
Complexity of Planning with Partial Observability

Jussi Rintanen
Albert-Ludwigs-Universiẗat Freiburg, Institut f̈ur Informatik

Georges-K̈ohler-Allee, 79110 Freiburg im Breisgau
Germany

Abstract

We show that for conditional planning with partial observ-
ability the problem of testing existence of plans with success
probability 1 is 2-EXP-complete. This result completes the
complexity picture for non-probabilistic propositional plan-
ning. We also give new proofs for the EXP-hardness of con-
ditional planning with full observability and the EXPSPACE-
hardness of conditional planning without observability. The
proofs demonstrate how lack of full observability allows the
encoding of exponential space Turing machines in the plan-
ning problem, and how the necessity to have branching in
plans corresponds to the move to a complexity class defined
in terms of alternation from the corresponding deterministic
complexity class. Lack of full observability necessitates the
use of beliefs states, the number of which is exponential in the
number of states, and alternation corresponds to the choices
a branching plan can make.

Introduction
The computational complexity of planning is characterized
by the associated decision problem of deciding whether for
a given problem instance a plan exists. Sometimes further
constraints on the plan are imposed, for example related to
success probability, resource consumption or other similar
properties of plans. The plan existence problem for classi-
cal planning, that is planning with deterministic actions and
only one initial state, is PSPACE-complete (Bylander 1994).

The classical planning problem can be generalized for ex-
ample by having nondeterministic actions. In this case def-
inition of plans as sequences of actions does not in general
suffice. Instead, plans have to be defined as mappings from
states to actions, or alternatively as simple programs with ex-
ecution conditional on the nondeterministic outcomes of ac-
tions. This form of planning is calledconditional planning.
Assuming that the current state of the world can be exactly
observed during plan execution (full observability), the plan
existence problem is EXP-complete (Littman 1997). How-
ever, if no observations are possible, and either actions are
nondeterministic or there are several initial states so that
the current state cannot be known unambiguously, plans are
again simply sequences of actions, but the plan existence
problem is more difficult than either of the above problems:

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

it is EXPSPACE-complete (Haslum & Jonsson 2000). This
nondeterministic planning problem is sometimes calledcon-
formant planning.

In both of the above nondeterministic planning problems
it is required that a plan reaches a goal state with certainty.
There are also probabilistic variants of these problems in
which the alternative events associated with nondetermin-
istic actions are assigned probabilities. In planning with-
out observability, determining the existence of a plan with
success probability≥ c is undecidable (Madani, Hanks, &
Condon 2003). Both full observability and restriction to ex-
ponentially long plan executions make the problem decid-
able and bring it down to EXPSPACE and below (Littman,
Goldsmith, & Mundhenk 1998; Mundhenket al. 2000). The
undecidability of the most general of these problems, prob-
abilistic conditional planning with partial observability, in
which some observations are possible but do not in general
allow to determine the current state unambiguously, directly
follows from the undecidability of plan existence in the cor-
responding unobservable case.

In this paper, we address an important problem that gen-
eralizes the two non-probabilistic planning problems men-
tioned above, and is a special case of the probabilistic con-
ditional planning problem with partial observability. This
is the conditional planning problem with partial observabil-
ity and the requirement that goals are reached with prob-
ability 1. The computational complexity of this problem
had remained unknown until now. Unlike the corresponding
probabilistic problem, this problem is decidable because for
reaching the goals with probability 1 the exact probabilities
of nondeterministic events do not matter, and the uncertainty
about the current state can be represented in terms of a set
of possible current states. This is in strong contrast to the
corresponding probabilistic problem, in which the possible
current states – the belief states – correspond to probabil-
ity distributions over the set of all states. The number of
these probability distributions for a finite state space is in-
finite, while the number of non-probabilistic belief states,
interpreted as sets of states, is finite.

The conditional planning problem with partial observabil-
ity and success probability 1 is important for many applica-
tions in which low-probability plan failures do not have to be
considered explicitly, or the application itself can be modi-
fied so that success probability 1 can be guaranteed. This is

beliefs

PSPACE

branching beliefs

branching

2−EXP = AEXPSPACE

EXPSPACEEXP = APSPACE

Figure 1: Effect of branching and partial observability on
complexity of planning: classical planning is PSPACE-
complete, beliefs (partial observability) add space require-
ments exponentially, and branching (nondeterminism) adds
alternation.

so especially in many kinds of manufacturing and engineer-
ing applications, in contrast to many optimizations problems
typically solved in the MDP/POMDP framework, for which
existence of solutions is obvious, and the problem is to find
a solution that is optimal or close to optimal.

We show that the plan existence problem for non-
probabilistic conditional planning with partial observability
is 2-EXP-complete. We outline new proofs of the EXP-
hardness of conditional planning with full observability and
EXPSPACE-hardness of planning without observability, and
obtain the 2-EXP-hardness proof as a generalization of both
of these two new proofs. The proofs intuitively explain the
problem complexities in terms of the types of Turing ma-
chines simulated.

The results complete the complexity picture of non-
probabilistic propositional planning in its most general
forms, as summarized in Figure 1. Transition from the state
space to the belief space leads to exactly an exponential in-
crease in space complexity. From classical planning to con-
formant planning this is from PSPACE to EXPSPACE, and
from nondeterministic full-information planning to nonde-
terministic planning with partial observability this is from
APSPACE = EXP to AEXPSPACE = 2-EXP. Similarly, tran-
sition from the deterministic to the corresponding nondeter-
ministic planning problem1 means a transition from a de-
terministic complexity class to the corresponding alternat-
ing complexity class; this corresponds to the introduction
of branches into the plans. From classical planning to non-
deterministic planning with full observability this is from
PSPACE to APSPACE = EXP, and from conformant plan-
ning to general partially observable planning this is from
EXPSPACE to AEXPSPACE = 2-EXP.

The structure of the paper is as follows. First we define al-
ternating Turing machines and explain the relations between
deterministic complexity classes and their alternating coun-
terparts, followed by a definition of the planning problems
we address. In the rest of the paper we analyze the computa-
tional complexity of the fully observable, unobservable and
partially observable planning problems, in first two cases
giving a new more direct hardness proof, and in the third

1We can view conformant planning as deterministic planning in
the belief space, because the successor belief state uniquely deter-
mined by the action and the preceding belief state.

case we establish the complexity for the first time. Before
concluding the paper we discuss related work.

Preliminaries: Complexity Classes
In this section we define alternating Turing machines and the
complexity classes used in the paper.

Definition 1 An alternating Turing machine(ATM) is a tu-
ple 〈Σ, Q, δ, q0, g〉 where
• Q is a finite set of states (the internal states of the ATM),
• Σ is a finite alphabet (the contents of tape cells),
• δ is a transition functionδ : Q × Σ ∪ {|,2} →

2Σ∪{|}×Q×{L,N,R},
• q0 is the initial state, and
• g : Q → {∀,∃, accept, reject} is a labeling of the states.

The symbols| and2 are the left-end-of-tape and the blank
symbol, respectively. We require thats = | andm = R
for all 〈s, q′,m〉 ∈ δ(q, |) and anyq ∈ Q, that is, at the
beginning of the tape the movement is to the right and| may
not be overwritten. For〈s′, q′,m〉 ∈ δ(q, s) such thats ∈ Σ,
we requires′ ∈ Σ.

A configurationof a TM, consisting of the internal stateq
and the tape contents, isfinal if g(q) ∈ {accept,reject}.

The acceptance of an input string by an ATM is defined
inductively starting from final configurations that are accept-
ing. A final configuration isacceptingif g(q) = accept.
Non-final configurations are accepting if the state is univer-
sal (∀) and all the successor configurations are accepting or
if the state is existential (∃) and at least one of the succes-
sor configurations is accepting. Finally, an ATM accepts a
given input string if the initial configuration with initial state
q0 and the input string on the work tape is accepting.

A nondeterministic Turing machine (NDTM) is an ATM
without universal states. A deterministic Turing machine is
an NDTM with |δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ ∪ {|}.

PSPACE is the class of decision problems solvable by de-
terministic Turing machines that use a number of tape cells
bounded by a polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Similarly other complexity classes are defined in terms of
time consumption (DTIME(f(n)), or time and space con-
sumption on alternating Turing machines (ATIME(f(n))
and ASPACE(f(n))) (Balcázar, D́ıaz, & Gabarŕo 1988;
1990).

EXP =
⋃

k≥0 DTIME(2nk

)
EXPSPACE =

⋃
k≥0 DSPACE(2nk

)

2-EXP =
⋃

k≥0 DTIME(22nk

)
APSPACE =

⋃
k≥0 ASPACE(nk)

AEXPSPACE =
⋃

k≥0 ASPACE(2nk

)

There are many useful connections between these classes
(Chandra, Kozen, & Stockmeyer 1981), for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Preliminaries: Planning
We formally define the conditional planning problem.

Definition 2 A problem instance in planning is
〈A, I, O, G, V 〉 whereA is a set of Boolean state variables,
I andG are Boolean formulae onA respectively describing
the sets of initial and goal states,O is a set of operators
〈c, e〉 wherec is a formula onA describing the precondition
ande is an effect, andV ⊆ A is the set ofobservable state
variables. Effects are recursively defined as follows.

1. a and¬a for a ∈ A are effects.
2. e1∧· · ·∧en is an effect ife1, . . . , en are effects (the special

case withn = 0 is the empty conjunction>.)
3. c B e is an effect ifc is a formula onA ande is an effect.
4. e1| · · · |en is an effect ife1, . . . , en for n ≥ 2 are effects.

Abovee1 ∧ · · · ∧ en means that all the effectsei simulta-
neously take place. The notationc B e is for conditionality,
that is, effecte takes place ifc is true in the current state.
Nondeterministic effectse1| · · · |en mean randomly choos-
ing one of the effectsei.

Definition 3 (Operator application) Let 〈c, e〉 be an oper-
ator overA. Lets be a state, that is an assignment of truth
values toA. The operator isapplicable ins if s |= c.

Recursively assign effectse a set[e]s of sets of literals.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.
2. [e1 ∧ · · · ∧ en]s = {

⋃n
i=1 fi|f1 ∈ [e1]s, . . . , fn ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {∅} otherwise.
4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s

The successor states imgo(s) of a states under an oper-
ator o are obtained froms by making the literals in some
f ∈ [e]s true and retaining the truth-values of state vari-
ables not occurring inf . Because for nondeterministice
there may be several setsf ∈ [e]s, there may also be several
successor states for a given state and operator.

Compound observations and observations dependent on
the last applied operator can be reduced in polynomial time
to the basic model defined above in which the same setV of
state variables is observable all the time.

Definition 4 Let A be a set of state variables. A problem
instance〈A, I, O, G, V 〉 is

1. fully observableif V = A,
2. unobservableif V = ∅, and
3. partially observableif there are no restrictions onV .

Plans are directed graphs with nodes of degree 1 labeled
with operators and edges from branch nodes labeled with
formulae.

Definition 5 Let 〈A, I, O, G, V 〉 be a problem instance in
planning. A plan is a triple〈N, b, l〉 where

• N is a finite set of nodes,
• b ∈ N is the initial node,

• l : N → (O×N)∪ 2L×N is a function that assigns each
node an operator and a successor node〈o, n〉 ∈ O × N
or a set of formulae and successor nodes〈φ, n〉.
Only the observable state variablesV may occur in the
branch labelsφ. Nodes withl(n) = ∅ are terminal.

An execution of a plan starts from the initial nodeb. Ex-
ecuting an operator node with label〈o, n〉 is by executing
o and continuing execution from the noden. Executing a
branch node is by evaluating the branch labelφ for each
〈φ, n〉 in the node label, and if the branch labelφ is cur-
rently true then continue execution from noden. Exactly
one branch label must be true for this to be well-defined.

Definition 6 (The execution graph of a plan) Let
〈A, I, O, G, V 〉 be a problem instance andπ = 〈N, b, l〉 be
a plan. Then we definethe execution graphof π as a pair
〈G, E〉 where

1. G = S × N whereS is the set of states (Boolean valua-
tions ofA),

2. E has an edge from〈s, n〉 to 〈s′, n′〉 if and only if
(a) n ∈ N is an operator node withl(n) = 〈o, n′〉 and

s′ ∈ imgo(s), or
(b) n ∈ N is a branch node with〈φ, n′〉 ∈ l(n) ands′ = s

ands |= φ.

Definition 7 A planπ = 〈N, b, l〉 solves a problem instance
〈A, I, O, G, V 〉 if its execution graph fulfills the following.

For all statess such thats |= I, for every(s′, n) to which
there is a path from(s, b) that does not visitG, there is also
a path from(s′, n) of length≥ 0 to some(s′′, n′) such that
s′′ |= G andn′ is a terminal node in the plan.

The definition says that a plan solves a problem instance
if none of its executions reaches a state from which goals are
not reachable.

The definition can be interpreted probabilistically. For
every nondeterministic choice in an operator we have to as-
sume that each of the alternatives has a non-zero probability.
A plan with unbounded looping is simply a plan that has no
finite upper bound on the length of its executions, but that
with probability 1 eventually reaches a goal state. A non-
looping plan also reaches a goal state with probability 1, but
there is a finite upper bound on the execution length.

The general decision problem addressed in this paper for
non-probabilistic conditional planning with partial observ-
ability can be defined as follows. Definitions for the various
special cases restrict the sets of operatorsO and sets of ob-
servable state variablesV .

Definition 8 The plan existence problemis the decision
problem of determining whether for a problem instance
〈A, I, O, G, V 〉 there is a plan that solves it.

Planning with Full Observability
The simplest planning problem without any uncertainty
about the current states is the one with one initial state and

deterministic operators. In this problem a sequence of oper-
ators always leads to a uniquely defined state. Computation-
ally this problem is simpler than the ones with nondetermin-
ism or several initial states.

Theorem 9 (Bylander 1994)The plan existence problem
for problem instances with only one initial state and deter-
ministic operators is PSPACE-complete.

With nondeterminism (with or without probabilities) and
full observability the problem of existence of plans that
reach the goal states with probability≥ c is EXP-complete
(Littman 1997). Of course, without probabilities onlyc = 1
is meaningful. Littman showed EXP-hardness by reduction
from the gameG4 (Stockmeyer & Chandra 1979). The re-
duction usesc = 1, and hence shows hardness for both the
probabilistic and the non-probabilistic problem.

Here we sketch a new proof based on the equality EXP =
APSPACE. In Theorem 15 we generalize this proof and our
EXPSPACE-hardness proof from Theorem 13 to a 2-EXP-
hardness proof for the general partially observable problem.

Theorem 10 The plan existence problem for problem in-
stances with full observability, restricted to acyclic plans,
is EXP-hard.

Proof: We just give a proof sketch. The proof is a Turing
machine simulation like the PSPACE-hardness proof of clas-
sical planning (Bylander 1994), and, more closely, a simula-
tion of alternating Turing machines in our 2-EXP-hardness
proof for planning with partial observability in Theorem 15
but without the watched tape cell construction for handling
exponentially long working tapes. We simulate the class of
alternating Turing machines with a polynomial space bound,
yielding hardness for EXP = APSPACE. Because only a
polynomial amount of tape is needed, the tape contents can
be explicitly represented in the state variables just like in the
PSPACE-hardness proof by Bylander (1994).

The difference to Bylander’s proof is caused by the∀ and
∃ states of the ATM. For∀ states all the successor configu-
rations have to be accepting, and this is represented as one
nondeterministic operator that simulates the nondeterminis-
tic transition to one of the successor configurations. For∃
states at least one of the successor configurations has to be
accepting, and as the successor configuration can be cho-
sen by the plan, there are several deterministic operators,
each choosing one successor configuration. After the non-
deterministic∀ transitions the conditional plan branches and
chooses the appropriate way to proceed, yielding an exact
correspondence with the AND-OR tree evaluation in the def-
inition of alternating Turing machines: the ATM accepts if
and only if there is a plan that reaches the goal states under
all nondeterministic choices. For more details see the proof
of Theorem 15. �

Testing plan existence, and also finding a plan, can be
done in exponential time.

Theorem 11 The plan existence problem for problem in-
stances with full observability is in EXP.

Proof: We give a brief proof sketch. Taking a problem in-
stance represented succinctly in terms of operators and pro-
ducing a corresponding exponential size non-succinct ex-
plicit representation of its state space takes only exponen-
tial time in the size of the problem instance. There are al-
gorithms for finding conditional plans (with loops) in poly-
nomial time in the size of the state space, see for example
(Cimatti et al. 2003). Hence determining the existence of a
plan can be done in exponential time. �

Planning without Observability
The plan existence problem in probabilistic planning with-
out observability is undecidable. Madani et al. (2003)
prove this by using the close connection of the problem
to the emptiness problem of probabilistic finite automata
(Paz 1971; Condon & Lipton 1989). Without observabil-
ity, plans are sequences of actions. The emptiness problem
is about the existence of a word with an acceptance proba-
bility higher thanc. This equals the planning problem when
plans are identified with words and goal states are identified
with accepting states. The acceptance probability may be in-
creased by increasing the length of the word, and in general
from a givenc no finite upper bound can be derived and the
problem is therefore undecidable.

Whenc = 1 the situation is completely different. Prob-
abilities strictly between 0 and 1 can be identified, which
leads to a finite discrete belief space. For any problem in-
stance there is a finite upper bound on plan length, if a plan
exists, and repetitive strategies for increasing success prob-
ability to 1 do not have to be used and they do not help in
reaching 1. Notice that for every other fixedc ∈]0, 1[un-
decidability holds as the general problem can be reduced to
the fixed-c problem for anyc ∈]0, 1[by adding a first action
that scales every success probability to the fixedc.

The unobservable planning problem is easily seen to be
in EXPSPACE. Haslum and Jonsson (2000) point out this
fact and outline the proof which is virtually identical to the
PSPACE membership proof of plan existence for classical
planning (Bylander 1994) except that it works at the level of
belief states instead of states. For a problem represented in
terms ofn state variables, there may be2n states, but22n

belief states, which is why plans may be much longer and
the complexity of the unobservable problem is much higher.

Theorem 12 The plan existence problem for problem in-
stances without observability is in EXPSPACE.

Haslum and Jonsson (2000) also show that an unobserv-
able planning problem similar to ours is EXPSPACE-hard.
Their proof is a reduction from the EXPSPACE-hard uni-
versality problem of regular expressions with exponentiation
(Hopcroft & Ullman 1979).

Our EXPSPACE-hardness proof simulates deterministic
exponential-space Turing machines by planning. The main
problem to be solved is the simulation of exponentially long
tapes. In the PSPACE-hardness proof of classical planning
each tape cell can be represented by one state variable, but
with an exponentially long tape this kind of simulation is

not possible. Instead, we use a randomization technique that
forces the tape contents to be faithfully represented in the
plan.

Theorem 13 The plan existence problem for problem in-
stance with unobservability is EXPSPACE-hard. This holds
also for problem instances with deterministic operators.

Proof: Let 〈Σ, Q, δ, q0, g〉 be a deterministic Turing machine
with an exponential space bounde(x), andσ an input string
of lengthn. We denote theith symbol ofσ by σi.

For encoding numbers from0 to e(n) + 1 we needm =
dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance without observability for
simulating the Turing machine. The size of the instance is
polynomial in the size of the TM and the input string.

It turns out that when not everything is observable, in-
stead of encoding all tape cells in the planning problem, it
is sufficient to keep track of only one tape cell (which we
call thewatched tape cell) which is randomly chosen in the
beginning of every plan execution.

The setA of state variables consists of

1. q ∈ Q for the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape cell,

3. s ∈ Σ ∪ {|,2} for contents of the watched tape cell, and

4. hi, i ∈ {0, . . . ,m− 1} for the position of the R/W head.

Notice that we use the symbolsq ands for states and sym-
bols as well as for corresponding state variables.

The initial state formula describes several initial states
corresponding to the different choices of the watched tape
cell (the watched tape cell encoded by state variablesw does
not change later.) Otherwise the formula encodes the initial
configuration of the TM, and it is the conjunction of the fol-
lowing formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}
3. Contents of the watched tape cell:

| ↔ (w = 0)
2 ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state vari-
ableswi and the values of the state variabless ∈ Σ are
determined by the values ofwi. The expressionsw = i and
w > i denote the obvious formulae for integer equality and
inequality of the numbers encoded byw0, w1, We also
use effectsh := h + 1 andh := h− 1 for incrementing and
decrementing the number encoded by variableshi.

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects correspond-
ing to all possible transitions.

For all 〈s, q〉 ∈ (Σ ∪ {|,2}) × Q and〈s′, q′,m〉 ∈ (Σ ∪
{|})×Q×{L,N,R} define the effectτs,q(s′, q′,m) asα∧
κ ∧ θ where the effectsα, κ andθ are defined as follows.

The effectα describes the change to the current tape sym-
bol. If s = s′ thenα = > as nothing on the tape changes.
Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ changes the internal state of the TM. If there
is no R/W head movement or it is to the left,κ = ¬q ∧ q′

if q 6= q′ andκ = > otherwise. If R/W head movement is
to the right thenκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and
κ = (h = e(n)) B ¬q otherwise. This prevents reaching
an accepting state if the space bound is violated: no further
operators are applicable.

The effectθ describes the movement of the R/W head.

θ =

{
h := h− 1 if m = L

> if m = N
h := h + 1 if m = R

Now, these effectsτs,q(s′, q′,m) which simulate the
DTM transitions are used in the operators. Let〈s, q〉 ∈
(Σ ∪ {|,2})×Q andδ(s, q) = {〈s′, q′,m〉}.

If g(q) = ∃ then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉.

The simulation is faithful assuming that on all executions
of operatoros,q the current tape symbol is indeeds. So as-
sume that someos,q is the first operator that misrepresents
the tape contents. Leth = c for somec be the location of the
R/W head at this point of the plan. Now there is an execution
(initial state) of the plan so thatw = c. On this execution
the precondition ofos,q is not satisfied, and the plan is not
executable. Hence a valid plan cannot contain operators that
misrepresent the tape contents. �

Planning with Partial Observability
Showing that the plan existence problem for planning with
partial observability is in 2-EXP is straightforward. The eas-
iest way to see this is to view the partially observable plan-
ning problem as a nondeterministic fully observable plan-
ning problem with belief states viewed as states. An oper-
ator maps a belief state to another belief state nondetermin-
istically: compute the image of a belief state with respect
to an operator, and choose the subset of its states that corre-
spond to one of the possible observations. Like pointed out
in the proof of Theorem 11, the algorithms for fully observ-
able planning run in polynomial time in the size of the state
space. The state space with the belief states as the states
has a doubly exponential size in the size of the problem in-
stance, and hence the algorithm runs in doubly exponential
time in the size of the problem instance. This gives us the
membership in 2-EXP.

Theorem 14 The plan existence problem for problem in-
stances with partial observability is in 2-EXP.

The main result of the paper, the 2-EXP-hardness of par-
tially observable planning, is obtained as a generalization of

the proofs of Theorems 10 and 13. From the EXP-hardness
proof we take the simulation of alternation by nondetermin-
istic operators, and from the EXPSPACE-hardness proof the
simulation of exponentially long working tapes. These yield
a simulation of alternating Turing machines with an expo-
nential space bound, and thereby proof of AEXPSPACE-
hardness.

Theorem 15 The plan existence problem for problem in-
stance with partial observability, restricted to acyclic plans,
is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine
with an exponential space bounde(x). Let σ be an input
string of lengthn. We denote theith symbol ofσ by σi.

We construct a problem instance in nondeterministic plan-
ning with partial observability for simulating the Turing ma-
chine. The problem instance has a size that is polynomial
in the size of the description of the Turing machine and the
input string.

Here we just list the differences to the proof of Theorem
13 needed for handling alternation.

The set of state variables is extended with

1. s∗ for s ∈ Σ ∪ {|} for the symbol last written, and

2. L, R andN for the last movement of the R/W head.

The observable state variables areL, N andR, q ∈ Q, and
s∗ for all s ∈ Σ. These are needed by the plan to decide how
to proceed execution after a nondeterministic∀-transition.

The initial state formula is conjoined with¬s∗ for all s ∈
Σ∪{|} and with¬L∧¬N ∧¬R. The goal formula remains
unchanged.

Next we define the operators. All the transitions may
be nondeterministic, and the important thing is whether the
transition is for a∀ state or an∃ state. For a given input
symbol and a∀ state, the transition corresponds to one non-
deterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic
operators.

Effectsτs,q(s′, q′,m) = α ∧ κ ∧ θ are like in the proof
of Theorem 13 except for the following modifications. The
effectα is modified to store the written symbols to the state
variabless∗. If s = s′ thenα = > as nothing on the tape
changes. Otherwise,α = [(h = w) B (¬s ∧ s′)] ∧ s′∗ ∧∧

s′′∈Σ\{s′} ¬s′′∗. The effectθ is similarly extended to store
the tape movement toL, N andR.

θ =

{ (h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L
N ∧ ¬L ∧ ¬R if m = N

(h := h + 1) ∧R ∧ ¬L ∧ ¬N if m = R

Now, these effectsτs,q(s′, q′,m) which represent possible
transitions are used in the operators that simulate the ATM.
Operators for existential statesq, g(q) = ∃ and for universal
statesq, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,2})×Q and
δ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉.

That is, the plan determines which transition is chosen. If
g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
...
τs,q(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only

if the Turing machine accepts without violating the space
bound. If the Turing machine violates the space bound, then
h > e(n) and an accepting state cannot be reached because
no further operator will be applicable.

From an accepting computation tree of an ATM we
can construct a plan, and vice versa. Accepting final
configurations are mapped to terminal nodes of plans,∃-
configurations are mapped to operator nodes in which an
operator corresponding to the transition to an accepting suc-
cessor configuration is applied, and∀-configurations are
mapped to operator nodes corresponding to the matching
nondeterministic operators followed by a branch node that
selects the plan nodes corresponding to the successors of the
∀ configuration. The successors of∀ and∃ configurations
are recursively mapped to plans.

Construction of computation trees from plans is similar,
but involves small technicalities. A plan with DAG form can
be turned into a tree by having several copies of the shared
subplans. Branches not directly following the nondetermin-
istic operator causing the uncertainty can be moved earlier
so that every nondeterministic operator is directly followed
by a branch that chooses a successor node for every possi-
ble new state, written symbol and last tape movement. With
these transformations there is an exact match between plans
and computation trees of the ATM, and mapping from plans
to ATMs is straightforward like in the opposite direction.

Because alternating Turing machines with an exponential
space bound are polynomial time reducible to the nonde-
terministic planning problem with partial observability, the
plan existence problem is AEXPSPACE=2-EXP-hard.�

Plans with Loops
The complexities of the fully and partially observable prob-
lems hold also when loops are allowed in the plans. Loops
are needed for finitely representing repetitive strategies for
solving nondeterministic problem instances without an up-
per bound on execution length. A typical problem would be
to toss a die until its value is six. Assuming that the proba-
bility of the die falling on every side is non-zero, eventually
getting six has probability 1, although the zero-probability
event of having to unsuccessfully throw the die infinitely
many times is still possible.

In this section we extend Theorems 10 and 15 to general
plans with loops. The problem looping plans cause in the
proofs of these theorems is that a Turing machine computa-
tion of infinite length is not accepting but the corresponding
infinite length zero-probability plan execution is allowed to
be a part of plan and would incorrectly count as an accepting
Turing machine computation.

To eliminate infinite plan executions we have to mod-
ify the Turing machine simulations. This is by counting
the length of the plan executions and failing when at least
one state or belief state must have been visited more than
once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-
looping plan by unfolding the loop. In the absence of loops
the simulation of alternating Turing machines is faithful.

Theorem 16 The plan existence problem for problem in-
stances with full observability is EXP-hard.

Proof: This is an easy extension of the proof of Theorem
10. If there aren state variables, an acyclic plan exists if
and only if a plan with execution length at most2n exists,
because visiting any state more than once is unnecessary.
Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exceeds2n.
This counting can be done by havingn + 1 auxiliary state
variablesc0, . . . , cn that are initialized to false. Every oper-
ator 〈p, e〉 is extended to〈p, e ∧ t〉 wheret is an effect that
increments the binary number encoded byc0, . . . , cn by one
until the most significant bitcn becomes one. The goalG is
replaced byG ∧ ¬cn.

Then a plan exists if and only if an acyclic plan exists if
and only if the alternating Turing machine accepts. �

For the fully observable case counting the execution
length does not pose a problem because we only have to
count an exponential number of execution steps, which can
be represented by a polynomial number of state variables,
but in the partially observable case we need to count a dou-
bly exponential number of execution steps, as the number
of belief states to be visited may be doubly exponential. A
binary representation of these numbers requires an exponen-
tial number of bits, and we cannot use an exponential num-
ber of state variables for the purpose, because the reduction
to planning would not be polynomial time. However, par-
tial observability together with only a polynomial number
of auxiliary state variables can be used to force the plans to
count doubly exponentially far.

Theorem 17 The plan existence problem for problem in-
stances with partial observability is 2-EXP-hard.

Proof: We extend the proof of Theorem 15 by a counting
scheme that makes cyclic plans ineffective. We show how
counting the execution length can be achieved within a prob-
lem instance obtained from the alternating Turing machine
and the input string in polynomial time.

Instead of representing the exponential number of bits ex-
plicitly as state variables, we use a randomizing technique
for forcing the plans to count the number of Turing machine

transitions. The technique has resemblance to the idea in
simulating exponentially long tapes in the proofs of Theo-
rems 13 and 15.

For a problem instance withn state variables (represent-
ing the Turing machine configurations) executions that visit
each belief state at most once may have length22n

. Repre-
senting numbers from 0 to22n − 1 requires2n binary dig-
its. We introducen + 1 new unobservable state variables
d0, . . . , dn for representing the index of one of the digits
andvd for the value of that digit, and new state variables
c0, . . . , cn through which the plan indicates changes in the
counter of Turing machine transitions. There is a set of op-
erators by means of which the plan sets the values of these
variables before every transition of the Turing machine is
made.

The idea of the construction is the following. Whenever
the counter of TM transitions is incremented, one of the2n

digits in the counter changes from 0 to 1 and all of the less
significant digits change from 1 to 0. The plan is forced to
communicate the index of the digit that changes from 0 to
1 by the state variablesc0, . . . , cn. The unobservable state
variablesd0, . . . , dn, vd store the index and value of one of
the digits (chosen randomly in the beginning of the plan ex-
ecution), that we callthe watched digit, and they are used
for checking that the reporting ofc0, . . . , cn by the plan is
truthful. The test for truthful reporting is randomized, but
this suffices to invalidate plans that incorrectly report the in-
crements, as a valid plan has to reach the goals on every
possible execution. The plan is invalid if reporting is false
or when the count can exceed22n

. For this reason a plan
for the problem instance exists if and only if an acyclic plan
exists if and only if the Turing machine accepts the input
string.

Next we exactly define how the problem instances defined
in the proof of Theorem 15 are extended with a counter to
prevent unbounded looping.

The initial state description is extended with the conjunct
¬dv to signify that the watched digit is initially 0 (all the
digits in the counter implicitly represented in the belief state
are 0.) The state variablesd0, . . . , dn may have any values
which means that the watched digit is chosen randomly. The
state variablesdv, d0, . . . , dn are all unobservable so that the
plan does not know the watched digit (may not depend on it).

There is also a failure flagf that is initially set to false by
having¬f in the initial states formula.

The goal is extended by¬f ∧ ((d0 ∧ · · · ∧ dn) →¬dv)
to prevent executions that lead to settingf true or that have
length22n+1−1 or more. The conjunct(d0∧· · ·∧dn)→¬dv

is false if the index of the watched digit is2n+1 − 1 and the
digit is true, indicating an execution of length≥ 22n+1−1.

Then we extend the operators simulating the Turing ma-
chine transitions, as well as introduce new operators for in-
dicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n}
〈>,¬ci〉 for all i ∈ {0, . . . , n}

The operators for Turing machine transitions are extended
with the randomized test that the digit the plan claims to

change from 0 to 1 is indeed the one: every operator〈p, e〉
defined in the proof of Theorem 15 is replaced by〈p, e ∧ t〉
where the testt is the conjunction of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv

Here c = d denotes(c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn) and
c > d encodes the greater-than test for the binary numbers
encoded byc0, . . . , cn andd0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from
0 to 1 and the value ofdv is 1, fail.

2. When the plan claims that the watched digit changes from
0 to 1, changedv to 1.

3. When the plan claims that a more significant digit changes
from 0 to 1 and the value ofdv is 0, fail.

4. When the plan claims that a more significant digit changes
from 0 to 1, set the value ofdv to 0.

That these effects guarantee the invalidity of a plan that re-
lies on unbounded looping is because the failure flagf will
be set if the plan lies about the count, or the most signifi-
cant bit with index2n+1 − 1 will be set if the count reaches
22n+1−1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indexi changes from 0
to 1 (and therefore all less significant digits change from 1
to 0) and the plan incorrectly claims that it is the digitj
that changes, and this is the first time on that execution that
the plan lies (hence the value ofdv is the true value of the
watched digit.)

If j > i, then i could be the watched digit (and hence
c > d), and forj to change from 0 to 1 the less significant
bit i should be 1, but we would know that it is not because
dv is false. Consequently on this plan execution the failure
flagf would be set.

If j < i, thenj could be the watched digit (and hencec =
d), and the value ofdv would indicate that the current value
of digit j is 1, not 0. Consequently on this plan execution
the failure flagf would be set.

So, if the plan does not correctly report the digit that
changes from 0 to 1, then the plan is not valid. Hence any
valid plan correctly counts the execution length which can-
not exceed22n+1−1. �

Impact of Determinism on Complexity
Our proofs for the EXP-hardness and 2-EXP-hardness of
plan existence for fully and partially observable planning use
nondeterminism. Also the EXP-hardness proof of Littman
(1997) uses nondeterminism. The question arises whether
complexity is lower when all operators are deterministic.

Theorem 18 The plan existence problem for problem in-
stances with full observability and deterministic operators
is in PSPACE.

N1 N2 N3 Nn

N0

Figure 2: In a deterministic problem instance, the sum of
the cardinalities of the possible sets of states at plan nodes
N1, . . . , Nn cannot exceed the cardinality of the possible set
of states at the root node of the planN0. HereN1, . . . , Nn

are plan nodes that intersect the plan in the sense that no
node is an ancestor of another.

Proof: This is because iteration over an exponential num-
ber of initial states needs only polynomial space, and testing
goal reachability for each initial state needs only polyno-
mial space like in the PSPACE membership proof of classi-
cal planning (Bylander 1994). �

Under unobservability determinism does not reduce com-
plexity: proof of Theorem 13 uses deterministic operators
only. But for the general partially observable problem de-
terminism does reduce complexity. EXPSPACE-hardness is
inherited from the deterministic unobservable problem, and
membership in EXPSPACE is as follows.

Theorem 19 The plan existence problem for problem in-
stances with partial observability and deterministic opera-
tors is in EXPSPACE.

Proof: The idea is similar to the EXPSPACE membership
proof of planning without observability: go through all pos-
sible intermediate stages of a plan by binary search. De-
terminism yields an exponential upper bound on the sum of
the cardinalities of the belief states that are possible after
branching and taking a given number of actions, (see Fig-
ure 2), and determinism also makes it unnecessary to visit
any belief state more than once. Hence plan executions have
doubly exponential length and binary search needs only ex-
ponential recursion depth.

Let 〈C1, . . . , Ck〉 be the classes of observationally indis-
tinguishable states. LetS be the set of states. For a belief
stateB and a setL of belief states with

∑
B′∈L |B′| ≤ |S|,

test reachability ofL from B with plans of maximum exe-
cution length2i by the following procedure.

procedure reach(B,L,i)
if i = 0 then

begin
for each j ∈ {1, . . . , k}

if imgo(B) ∩ Cj 6⊆ B′ for all o ∈ O andB′ ∈ L
and B ∩ Cj 6⊆ B′ for all B′ ∈ L

deterministic non-deterministic
full observability PSPACE EXP
no observability EXPSPACE EXPSPACE
partial observability EXPSPACE 2-EXP

Table 1: Summary of complexities of planning with multi-
ple initial states, deterministic or non-deterministic opera-
tors, and different degrees of observability.

deterministic non-deterministic
full observability T9, T18 T16, T11
no observability T13, T12 T13, T12
partial observability T13, T19 T14, T17

Table 2: Theorems establishing hardness and membership.

then return false
end
return true;

end
else

for eachL′ ⊆ 2S such that
∑

B′∈L′ |B′| ≤ |B| and
for everyB′ ∈ L′, B′ ⊆ Cj for somej ∈ {1, . . . , k}

if reach(B,L′,i− 1) then
begin

flag := true;
for eachB′ ∈ L′

if reach(B′,L,i− 1) = falsethen flag := false;
if flag = truethen return true

end
end

return false

The base casei = 0 tests whether for every observation
from B a belief state inL is reached by one operator or
directly. The inductive casei ≥ 1 iterates over setsL′ of
intermediate belief states and recursively tests reachability
from B to L′ and further fromL′ to L.

We can now test plan existence by calling reach(B,L,|S|)
for everyB = I ∩ Ci, i ∈ {1, . . . , k} andL = {G ∩ Ci|i ∈
{1, . . . , k}}. The algorithm always terminates, and a plan
exists if and only if answertrue is obtained in all cases.

The space consumption is (only) exponential because the
recursion depth is exponential and the setsL′ ⊆ 2S with∑

B′∈L′ |B′| ≤ |B| have size≤ |S|. SetsL′ this small
suffice because all operators are deterministic, and after
any number of actions, independently of how the plan has
branched, the sum of the cardinalities of the possible belief
states is not higher than the number of initial states. �

Summary
The complexities of the problems discussed in this paper
are summarized in Table 1 and the corresponding theorems
showing hardness and membership are listed in Table 2.
Restriction to only one initial state affects the determinis-
tic unobservable and partially observable planning problems
only: they both come down to PSPACE from EXPSPACE.

Related Work and Conclusions
In this paper we have proved that the plan existence prob-
lem of propositional non-probabilistic planning with partial
observability is 2-EXP-complete and the special case with
deterministic operators is EXPSPACE-complete. Complex-
ity of classical planning and non-probabilistic propositional
planning with observability restrictions (full observabil-
ity, no observability) was already known (Bylander 1994;
Littman 1997; Haslum & Jonsson 2000).

We also gave more direct proofs of EXPSPACE-hardness
of planning without observability and EXP-hardness of
planning with full observability, shedding more light to re-
sults first proved by Haslum and Jonsson and by Littman,
and discussed the impact of determinism on complexity.

Our results do not address plan optimality with respect to
a cost measure, like plan size or plan depth, but it seems that
for many cost measures there is no increase in complexity
and that this is in many cases easy to prove. On the other
hand, even when it is required that goals are reached with
certainty, probabilistic optimality measures like expected
costs can easily be seen to make the plan existence problem
undecidable.

The complexity of conditional planning with different
combinations of restrictions on plan sizes and execution
lengths (polynomial plan size, polynomial execution length,
constant execution length) have been investigated in ear-
lier work (Rintanen 1999; Baral, Kreinovich, & Trejo 2000;
Turner 2002).

The complexity of constructing and evaluating policies
for MDPs with the restriction to finite-horizon performance
has been thoroughly analyzed by Mundhenk et al. (2000).
They evaluate the computational complexity of policy evalu-
ation and policy existence under different restrictions. While
in the fully observable, unobservable and in the general case
we have problems complete for EXP, EXPSPACE and 2-
EXP, Mundhenk et al. have EXP, NEXP and EXPSPACE
for history-dependent POMDPs with problem instances rep-
resented as circuits, exponentially long horizons and same
observability restrictions. The latter complexities are this
low because of the exponential horizon length.

References
Balcázar, J. L.; D́ıaz, J.; and Gabarró, J. 1988.Structural
Complexity I. Berlin: Springer-Verlag.
Balcázar, J. L.; D́ıaz, J.; and Gabarró, J. 1990.Structural
Complexity II. Berlin: Springer-Verlag.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness.Artificial Intelligence
122(1):241–267.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Chandra, A.; Kozen, D.; and Stockmeyer, L. 1981. Alter-
nation.Journal of the ACM28(1):114–133.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-

bolic model checking.Artificial Intelligence147(1–2):35–
84.
Condon, A., and Lipton, R. J. 1989. On the complexity
of space bounded interactive proofs (extended abstract). In
Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science, 462–467. IEEE.
Haslum, P., and Jonsson, P. 2000. Some results on the
complexity of planning with incomplete information. In
Biundo, S., and Fox, M., eds.,Recent Advances in AI Plan-
ning. Fifth European Conference on Planning (ECP’99),
number 1809 in Lecture Notes in Artificial Intelligence,
308–318. Springer-Verlag.
Hopcroft, J. E., and Ullman, J. D. 1979.Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley Publishing Company.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998.
The computational complexity of probabilistic planning.
Journal of Artificial Intelligence Research9:1–36.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. InProceedings of the 14th
National Conference on Artificial Intelligence (AAAI-97)
and 9th Innovative Applications of Artificial Intelligence
Conference (IAAI-97), 748–754. Menlo Park: AAAI Press.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the un-
decidability of probabilistic planning and related stochastic
optimization problems.Artificial Intelligence147(1–2):5–
34.
Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender,
E. 2000. Complexity of finite-horizon Markov decision
process problems.Journal of the ACM47(4):681–720.
Paz, A. 1971.Introduction to Probabilistic Automata. Aca-
demic Press.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover.Journal of Artificial Intelligence Research
10:323–352.
Stockmeyer, L. J., and Chandra, A. K. 1979. Provably dif-
ficult combinatorial games.SIAM Journal on Computing
8(2):151–174.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. InLogics in Artificial Intelligence,
European Conference, JELIA 2002, number 2424 in Lec-
ture Notes in Computer Science, 111–124. Springer-
Verlag.

