does: a forward weak variable elimination pass
that induces constraints of size1 and 2, followed by a
backtracking search over the resulting graph starting from
the last layer. The inference scheme based on the compu-
tation of the iteratedΓk(T) sets by means of thePI-k pro-
cedure provides a generalized logical account of the com-
putations performed by Graphplan in the weak elimination
pass. We have shown the conditions under which thePI-
k procedure runs in polynomial time and computes these
sets exactly.

Variable elimination algorithms for SAT take the form
of Directed Resolution (DR)where variablesxi are elim-
inated by computing the resolvents of clausesCi and
C ′

i involving the literal xi and the literal¬xi respec-
tively, inducing new clauses over the remaining variables
xi+1, . . . , xn (Rish & Dechter 2000).Bounded Directed
Resolution, is the bounded version of DR which runs
in polynomial time and only posts resolvents of size no
greater thank. For example, Bounded DR-2, generates
resolvents of size1 and2 only. In this sense, BDR-2 is

related to Graphplan, and more generally, BDR-k is re-
lated to the inference scheme based on the computation
of the iterated PI-k sets that also derives consequences of
sizek or less. The two inference methods, however, are
not equivalent; the latter method is stronger, and is poly-
nomial only under certain conditions (such as those ex-
pressed in Theorem 7). Indeed, while the computation of
the PI-k setsresultsin clauses of size bounded byk, it may
involveintermediate resolution steps producing clauses of
arbitrary size. For example, consider two frame axioms
a1

i ∨ · · · ∨ ar
i ∨ ¬pi+1 andb1

i ∨ · · · ∨ br
i ∨ ¬qi+1 along

with the ‘mutex’ clauses¬aj
i ∨ ¬bl

i for eachaj andbl. In
such a situation, thePI-k procedure for anyk ≥ 2 infers
the ‘mutex’¬pi+1 ∨ qi+1, yet the first level resolvents of
these clauses have all sizer which may be much higher
thank. Such inferences are common in planning and are
critical in the construction of the planning graph.

The computation of the setsΓk
i (T) stands thus halfway

between full and bounded forms of variable elimination:
it involves full resolution over thexi variables but results
in clauses of size bounded byk over thexi+1 variables.
Without the restriction of thek parameter, these sets be-
come equal to the sets of prime implicates ofT over the
languagesLi, i.e.,Γi(T) = PIi(T), an intractable, com-
piled representation that corresponds to the one obtained
by the clause-based tree-clustering algorithm in (Rish &
Dechter 2000).

Other works on propositional inference methods that
exploit the structure of the underlying theories, are (Dar-
wiche 1996), (del Val 1999), (Kohlas, Haenni, & Moral
1999), and (McIlraith & Amir 2001).

Discussion
We have formulated an inference scheme over stratified
propositional theories, and have shown the conditions un-
der which this inference scheme is tractable and com-
putes exactly the iterated sets of prime implicates of size
bounded byk. We have also established a correspondence
between this computation and the construction of the plan-
ning graph, and more generally, the derivation of lower
bounds in planning. The scheme is also related to bounded
variable elimination methods considered in constraint sat-
isfaction and optimization.

We have focused only in ‘classical’ planning theories
where the initial state is known and actions, with or with-
out conditional effects, are deterministic. The account,
however, may provide a basis for defining and deriving
cost-effective lower bounds in non-classical planning set-
tings such as those involving incomplete information and
non-deterministic actions. The use of Graphplan as a front
end of current SAT and CSP planners indicates that in the
classical setting, the proposed PI-k inference methods pro-
vide indeed a cost-effective preprocessing filter. In more
complex planning tasks that cannot be reduced to SAT, we
expect the leverage gained by the use of these inference
methods to be even greater.

As a concrete example of the challenges involved in the
definition and derivation of lower bounds in problems that
involve incomplete information in the initial state, con-
sider a robot that can move deterministically, one step at
a time in the four directions, in a square grid of siden.
Moves that would take the robot out of the grid leave the

robot in the same location. The robot does not know its
initial location and the goal is to get to the center of the
square with certainty.4 Any optimal plan for the problem
involves a self-localization stage where the robot takesn
steps in one direction, andn steps in an orthogonal di-
rection. The robot will be then at a particular corner of the
grid and will know its location, and from there, it can reach
the goal inn steps more. The problem has thus cost equal
to 3n. The challenge is to have a tractable and general
inference scheme capable of deriving such bounds.

The ideas we have laid out above are not sufficient for
handling these situations, yet some of them may turn out to
be relevant. A possible way for approaching the derivation
of lower bounds in such settings may involve the computa-
tion of positivelower bounds over encodings in a proposi-
tionalmodallogic that distinguishes atoms beingtruefrom
atoms beingknown.This will be an interesting possibility,
as if true, it would lead naturally to further connections
between propositional and problem solving methods.

References
Anderson, C.; Smith, D.; and Weld, D. 1998. Conditional
effects in graphplan. In Simmons, R.; Veloso, M.; and
Smith, S., eds.,Proceedings of the Fourth International
Conference on AI Planning Systems (AIPS-98), 44–53.
AAAI Press.

Baioletti, M.; Marcugini, S.; and Milani, A. 2000. DP-
Plan: An algorithm for fast solution extraction from a
planning graph. InProc. AIPS-2000.

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of IJCAI-95,
1636–1642. Morgan Kaufmann.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.

Brafman, R., and Hoffmann, J. 2004. Conformant plan-
ning via heuristic forward search: A new approach. In
Proceedings of the 14th International Conference on Au-
tomated Planning and Scheduling (ICAPS-04).

Brafman, R. 2001. On reachability, relevance, and reso-
lution in the planning as satisfiability approach.Journal
of Artificial Intelligence Research14:1–28.

Bylander, T. 1994. The computational complexity of
STRIPS planning.Artificial Intelligence69:165–204.

Cadoli, M., and Donini, F. 1997. A survey on knowledge
compilation.AI Communications10(3-4):137–150.

Cimatti, A., and Roveri, M. 2000. Conformant planning
via symbolic model checking.Journal of Artificial Intel-
ligence Research13:305–338.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via
symbolic model checking.Artificial Intelligence147(1-
2):35–84.

Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map.Journal of Artificial Intelligence Research
17:229–264.

4This problem is from (Cimatti & Roveri 2000), which in turn
is a variation of a problem from (Parr & Russell 1995).

Darwiche, A., and Pearl, J. 1994. Symbolic causal net-
works. In Hayes-Roth, B., and Korf, R., eds.,Proceed-
ings AAAI-94, 238–244.

Darwiche, A. 1996. Utilizing knowledge-base semantics
in graph-based algorithms. InProc. AAAI-96, 607–613.

Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113(1-2):41–
85.

Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann.

del Val, A. 1999. A new method for consequence finding
and compilation in restricted languages. InProceedings
AAAI-99, 259–264.

Do, M. B., and Kambhampati, S. 2000. Solving the
planning-graph by compiling it into CSP. InProc. AIPS-
00, 82–91.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the Fifth International
Conference on AI Planning Systems (AIPS-2000), 70–82.

Kautz, H. A., and Selman, B. 1992. Planning as satisfia-
bility. In Proceedings of the Tenth European Conference
on Artificial Intelligence (ECAI’92), 359–363.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.

Kautz, H., and Selman, B. 1999. Unifying SAT-based
and Graph-based planning. In Dean, T., ed.,Proceedings
IJCAI-99, 318–327. Morgan Kaufmann.

Koehler, J.; Nebel, B.; Hoffman, J.; and Dimopoulos,
Y. 1997. Extending planning graphs to an ADL sub-
set. In Steel, S., and Alami, R., eds.,Recent Advances
in AI Planning. Proc. 4th European Conf. on Planning
(ECP-97). Lect. Notes in AI 1348, 273–285. Springer.

Kohlas, J.; Haenni, R.; and Moral, S. 1999. Propositional
information systems.Journal of Logic and Computation
9(5):651–681.

Lopez, A., and Bacchus, F. 2003. Generalizing graphplan
by formulating planning as a csp. InProc. IJCAI-03.

Marquis, P. 2000. Consequence finding algorithms. In
Gabbay, D., and Smets, P., eds.,Handbook on Defeasible
Reasoning and Uncertainty Management Systems, vol-
ume 5. Kluwer. 41–145.

McIlraith, S., and Amir, E. 2001. Theorem proving with
structured theories. InProc. IJCAI-01.

Nebel, B. 2000. On the compilability and expressive
power of propositional planning.Journal of Artificial In-
telligence Research12:271–315.

Parr, R., and Russell, S. 1995. Approximating optimal
policies for partially observable stochastic domains. In
Proceedings IJCAI-95.

Pearl, J. 1988.Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

Rintanen, J. 1998. A planning algorithm not based on di-
rectional search. InProceedings KR’98, 617–624. Mor-
gan Kaufmann.

Rish, I., and Dechter, R. 2000. Resolution versus search:
Two strategies for SAT.Journal of Automated Reasoning
24(1/2):225–275.
Selman, B., and Kautz, H. 1996. Knowledge compi-
lation and theory approximation.Journal of the ACM
43(2):193–224.
Smith, D., and Weld, D. 1998. Conformant graphplan.
In Proceedings AAAI-98, 889–896. AAAI Press.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. InProc. IJCAI-99, 326–337.
Tison, P. 1967. Generalized consensus theory and ap-
plications to the minimization of boolean circuits.IEEE
Transactions on ComputersEC-16(4):446–456.

