
Generating Robust Schedules through Temporal Flexibility

Nicola Policella
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

n.policella@istc.cnr.it

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University
Pittsburgh, USA

sfs@cs.cmu.edu

Amedeo Cesta
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

a.cesta@istc.cnr.it

Angelo Oddi
Planning & Scheduling Team

ISTC-CNR
Rome, Italy

a.oddi@istc.cnr.it

Abstract

This paper considers the problem of generatingpartial or-
der schedules(POS), that is, schedules which retain tempo-
ral flexibility and thus provide some degree of robustness in
the face of unpredictable execution circumstances. We begin
by proposing a set of measures for assessing and comparing
the robustness properties of alternativePOSs. Then, using a
common solving framework, we develop two orthogonal pro-
cedures for constructing aPOS. The first, which we call the
resource envelope based approach, uses computed bounds on
cumulative resource usage (i.e., a resource envelope) to iden-
tify potential resource conflicts, and progressively winnows
the total set of temporally feasible solutions into a smaller set
of resource feasible solutions by resolving detected conflicts.
The second, referred to as the earliest start time approach,
instead uses conflict analysis of a specific (i.e., earliest start
time) solution to generate an initial fixed-time schedule, and
then expands this solution to a set of resource feasible solu-
tions in a post-processing step. We evaluate the relative effec-
tiveness of these two procedures on a set of project schedul-
ing benchmark problems. As might be expected, the second
approach, by virtue of its more focused analysis, is found to
be a more efficientPOS generator. Somewhat counterintu-
itively, however, it is also found to producePOSs that are
more robust.

Introduction
In most practical scheduling environments, off-line sched-
ules can have a very limited lifetime and scheduling is really
an ongoing process of responding to unexpected and evolv-
ing circumstances. In such environments, insurance of ro-
bust response is generally the first concern. Unfortunately,
the lack of guidance that might be provided by a schedule
often leads to myopic, sub-optimal decision-making.

One way to address this problem isreactively, through
schedule repair. To keep pace with execution, the repair pro-
cess must be both fast and complete. The response to a dis-
ruption must be fast because of the need to re-start execution
of the schedule as soon as possible. A repair must also be
complete in the sense of accounting for all changes that have

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

occurred, while attempting to avoid the introduction of new
changes. As these two goals can be conflicting, a compro-
mise solution is often required. Different approaches exist
and they tend to favor either timeliness (Smith 1994) or com-
pleteness (El Sakkout & Wallace ) of the reactive response.

An alternative,proactiveapproach to managing execution
in dynamic environments is to focus on building schedules
that retain flexibility and are able to absorb some amount
of unexpected events without rescheduling. One technique
consists of factoring time and/or resource redundancy into
the schedule, taking into account the types and nature of un-
certainty present in the target domain (Davenport, Gefflot,
& Beck 2001). An alternative technique is to construct an
explicit set of contingencies (i.e., a set of complementary
solutions) and use the most suitable with respect to the ac-
tual evolution of the environment (Drummond, Bresina, &
Swanson 1994).

Both of these proactive techniques presume an awareness
of the possible events that can occur in the operating envi-
ronment, and in some cases, these knowledge requirements
can present a barrier to their use. For this reason, in the
perspective of robust approaches, we consider a less knowl-
edge intensive approach: to simply build solutions that retain
temporal flexibility where problem constraints allow. We
take two solution properties –the flexibility to absorb unex-
pected events and a solution structure that promotes local-
ized change– as our primary solution robustness objectives,
to promote both high reactivity and solution stability as ex-
ecution proceeds.

We develop and analyze two methods for producing tem-
porally flexible schedules. Both methods follow a general
precedence constraint posting (PCP) strategy, which aims
at the construction of a partially ordered solution, and pro-
ceeds by iteratively introducing sequencing constraints be-
tween pairs of activities that are competing for the same
resources. The methods differ in the way that they de-
tect and analyze potential resource conflicts (also referred
to as resource contention peaks). The first method uses a
pure least commitment approach. It computes upper and
lower bounds on resource usage across all possible execu-
tions according to the exact computations recently proposed



in (Muscettola 2002) (referred to as the resource envelope),
and successively winnows the total set of time feasible so-
lutions into a smaller resource-feasible set. The second
method, alternatively, takes the opposite extreme approach.
It utilizes a focused analysis of one possible execution (the
early start time profile) as in (Cesta, Oddi, & Smith 1998;
2002), and establishes resource feasibility for a specific
single-point solution (the early start time solution). This sec-
ond approach is coupled with a post-processing phase which
transforms this initially generated point solution into a tem-
porally flexible schedule. These two algorithms are evalu-
ated on a challenging benchmark from the OR literature and
solution sets produced in each case compared with respect
to solution robustness properties. Before describing these
methods, we first define the scheduling problem of inter-
est and propose some candidate measures for characterizing
schedule robustness.

The Scheduling Problem
Given a set of activities, a set of temporal constraints and
a set of resources with limited capacity, a scheduling prob-
lem consists of finding a temporal allocation of each activity
such that all the resources are used consistently. In this work,
we use the Resource-Constrained Project Scheduling Prob-
lem with Minimum and Maximum time lags (RPCSP/max)
as a reference (Bartusch, Mohring, & Radermacher 1988).
This problem involves synchronizing the use of a set of re-
newable resourcesR = {r1 . . . rm} to perform a set of ac-
tivities V = {a1 . . . an} over time. The execution of each
activity is subject to the following constraints:

- each activityaj has a durationduraj , a start timesaj and
an end timeeaj such thateaj = saj + duraj ;

- each activityai requires the use ofreqik units of the re-
sourcerk for all of duraj

- a set of temporal constraintscij each defined for a pair of
activities(ai, aj) and of the form ofcmin

ij ≤ saj − sai ≤
cmax
ij ;

- each resourcerk has an integer capacitymaxk ≥ 1;

A solutionS = (s1, s2, . . . , sn) to a RCPSP/max is any tem-
porally consistent assignment of start times of all activities
in V which does not violate resource capacity constraints.

CSP representation. Our work is centered on a fairly
standard CSP representation of the scheduling problem. The
CSP (Constraint Satisfaction Problem) representation allows
us to separate the temporal constraints (a temporal con-
straints network) from the resource constraints.

The base of our representation is the temporal constraints
network which corresponds to a Simple Temporal Problem,
STP (Dechter, Meiri, & Pearl 1991). Each activityai to
be scheduled has associated with it two relevant events: the
start time,sai , and the end time,eai . All these events create
a setT of temporal variablesti named time points. We will
identify the time points associated with start and end time of

each activityai assai
= t2i−1 andeai

= t2i respectively.
Additionally, two dummy time pointst0 andt2n+1 are used
for representing the origin and the horizon of the problem,
that ist0 6 tj 6 t2n+1 ∀j ∈ 1, . . . , 2n.

Both the duration of the activity and the constraints be-
tween any pair of activities are represented as time con-
straints between time points:t2i−t2i−1 = eai

−sai
= durai

andcmin
ij 6 ti − tj 6 cmax

ij .
A directed edge-weighted graphGd(Vd, Ed) nameddis-

tance graphis associated with the STP. In the distance graph
the set of nodesVd represents the set of time points and the
set of edgesEd represents the set of constraints. In particu-
lar, for each constraint of the forma ≤ tj− tk ≤ b, the edge
(tk, tj) ∈ Ed with the labelb and the edge(tj , tk) ∈ Ed

with the label−a.
According to well known properties (Dechter, Meiri, &

Pearl 1991), the STP is consistent iff its distance graphGd

has no negative cycles. Letd(ti, tj) be the length of the
shortest path inGd from the nodeti to tj then−d(tj , ti)
andd(ti, tj) are, respectively, the maximum and the min-
imum distance between the two nodesti and tj , that is
−d(tj , ti) ≤ tj − ti ≤ d(ti, tj). In particular, when
tj = t0, the interval of possible values of the time pointti
is ti ∈ [−d(ti, t0), d(t0, ti)]. Finally, two consistent tem-
poral scenarios (in our case atemporal feasible solution)
are given by allocating each time pointti to its earliest
time value, est(ti) = −d(ti, t0), or to its latest time value,
lst(ti) = d(t0, ti).

Superimposed on top of the temporal representation,
functionsQj(t) for each resourcerj ∈ R are used to repre-
sent resource availability over time. To model the resource
usage of single activities, a valueruij is associated with any
time pointti to represent the change of resource availabil-
ity. In particular, for RCPSP/max, a resource “allocation”,
ruij = reqij , is associated with each activity start time
and a resource “deallocation”,ruij = −reqij , is associ-
ated with the end time. AssumingST is the set of solu-
tions to the STP and given a consistent assignmentτ ∈ ST ,
τ = (τ1, τ2, . . . , τn), we can define theresource profilefor
any resourcerj at any timet as the sum of the values asso-
ciated with the set of time points,ti = τi, allocated before
or at the instantt, τi ≤ t:

Qτ
j (t) =

∑

ti∈T ∧τi6t

ruij (1)

This function allows us to express the resource constraint as
an n-ary constraint on the set of time pointsT . An assign-
mentτ ∈ ST is said to beresource consistent(or resource
feasible) if and only if for each resourcerj the following
property holds:

0 6
∑

i|ti∈T ∧τi6t

ruij 6 maxj (2)

for each solution as long as the preceding formula is verified
the availability of the resourcerj will be sufficient to satisfy
all the requests.



Schedule Robustness
In the realm of scheduling problems different sources of un-
certainty can arise: durations may not be exactly known, re-
sources may have lower capacity than expected (e.g., due to
machine breakdowns), new tasks may need to be taken into
account. We consider a solution to a scheduling problem to
be robust if it provides an ability to absorb external events
and it is structured in a way that promotes solutionstability.
In fact, the solution has to avoid amplification of the effects
of a change over all its components. Keeping a solution as
stable as possible has notable advantages. For instance a
schedule might involve many people, each with different as-
signed tasks. Changing everyone’s task may lead to much
confusion. Our general goal is to generate schedules that
achieve these solution robustness properties.

In this paper we consider the generation of temporally
flexible schedules from this perspective. Within a tempo-
rally flexible schedule, each activity preserves a set of pos-
sible allocations, and these options provide a basis for re-
sponding to unexpected disruptions. More precisely, we
will focus on the construction ofpartially ordered solutions
(temporally consistent) that are also solutions of the overall
problem (resource consistent). The aim is not to arrive to a
single schedule but to instead identify a set of schedules that
in the following is calledPartial Order Schedule:

Definition 1 (Partial Order Schedule) A Partial Order
SchedulePOS for a problemP is a graph, where the nodes
are the activities ofP and the edges represent temporal
constraints between pairs of activities, such that any
possible temporal solution is also a consistent assignment.

Notice that the temporal constraints referred to in Defini-
tion 1 are both those defined in the problem and those added
to solve it.

A POS provides the opportunity to reactively respond to
external changes by simply propagating the effects of these
changes over the Simple Temporal Problem (a polynomial
time calculation), and hence can minimize the need to re-
compute new solutions from scratch. The challenge here is
to create scheduling algorithms that create “good”POSs,
where the “goodness” of aPOS is reflected by itssize, the
number of schedules that it “contains”. In general, the larger
the size of thePOS the more flexible it is, sincePOS size
is directly proportional to the ability to pick a tailored sched-
ule for the actual evolution of the world.

The concepts introduced above are still quite vague al-
though they give high-level intuition. We need a set of met-
rics for evaluating the quality of aPOS in terms of these
described features.

Evaluation Criteria. We will introduce three different
metrics, the first two aim at evaluating the robustness of
the solution by estimating its flexibility (size); the third esti-
mates schedule stability.

The first measure is taken from (Aloulou & Portmann
2003) and calledflexseq. It consists of counting thenum-

ber of pairs of activities in the solution which are not recip-
rocally related (i.e., not ordered with respect to one another
by, explicit or implicit, precedence constraints in thePOS).
This metric provides an analysis of the configuration of the
solution. The rationale for this measure is that when two
activities are not related it is possible to move one without
moving the other one. So the higher the value offlexseq the
lower the degree of interaction among the activities.

A second metric is taken from (Cesta, Oddi, & Smith
1998) and is based on the temporal slack associated with
each activity:

fldt =
∑

h 6=l

|d(eah
, sal

) + d(sal
, eah

)|
H × n× (n− 1)

× 100 (3)

whereH is the horizon of the problem,n is the number
of activities andd(tp1, tp2) is the distance between the two
time points. An estimation of the upper bound for the hori-
zonH is computed adding the duration of all the activities
and the value of minimal distance constraints between any
pair of activities. This metric characterizes thefluidity of a
solution, i.e., the ability to use flexibility to absorb temporal
variation in the execution of activities. The higher the value
of fldt, the less the risk of a “domino effect”, i.e. the higher
the probability of localized changes.

Whereas the previous parameters summarize the flexibil-
ity of a solution, we introduce a third measure, calleddis-
ruptibility, to take into account the impact of disruptions on
the schedule (stability):

dsrp =
1
n

n∑

i=1

slackai

numchanges(ai, ∆ai)
(4)

The valueslackai = d(t0, t2i) − (−d(t2i, t0)) represents
the temporal flexibility of each activityai , i.e., the ability
to absorb a change in the execution phase (t2i is the end
time of ai andd(t0, t2i), d(t2i, t0) are respectively its max-
imum and minimum possible value). Through the function
numchanges(ai,∆ai) the number of entailed changes given
a right shift∆ai of the activityai is computed. This func-
tion calculates the effect of propagating the value∆ai for-
ward, counting the number of activities which are shifted
(changed) in the process. In the empirical evaluation pre-
sented later in the paper, we will assume the biggest pos-
sible shift ∆ai = slackai when computing the number
of changes. Such a metric gives an estimate of stabil-
ity that incorporates the trade-off between the flexibility of
each activity,slackai , and the number of changes implied,
numchanges(ai,∆ai). The latter can be seen as the price to
pay for the flexibility of each activity.

We now turn the attention to algorithms for generating
POSs and an analysis of how they perform with respect to
these metrics.

A baseline PCP solver
To provide a basic framework for generatingPOSs, we re-
consider the work of some of the authors on Precedence



Constraint Posting (PCP) algorithms for solving schedul-
ing problems (Smith & Cheng 1993; Cesta, Oddi, & Smith
1998; 2002). A PCP algorithm aims at synthesizing addi-
tional precedence constraints between pairs of activities for
purposes of pruning all inconsistent allocations of resources
to activities. The algorithm uses a Resource Profile (equa-
tion 1) to analyze resource usage over time and detect peri-
ods of resource conflict (contention peaks). We will see how
different ways of computing and using the resource profile
lead to different PCP-like algorithms.

Figure 1 shows a basic greedy algorithm for precedence
constraint posting. Within this framework, a solution is
produced by progressively detecting time periods where re-
source demand is higher than resource capacity and post-
ing sequencing constraints between competing activities to
reduce demand and eliminate capacity conflicts. Given a
problem, expressed as a partial ordered plan, the first step of
the algorithm is to build an estimate of the required resource
profile according to current temporal precedences in the net-
work. This analysis can highlight contention peaks, where
resource needs are greater then resource availability.

Conflict collection. To be more specific, we call a set
of activities whose simultaneous execution exceeds the re-
source capacity acontention peak. The function Select-
Conflict-Set(S0) of Figure 1 collects all the peaks in the cur-
rent schedule, ranks them, picks the more critical and select
a conflict from this last peak.

The simplest way to extract a conflict from a peak is
through pairwise selection. It consists of collecting any
competing activity pairs〈ai, aj〉 associated with a peak and
ordering such activities with a new precedence constraint,
ai ≺ aj . The myopic consideration on any pair of activities
in a peak can, however, lead to an over commitment. For ex-
ample, consider a resourcerj with capacitymaxj = 4 and
three activitiesa1, a2 anda3 competing for this resource.
Assume that each activity requires respectively1, 2 and3
units of the resource. Consideration of all possible pairs of
activities will lead to consideration of the pair〈a1, a2〉. But
the sequencing of this pair will not resolve the conflict be-
cause the combined capacity requirement does not exceed
the capacity.

An enhanced conflict selection procedure which avoids
this problem is based on identification ofMinimal Critical
Sets(Laborie & Ghallab 1995) inside each contention peak.
A contention peak designates a conflict of a certain size (cor-
responding to the number of activities in the peak). AMini-
mal Critical Set, MCS, is a conflict such that no proper sub-
set of activities contained inMCS is itself a conflict. The idea
is to represent conflicts asMCSs and eliminating them by or-
dering any two activities included in theMCS. In the case
of the example above the onlyMCS is {a2, a3} and both the
precedence constraintsa2 ≺ a3 anda3 ≺ a2 solve the peak.

As in previous research, we integrateMCS analysis to
characterize conflicts within contention peaks. To avoid
the exponential computational expense of fullMCS analysis,

greedyPCP(P )
Input : A problemP
Output : A solutionS

S0 ← P
if Exists an unresolvable conflict inS0 then

return FAILURE
else

Cs ← Select-Conflict-Set(S0)
if Cs = ∅ then

S ← S0

else
(ai ≺ aj) ← Select-Leveling-Constraint(S0)
S0 ← S0 ∪ {ai ≺ aj}
S ← greedyPCP(S0)

return S

Figure 1: Template of a greedy precedence constraint post-
ing algorithm.

we also import twoMCS sampling proceduresfrom (Cesta,
Oddi, & Smith 2002):

Linear sampling: instead of collecting allMCSs, we use a
linear function of complexityO(p), wherep is the size of
the peak, to sample a subset ofMCSs;

Quadratic sampling: under this scheme, a larger subset of
MCSs are selected using a procedure of complexityO(p2),
wherep is the size of the peak.

In what follow we will utilize three different operators for
gathering conflicts: the simplepairwise selection, and the
increasingly accuratelinear andquadraticMCS sampling.

Conflict selection and resolution. Independent of
whether conflict selection is performed directly from activ-
ity pairs or from sampledMCSs, a single conflict will be
selected for resolution according to the “most constrained
first” principle. Given a selected pair of conflicting activi-
ties, the order between them will be chosen according to a
“least constraining” principle. The basic idea is to resolve
the conflict that is the most “dangerous” and solve it with a
commitment as small as possible.

More specifically, the following heuristics are assumed:

Ranking conflicts: for evaluating the contention peaks we
have used the heuristic estimator K described in (Laborie
& Ghallab 1995). A conflict is unsolvable if no pair of
activities in the conflict can be ordered. Basically, K mea-
sures how close a given conflict is to being unsolvable.

Slack-based conflict resolution: to choose an order be-
tween the selected pair of activities we applydominance
conditionsthat analyze the reciprocal flexibility between
activities (Smith & Cheng 1993). In the case where both
orderings are feasible, the choice which retains the most
temporal slack is taken.

It is worth underscoring that the above PCP framework es-
tablishes resource feasibility strictly by sequencing conflict-



ing activities. It remains non-committal on activity start
times. As such, PCP preserves temporal flexibility that fol-
lows from problem constraints. Further, the two heuristic
choices adopt a minimal commitment strategy with respect
to preserving temporal slack, and this again favors temporal
flexibility.

Two Profile-Based Solution Methods
As suggested previously, we can specify dramatically dif-
ferent solution methods by varying the approach taken to
generation and use of resource profiles. In this paper, we
consider two extreme approaches: (1) a pure least commit-
ment approach, which uses the resource envelope computa-
tion introduced in (Muscettola 2002) to anticipate all possi-
ble resource conflicts and establish ordering constraints on
this basis, and (2) an “inside-out” approach which uses the
focused analysis of early start time profiles that we intro-
duced in (Cesta, Oddi, & Smith 1998) to first establish a
resource-feasible early start time solution and then applies a
chaining procedure to expand this early start time solution
into aPOS. The subsections below consider these compet-
ing approaches in more detail.

Least-Commitment Generation Using Envelopes
The perspective of a “pure” least commitment approach to
scheduling consists of carrying out a refinement search that
incrementally restricts a partial solution (the possible tem-
poral solutionsτ ∈ ST ) with resource conflicts until a set of
solutions (aPOS in our case) is identified that is resource
consistent. A useful technical result has been produced re-
cently (Muscettola 2002) that potentially can contribute to
the effectiveness of this type of approach with an exact com-
putation of the so-called Resource Envelope. According to
the terminology introduced previously we can define the Re-
source Envelope as follows:

Definition 2 (Resource Envelope)LetST the set of tempo-
ral solutionsτ . For each resourcerj we define the Resource
Envelope in terms of two functions:

Lmax
j (t) = max

τ∈ST

{Qτ
j (t)}

Lmin
j (t) = min

τ∈ST

{Qτ
j (t)}

By definition the Resource Envelope represents thetightest
possible resource-level bound for a flexible plan.

Integration of the envelope computation into a PCP algo-
rithm is quite natural. It is used to restrict resource profile
bounds, in accordance with the current temporal constraints
in the underlying STP. In (Muscettola 2002) it is proved that
it is possible to find the Resource Envelope through a poly-
nomial algorithm. The advantage of using the resource en-
velope is that all possible temporal allocations are taken into
account during the solving process. In the remainder of this
section we briefly review the ideas behind computation of
the resource envelope. Then we introduce some new prop-
erties we have synthesized to make the computation more

efficient. Finally, we give details of how peak detection is
performed starting from an envelope.

Basic envelope properties. To find the maximum (mini-
mum) value of the resource level at any instantt most me-
thods consider the followingset partitionof the time points
(events)T :

- Bt: the set of eventsti s.t. lst(ti) ≤ t;

- Et: the set of eventsti s.t. est(ti) ≤ t < lst(ti);

- At: the set of eventsti s.t. est(ti) > t.

Since the events inBt are those which happen before or at
time t, they contribute to the value of the resource profile of
rj in the instantt. By the same argument we can exclude
from such a computation the events inAt. Then the cru-
cial point is to determine which of those inEt have to be
take into account. In (Muscettola 2002), instead, the author
proves that to find the subset ofEt for computing the up-
per (lower) bound, it is possible to avoid enumerating all the
possible combinations of events inEt. Muscettola shows
that a polynomial algorithm can be found through a reduc-
tion to Max-Flow, a well-known tractable problem. The ef-
fectiveness of the reduction is due to the fact that it is pos-
sible to exploit the relations among the set of events and to
consider only a subset of feasible combinations. The details
of the algorithm can be found in the original paper; we sim-
ply recall here that the method broadly consists of building
a Max-Flow problem from the set of events belonging toEt

and, after the max flow is found, the subsetPmax ⊆ Et

(Pmin ⊆ Et), of events that gives the maximum (minimum)
value of the resource level at the instantt, is computed per-
forming a linear analysis of the residual graph. An important
point is that it is not necessary to compute the resource-level
envelope in all possible instantst. Indeed, you only need to
computeLmax

j at times when eitherBt or Et changes. For
any time pointti this can only happen either at its earliest
time valueest(ti) = −d(ti, t0) or at its latest time value
lst(ti) = d(t0, ti).

Incremental computation of resource envelopes. A po-
tential drawback in using an envelope computation within a
scheduling algorithm such as the base PCP solver is the com-
putational burden of the Max-Flow computation. Despite
being polynomial, the computational cost is significant and
can become a limiting factor in the case of larger scheduling
problems. In this section, we establish some properties for
computing the envelope incrementally across points of dis-
continuity. In (Satish Kumar 2003) a method is proposed for
incrementally computing the resource envelope when a new
constraint is added. That method is complementary to the
properties that we are proposing here. Moreover since the
incremental methods to computePmin andPmax can be ob-
tained from each other with obvious term substitutions, we
only develop the method forPmax.

First, we need to define the overall contribution of a time
point ti to the resource envelope value. Given a time point



ti and a resourcerj we define its overall contribution to be
the value:

Σruij = ruij +
∑

∀tk|d(ti,tk)<0

rukj

It is trivial to observe that a time pointti ∈ Et will not
belong toPmax if its overall contribution is negative. Indeed
addingti at Pmax implies a reduction of the value of the
resource level at the instantt.

A first theorem allows us to restrict the set of time points
for whichPmax must be computed:

Theorem 1 If there exists a time pointti ∈ Et ∩ Et+1 and
ti ∈ Pmax(Et), thenti ∈ Pmax(Et+1).

Proof: Reductio ad absurdum.If ti ∈ Pmax(Et) andti /∈
Pmax(Et+1) holds, then int+1 the contribution of the time
point ti is negative. In turn, this entails that there must exist
a time pointtk, with rukj < −Σruij , such thattk ∈ Et+1∩
At andd(ti, tk) < 0. But the last two formulas are mutually
inconsistent, thus ifd(ti, tk) < 0 thentk ∈ Bt ∪ Et. This
contrasts withtk ∈ At. ¤

From this theorem it follows that at each instantt we need
to consider only the events inEt\Pmax to figure out which
events to insert intoPmax. Moreover, from the previous the-
orem, we can prove the following corollary:

Corollary 1 If Et+1\Pmax(Et) = Et\Pmax(Et) then
Pmax(Et+1) = Pmax(Et).

Unfortunately, for those events that belong toEt andEt+1

but not toPmax(Et) in t we can claim nothing. Anyway we
can prove the following necessary condition:

Theorem 2 An element t /∈ Pmax(Et) belongs to
Pmax(Et+1) only if one of the following two conditions
hold:

1. ∃t+i , with ruij > 0, s.t. t+i ∈ At ∩ (Et+1 ∪Bt+1)
2. ∃t−i , with ruij < 0, s.t. t−i ∈ (Et\Pmax(Et)) ∩Bt+1.

Proof: We prove the two cases separately:
Case 1: if ti ∈ At ∩ (Et+1 ∪ Bt+1) then a further element
is added toPmax only if ruij > 0. Indeed ifruij 6 0 then
there exists at least one productiont+k that is implied byt−i .
Thus it is possible to put onlyt+k in the setPmax having a
bigger value ofLmax. Thenruij > 0.
Case 2: if it existsti ∈ (Et\Pmax(Et))∩Bt+1 then a further
element is added toPmax only if ruij < 0. Indeed ifruij >
0 then it exists a time pointtk s.t. its contributeΣrukj > 0
and the combined contribute ofti and tk is negative. But
this is possible only ifΣruij<0 that is at least a time point
tz ∈ (Et\Pmax(Et)) ∩Bt+1 s.t. ruzj < 0. ¤

The above theorems allow a reduction in the computa-
tional cost of solving a given problem instance with a vari-
ant of a PCP-like solver that incorporates resource envelopes
for guidance, reducing the number of times that it is neces-
sary to recompute the setPmax (Theorem 1), and the size of
set from which to extract it, fromEt+1 to Et+1\Pmax(Et)
(Theorem 2).

Detecting peaks on resource envelopes.Once the Re-
source Envelope is computed it can be used to identify the
currentcontention peaksand the sets of activities related
to them. A first method (Policellaet al. 2003) for col-
lecting peaks consists of the following steps: (1) compute
the resource envelope profile, (2) detect intervals of over-
allocation, and (3) collect the set of activities which can
be potentially executed in such an interval. Unfortunately
this approach can pick activities which are already ordered.
For example, consider a problem with a binary resource and
three activitiesa1, a2 anda3 with the same interval of al-
location and the precedencea1 ≺ a2. In such a case the
above method would collect the peak{a1, a2, a3}; mean-
while, only two peaks,{a1, a3} and{a2, a3}, should be col-
lected in this case.

A more careful method should avoid such an aliasing ef-
fect. In particular a better method derives from considering
the setPmax. This method is based on the particular as-
sumption that each activity simply uses resources; without
production and/or consumption. Whether the value of the
resource envelope int is greater than the resource capacity,
Lj

max(t) > maxj , the contention peak will be composed of
every activityai such that the time point associated with its
start time is inPmax but the time point associated with its
end time is not, that is:

contention peak = {ai|t2i−1 ∈ Pmax ∧ t2i /∈ Pmax}.
To avoid collection of redundant contention peaks, the ex-
traction of the contention peak will be performed only if
there exists at least one end time of an activityai, t2i, such
that it moves fromAt−1 to Bt ∪ Et and at least one start
time of an activityaj , t2j−1, that moved inPmax since the
last time a conflict peak has been collected.

Inside-Out Generation Using Early Start Profiles
A quite different analysis of resource profiles has been pro-
posed in (Cesta, Oddi, & Smith 1998). In that paper an al-
gorithm calledESTA (for Earliest Start Time Algorithm) was
first proposed which reasons with the earliest start time pro-
file:

Definition 3 (Earliest Start Time Profile) Let est(ti) the
earliest time value for the time pointti. For each resource
rj we define the Earliest Start Time Profile as the function:

Qest
j (t) =

∑

ti∈T ∧est(ti)6t

ruij

This method computes the resource profile according to one
precise temporal solution: the Earliest Start Time Solution.
The method exploits the fact that unlike the Resource Enve-
lope, it analyzes a well-defined scenario instead of the range
of all possible temporal behaviors.

It is worth noting that the key difference between the earli-
est start time approach with respect to the resource envelope
approach is that while the latter gives a measure of the worst-
case hypothesis, the former identifies “actual” conflicts in



Chaining(P, S)
Input : A problemP and one of its fixed-times scheduleS
Output : A partial order solutionPOS

POS ← P
Initialize all queues empty
for all activity ai in increasing order w.r.t.S do

for all resourcerj do
k ← 1
for 1 to ruij do

a ← LastElement(queuejk)
while sai

≥ ea do
k ← k + 1
a ← LastElement(queuejk)

POS = POS ∪ {a ≺ ai}
Enqueue(queuejk, ai)
k ← k + 1

return POS

Figure 2: Chaining algorithm.

a particular situation (earliest start time solution). In other
words, the first approach says whatmayhappen in such a
situation relative to the entire set of possible solutions, the
second one, instead, whatwill happen in such a particular
case.

The limitation of this approach with respect to our current
purpose is that it ensures resource-consistency of only one
solution of the problem, the earliest start time solution. Us-
ing a PCP computation for solving, we always have a set of
temporally consistent solutionsST . However,ESTA will not
synthesize a set of solutions for the problem (i.e.,ST * S),
but the single solution in the earliest start time of the result-
ing STP. Below, we describe a method for overcoming this
limitation and generalizing an early start time solution into
a partial ordered schedule (POS). This will enable direct
comparison with thePOS produced by the envelope-based
approach.

Producing a POS with Chaining. A first method for pro-
ducing flexible solutions from an early start time solution
has been introduced in (Cesta, Oddi, & Smith 1998). It con-
sists of a flexible solution where achainof activities is asso-
ciated with each unit of each resource.

In this section we generalize that method for the more
general RCPSP/max scheduling problem considered in this
paper (see Figure 2). Given a earliest start solution, a trans-
formation method, namedchaining, is defined that proceeds
to create sets of chains of activities. This operation is accom-
plished by deleting all previously posted leveling constraints
and using the resource profiles of the earliest start solution
to post a new set of constraints.

The first step is to consider a resourcerj with capacity
maxj as a setRj of maxj single capacity sub-resources.
In this light the second step is to ensure that each activity is
allocated to the same subset ofRj . This step can be viewed

Figure 3: Chaining method: intuition.

in Figure 3: on the left there is the resource profile of a re-
sourcerj , each activity is represented with a different color.
The second step consists of maintaining the same subset of
sub-resources for each activity over time. For instance, in
the center of Figure 3 the light gray activities are re-drawn
in the way such that they are always allocated on the fourth
sub-resource. The last step is to build a chain for each sub
resource inRj . On the right of Figure 3 this step is rep-
resented by the added constraints. This explains why the
second step is needed. Indeed if the chain is built taking
into account only the resource profile, there can be a prob-
lem with the relation between the light gray activity and the
white one. In fact, using the chain building procedure just
described, one should add a constraint between them, but
that will not be sound. The second step allows this problem
to be avoided, taking into account the different allocation on
the set of sub-resourcesRj .

The algorithm in Figure 2 uses a set of queues,queuejk,
to represent each capacity unit of the resourcerj . The al-
gorithm starts by sorting the set of activities according to
their start time in the solutionS. Then it proceeds to al-
locate the capacity units needed for each activity. It se-
lects only the capacity units available at the start time of
the activity. Then when an activity is allocated to a queue, a
new constraint between this activity and the previous one
in the queue is posted. Letm and maxcap respectively
the number of resources and the maximum capacity among
the resources, the complexity of the chaining algorithm is
O(n log n + n ·m ·maxcap).

Summary of PCP Algorithm Variants
In closing the section we remark again that by working
with different resource profiles we have created two orthog-
onal approaches to generating aPOS: EBA (from Enve-
lope Based Algorithm) andESTA. One of them has required
a post processing phase to be adapted to the current pur-
pose (from the adaptation, the nameESTAC). Given these
two basic PCP configurations, recall that conflicts can be
extracted from peaks according to three different strategies:
pairwise selection,MCS linear sampling andMCS quadratic
sampling. The combination of these three methods with the
two different approaches to maintaining resource informa-
tion thus leads to six different configurations: three based
on the resource envelope,EBA, EBA+MCS linear,EBA+MCS

quadratic, and three based on the earliest start time profile,
ESTAC , ESTAC+MCS linear, ESTAC+MCS quadratic. The
next section presents a discussion of the results obtained



∆flexseq ∆fldt ∆dsrp
J10 J20 J30 J10 J20 J30 J10 J20 J30

EBA 86.27 83.77 76.80 37.21 35.94 30.77 46.89 42.09 41.63
EBA+MCS linear 83.36 84.94 81.57 35.11 39.57 41.41 44.37 41.49 42.78
EBA+MCS quadratic 83.99 86.54 83.58 35.20 41.81 44.33 44.90 43.23 43.56
ESTAC 80.56 79.96 74.98 32.79 35.27 40.79 35.96 25.99 27.17
ESTAC+MCS linear 79.79 80.41 74.97 32.42 34.87 40.94 34.75 26.74 28.39
ESTAC+MCS quadratic 79.94 80.79 75.26 32.46 35.56 39.61 35.16 28.37 27.55

Table 1:∆µ(P,S) for the three metricsflexseq, fldt anddsrp.

%solved makespan CPU-time (secs) posted constraints
J10 J20 J30 J10 J20 J30 J10 J20 J30 J10 J20 J30

EBA 77.04 50.74 43.33 58.31 96.48 118.17 0.32 3.88 24.77 11.54 33.40 63.29
EBA+MCS linear 85.19 71.11 68.89 55.29 92.65 112.14 0.77 11.35 48.89 11.12 32.87 56.84
EBA+MCS quadratic 97.78 89.63 82.22 55.47 94.03 116.10 0.91 13.21 68.22 12.38 34.98 59.64
ESTAC 96.30 95.56 96.30 47.35 72.90 79.21 0.32 1.75 5.40 6.40 18.69 35.10
ESTAC+MCS linear 98.15 96.67 96.67 46.63 72.45 78.45 0.34 2.14 8.08 6.23 17.49 34.07
ESTAC+MCS quadratic 98.15 96.67 97.04 46.70 72.75 78.55 0.34 2.27 9.51 6.26 17.40 34.00

Table 2: Comparison of both theEBA and theESTA approaches.

testing the six approaches on a significant scheduling prob-
lem benchmark: RPCSP/max.

Experimental Evaluation

This section compares the proposed set of algorithms with
respect to our definition of robustness and analyzes to what
extent temporally flexible solutions are alsorobustsolutions
able toabsorbunexpected modifications. We compare the
performance of each algorithm1 on the benchmark prob-
lems defined in (Kolisch, Schwindt, & Sprecher 1998). This
benchmark consists of three setsJ10, J20 andJ30 of 270
of problem instances of different size10 × 5, 20 × 5 and
30× 5 (number of activities× number of resources).

In a previous section we have introduced two metrics for
robustness:fldt and flexseq. Both these parameters are
correlated with the number of feasible solutionscontained
in aPOS. In particular,flexseq is directly correlated to the
number of unrelated pairs of activities (no precedence con-
straint) in a partial order schedule. On the contrary, the dis-
ruptibility dsrp is correlated with thestability of a solution,
such that we consider executions where only one unexpected
event at a time can occur (e.g., activity duration lasts longer
than expected or the start time of an activity is shifted for-
ward). We report as a result a value correlated to the average
number of activities affected (number of start time changes)
by the set of unexpected events.

In order to produce an evaluation of the three parameters
fldt, flexseq anddsrp that is independent from the problem
dimension, we evaluate the following incremental parameter

1All the algorithms presented in the paper are implemented in
C++ and the CPU times presented in the following tables are ob-
tained on a Pentium 4-1500 MHz processor under Windows XP.

for each generic metricµ (i.e.,flexseq, fldt or dsrp):

∆µ(P,S) =
µ(P)− µ(S)

µ(P)
× 100

whereµ(P) andµ(S) are respectively the values of the pa-
rameterµ for the problemP (the initial partial order) and
its solutionS (the final partial order). We observe that the
value∆µ is always positive or zero. In fact, for each met-
ric the addition of precedence constraints between activities
that are necessary to establish a resource-consistent solution
can only reduce the initial valueµ(P).

The results obtained, subdivided according to benchmark
set, are given in Tables 1 and 2. First, we observe that all
six tested strategies are not able to solve all the problems in
the benchmark setsJ10, J20 andJ30. The first column of
Table 2 shows the percentage of solved problems by each
strategy. This observation is particularly important, because
the rest of the experimental results in this section are com-
puted with respect to the subset of problem instances solved
by all the six approaches.

Table 1 presents the main results of the paper for the six
different approaches, according to the three incremental pa-
rameters∆µ introduced above. In each case, the lower the
values, the better the quality of the corresponding solutions.
In addition, Table 2 complements our experimental analysis
with four more results: (1) percentage of problems solved
for each benchmark set, (2) average CPU-time in seconds
spent to solve instances of the problem, (3) average mini-
mum makespan and (4) the number of leveling constraints
posted to solve a problem.

From Table 1 we first observe that theESTAC approaches
dominate theEBA approaches across all problem sets for the
two metrics directly correlated to solution robustness. And
this observation is confirmed in the third column (∆dsrp)



J10 J20 J30
scratch incremental ∆% scratch incremental ∆% scratch incremental ∆%

EBA 0.616 0.32 48.1 10.36 3.88 62.5 50.58 24.77 51.0
EBA+MCS linear 1.742 0.77 55.8 28.83 11.35 60.6 128.9 48.89 62.1
EBA+MCS quadratic 1.947 0.91 53.2 34.05 13.21 61.2 190.1 68.22 64.1

Table 3: Comparison between the CPU-time (secs) required by theEBA approaches using both the incremental and no-
incremental method for computing the resource envelope.

where better values of flexibility correspond to better values
of disruptibility (stability). Hence, the solutions created with
ESTAC are more appropriate to absorb unexpected events.

This fact induces further observations about the basic
strategies behind the two algorithms.EBA removes all pos-
sible resource conflicts from a problemP by posting prece-
dence constraints and relying on an envelope computation
that produces thetightestpossible resource-level bounds for
a flexible schedule. When these bounds are less than or
equal to the resource capacities, we have a resource-feasible
partial order ready toface with uncertainty. However, in
order to remove all possible conflictsEBA has to impose
more precedence constraints than doesESTAC (see column
labeled withposted constraintsin Table 2), with the risk
of overcommitment in the final solution. In fact, in com-
paring EBA with ESTAC , it can be seen that theEBA ap-
proach is actually less effective. It solves significantly fewer
problems thanESTAC in each problem set, obtains solutions
with higher makespans, incurs higher CPU times and posts
more precedence constraints. By addingMCS analysis to the
EBA search configuration, we obtain a noticeable improve-
ment of the results. In fact, in the case of quadratic sam-
pling the number of problem solved is closer to that achieved
with theESTAC approach. However, we pay an higher CPU
time price and there are no significant improvements in the
makespan and in the number of constraints posted (Table 2).

On the other hand, as previously explained,ESTAC is a
two step procedure: theESTA step creates a particular par-
tial order that guarantees only the existence of the early start
time solution; the chaining step converts this partial order
into aPOS. It is worth reminding that the number of prece-
dence constraints is alwaysO(n) and for each resource, the
form of the partial order graph is a set ofparallel chains.
These last observations probably identify the main factors
which enable a more robust solution behavior, i.e.,ESTAC

solutions can be seen as a set oflayers, one for each unit of
resource capacity, which canslide independently to hedge
against unexpected temporal shifts.

A note on envelope efficiency. We end the section with
a final remark about our research goals. The main aim of
this work has not been to find a way to beat an envelope-
based algorithm, but rather to try to understand ways to use
it for finding robust solutions. In this respect,EBA is the
first scheduling algorithm to integrate the recent research re-
sults on exact bound computation into a scheduling frame-

work, and, in addition, we have improved the efficiency of
the envelope computation considerably with respect to our
preliminary experiments (Policellaet al. 2003). One spe-
cific result of this paper is a set of properties to reduce its
high associated computational cost.

Indeed, the computation of the envelope implies that it is
necessary to solve a Max-Flow problem for each time-point.
As indicated in (Muscettola 2002), this leads to an over-
all complexity ofO(n4) which can be reduced toO(n2.5)
in practical cases. These computational requirements at
present limit the effective application of the resource en-
velope. In the current implementation we use a Max-Flow
method based on thepre-flowconcept (Goldberg & Tarjan
1988). The use of the incremental properties described in a
previous section speeds up the solving process by avoiding
re-computation of the envelope at each step of the search.
Moreover Theorem 2 allows us to apply the Max-Flow al-
gorithm to a subset ofEt+1: Et+1\Pmax(Et).

Table 3 reports the overall speedup obtained in solving in-
stances of the three benchmark sets with respect to the prop-
erties expressed by Theorems 1 and 2. In particular, for each
configuration of theEBA algorithm and each benchmark set
(J10, J20 and J30) there are three different results: the
average CPU-time in seconds for solving a benchmark set
without incremental computation (columnscratch), as the
previous one but with the use of the incremental proper-
ties (columnincremental) and the obtained percentage im-
provement over the no-incremental version ofEBA (column
∆%). The results confirm the effectiveness of the incre-
mental computation which is able to improve the CPU-time
from a minimun of48.1% to a maximum of64.1% over the
scratch computation.

Conclusion
In this work we have investigated two orthogonal ap-
proaches (EBA andESTAC) to building scheduling solutions
that hedge against unexpected events. The two approaches
are based on two different methods for maintaining profile
information: one that considers all temporal solutions (the
resource envelope) and one that analyzes the profile for a
precise temporal solution (the earliest start time solution).

To evaluate the quality of respective solutions we intro-
duced three measures that capture desirable properties ofro-
bustsolutions. The first two metrics (fldt andflexseq) are
correlated to the degree of schedule robustness that is re-
tained in generated solutions. The third, disruptibilitydsrp,



can alternatively be seen as the result of a simulation of solu-
tion execution, where we consider executions in which only
one unexpected event can occur at a time. In addition, we
focus our attention only to temporal disruptions: situations
where an activity duration lasts longer than expected, or the
start time of an activity is shifted forward.

Considering comparative performance on a set of bench-
mark project scheduling problems, we have shown that the
two stepESTAC procedure, which first computes a single-
point solution and then translates it into a temporally flexi-
ble partial order schedule, is a more effective approach than
the pure, least-commitmentEBA approach. In fact, the first
step preserves the effectiveness of theESTA approach (i.e.,
makespan and CPU time minimization), while the second
step has been shown to be capable of re-instating temporal
flexibility in a way that produces a final schedule with better
robustness properties.

Acknowledgments

Stephen F. Smith’s work is supported in part by the Depart-
ment of Defense Advanced Research Projects Agency and
the U.S. Air Force Research Laboratory - Rome, under con-
tracts F30602-97-2-0666 and F30602-00-2-0503, by the Na-
tional Science Foundation under contract # 9900298 and by
the CMU Robotics Institute. Amedeo Cesta, Angelo Oddi
and Nicola Policella’s work is partially supported by ASI
(Italian Space Agency) under project ARISCOM (Contract
I/R/215/02). Nicola Policella is also supported by a scholar-
ship from CNR.

Part of this work has been developed during Policella’s
visit at the CMU Robotics Institute as a visiting student
scholar. He would like to thank the members of the Intelli-
gent Coordination and Logistics Laboratory for support and
hospitality.

References

Aloulou, M., and Portmann, M. 2003. An Efficient Proac-
tive Reactive Scheduling Approach to Hedge against Shop
Floor Disturbances. InProceedings of the 1st Multidisci-
plinary International Conference on Scheduling: Theory
and Applications, MISTA 2003, 337–362.

Bartusch, M.; Mohring, R. H.; and Radermacher, F. J.
1988. Scheduling project networks with resource con-
straints and time windows.Annals of Operations Research
16:201–240.

Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile Based
Algorithms to Solve Multiple Capacitated Metric Schedul-
ing Problems. InProceedings of the4th International Con-
ference on Artificial Intelligence Planning Systems AIPS-
98, 241–223. AAAI Press.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-
based method for Project Scheduling with Time Windows.
Journal of Heuristics8(1):109–136.

Davenport, A.; Gefflot, C.; and Beck, J. 2001. Slack-based
Techniques for Robust Schedules. InProceedings of6th

European Conference on Planning, ECP-01.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks.Artificial Intelligence49:61–95.

Drummond, M.; Bresina, J.; and Swanson, K. 1994.
Just-in-Case Scheduling. InProceedings of the12th

National Conference on Artificial Intelligence, AAAI-94,
1098–1104. AAAI Press.

El Sakkout, H., and Wallace, M. Probe Backtrack Search
for Minimal Perturbation in Dynamic Scheduling.Con-
straints.

Goldberg, A. V., and Tarjan, R. E. 1988. A New Approach
to the Maximum Flow Problem.Journal of the Association
for Computing Machinery35(4):921–940.

Kolisch, R.; Schwindt, C.; and Sprecher, A. 1998.
Benchmark Instances for Project Scheduling Problems. In
Weglarz, J., ed.,Project Scheduling - Recent Models, Algo-
rithms and Applications. Boston: Kluwer. 197–212.

Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. InProceedings of the14th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
95, 1643–1649.

Muscettola, N. 2002. Computing the Envelope for
Stepwise-Constant Resource Allocations. InPrinciples
and Practice of Constraint Programming,8th Interna-
tional Conference, CP 2002, volume 2470 ofLecture Notes
in Computer Science, 139–154. Springer.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2003.
Steps toward Computing Flexible Schedules. InProceed-
ings of Online-2003: Workshop on “Online Constraint
Solving: Handling Change and Uncertainty”, Kinsale, Co.
Cork, Ireland.

Satish Kumar, T. K. 2003. Incremental Computation of
Resource-Envelopes in Producer Consumer Models. In
Principles and Practice of Constraint Programming,9th

International Conference, CP 2003, volume 2833 ofLec-
ture Notes in Computer Science, 664–678. Springer.

Smith, S. F., and Cheng, C. 1993. Slack-based Heuristics
for Constraint Satisfactions Scheduling. InProceedings
of the11th National Conference on Artificial Intelligence,
AAAI-93, 139–144. AAAI Press.

Smith, S. F. 1994. OPIS: A Methodology and Architecture
for Reactive Scheduling. In Fox, M., and Zweben, M., eds.,
Intelligent Scheduling. Morgan Kaufmann. 29–66.


