
Planning with Extended Goals and Partial Observability∗

Piergiorgio Bertoli
ITC-irst

Via Sommarive 18 - Povo (Trento) - Italy
bertoli@itc.it

Marco Pistore
University of Trento

Via Sommarive 14 - Povo (Trento) - Italy
pistore@dit.unitn.it

Abstract

Planning in nondeterministic domains with temporally ex-
tended goals under partial observability is one of the most
challenging problems in planning. Simpler subsets of this
problem have been already addressed in the literature, but the
general combination of extended goals and partial observabil-
ity is, to the best of our knowledge, still an open problem. In
this paper we present a first attempt to solve the problem,
namely, we define an algorithm that builds plans in the gen-
eral setting of planning with extended goals and partial ob-
servability. The algorithm builds on the top of the techniques
developed in the planning with model checking framework
for the restricted problems of extended goals and of partial
observability.

Introduction
In the last years increasing interest has been devoted to plan-
ning in nondeterministic domains, and different research
lines have been developed. On one side, planning algorithms
for tackling temporally extended goals have been proposed
in (Kabanza, Barbeau, & St-Denis 1997; Pistore & Traverso
2001; Dal Lago, Pistore, & Traverso 2002), motivated by the
fact that many real-life problems require temporal operators
for expressing complex requirements. This research line is
carried out under the assumption that the planning domain is
fully observable. On the other side, in (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Bonet & Geffner 2000;
Rintanen 1999) the hypothesis of full observability is re-
laxed in order to deal with realistic situations, where the plan
executor cannot access the whole status of the domain. The
key difficulty is in dealing with the uncertainty arising from
the inability to determine precisely at run-time what is the
current status of the domain. These approaches are however
limited to the case of simple reachability goals.

Tackling the problem of planning for temporally extended
goals under the assumption of partial observability is not
trivial. In (Bertoli et al. 2003), a framework for plan val-
idation under these assumptions was introduced; however,
no plan generation algorithm was provided. In this paper
we complete the framework of (Bertoli et al. 2003) with a

∗This research has been partly supported by the ASI Project
I/R/271/02 (DOVES).
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

planning algorithm. The algorithm builds on the top of tech-
niques for planning with extended goals (Pistore & Traverso
2001) and for planning under partial observability (Bertoli
et al. 2001). The algorithm in (Pistore & Traverso 2001) is
based on goal progression, that is, it traces the evolution of
active goals along the execution of the plan. The algorithm
of (Bertoli et al. 2001) exploits belief states, which describe
the set of possible states of the domain that are compatible
with the actions and the observations performed during plan
execution. To address the general case of extended goals
and partial observability, goal progression and belief states
need to be combined in a suitable way. This combination is
a critical step, since a wrong association of active goals and
belief states results in planning algorithms that are either in-
correct or incomplete. Indeed, the definition of the right way
of combining active goals and belief states to obtain a cor-
rect and complete planning algorithm can be seen as the core
contribution of this paper. More precisely, the main structure
of the algorithm are belief-desires. A belief-desire extends
a belief by associating subgoals to its states. Our planning
algorithm is based on progressing subgoals of belief-desires
in a forward-chaining setting. However, belief-desires alone
are not sufficient, as an ordering of active subgoals must be
kept in order to guarantee progression in the satisfaction of
goals. For this reason, we also rely on a notion of intention,
meant as the next active subgoal that has to be achieved.

The paper is structured as follows. We first recap the
framework proposed in (Bertoli et al. 2003); then, we in-
troduce the key notions of the algorithm, i.e., desires and
intentions, and describe the algorithm; finally, we discuss
related and propose some concluding remarks.

The framework

In the framework for planning proposed in (Bertoli et al.
2003), a domain is a model of a generic system with its own
dynamics. The plan can control the evolutions of the do-
main by triggering actions. At execution time, the state of
the domain is only partially visible to the plan, via an obser-
vation of the state. In essence, planning is building a suitable
plan that can guide the evolutions of the domain in order to
achieve the specified goals. Further details and examples on
the framework can be found in (Bertoli et al. 2003).

Planning domains
A planning domain is defined in terms of its states, of the
actions it accepts, and of the possible observations that the
domain can exhibit. Some of the states are marked as valid
initial states for the domain. A transition function describes
how (the execution of) an action leads from one state to pos-
sibly many different states. Finally, an observation function
defines what observations are associated to each state of the
domain.

Definition 1 (planning domain) A nondeterministic plan-
ning domain with partial observability is a tuple D =
〈S,A,O, I, T ,X〉, where:

• S is the set of states.
• A is the set of actions.
• O is the set of observations.
• I ⊆ S is the set of initial states; we require I 6= ∅.
• T : S×A → 2S is the transition function; it associates to

each current state s ∈ S and to each action a ∈ A the set
T (s, a) ⊆ S of next states. We require that T (s, a) 6= ∅
for all s ∈ S and a ∈ A, i.e., every action is executable
in every state.1

• X : S → 2O is the observation function; it associates to
each state s the set of possible observations X (s) ⊆ O.
We require that some observation is associated to each
state s ∈ S, that is, X (s) 6= ∅.

Technically, a domain is described as a nondeterministic
Moore machine, whose outputs (i.e., the observations) de-
pend only on the current state of the machine, not on the
input action. Uncertainty is allowed in the initial state
and in the outcome of action execution. The mechanism
of observations allowed by this model is very general. It
can model no observability and full observability as special
cases; moreover, since the observation associated to a given
state is not unique, it is possible to represent noisy sensing
and lack of information.

Following a common praxis in planning, in the follow-
ing example, that will be used throughout the paper, we use
fluents and observation variables to describe states and ob-
servations of the domain.

Example 1 Consider the domain represented in Figure 1.
It consists of a ring of N rooms. Each room contains a
light that can be on or off, and a button that, when pressed,
switches the status of the light. A robot may move between
adjacent rooms (actions go-right and go-left) and switch
the lights (action switch-light). Uncertainty in the domain
is due to an unknown initial room and initial status of the
lights. Moreover, the lights in the rooms not occupied by the
robot may be nondeterministically switched on without the
direct intervention of the robot (if a light is already on, in-
stead, it can be turned off only by the robot). The domain is
only partially observable: the rooms are indistinguishable

1The requirement that all actions are executable in every state
has been introduced to simplify the planning algorithm. It is easy
to allow for actions that are executable only in some states, at the
cost of some additional complexity in the algorithm.

8

1

2

3

4

5

6

7

Figure 1: A simple domain.

and the robot can sense only the status of the light in its
current room.
A state of the domain is defined in terms of fluent room,
that ranges from 1 to N and describes in which room the
robot is currently in, and of boolean fluents on[i], with
i ∈ {1, . . . , N}, that describe whether the light in room i
is on. Any state is a possible initial state.
The actions are go-left, go-right, switch-light, and wait.
Action wait corresponds to the robot doing nothing during
a transition (the state of the domain may change only due to
the lights that may be turned on without the intervention of
the robot). The effects of the other actions have been already
described.
The observation is defined in terms of observation variable
light. It is true if and only if the light is on in the current
room.

Plans
Now we present a general definition of plan, that encodes se-
quential, conditional and iterative behaviors, and is expres-
sive enough for dealing with partial observability and with
extended goals. In particular, we need plans where the se-
lection of the action to be executed depends on the observa-
tions and on an “internal state” of the executor, that can take
into account, e.g., the knowledge gathered during the previ-
ous execution steps. A plan is defined in terms of an action
function that, given an observation and a context encoding
the internal state of the executor, specifies the action to be
executed, and in terms of a context function that evolves the
context.

Definition 2 (plan) A plan for planning domain D is a tuple
P = 〈C, c0, act, evolve〉, where:

• C is the set of plan contexts.
• c0 ∈ C is the initial context.
• act : C × O ⇀ A is the action function; it associates

to a plan context c and an observation o an action a =
act(c, o) to be executed.

• evolve : C ×O ⇀ C is the context evolutions function; it
associates to a plan context c and an observation o a new
plan context c′ = evolve(c, o).

Technically, a plan is described as a Mealy machine, whose
outputs (the action) depends in general on the inputs (the
current observation). Functions act and evolve are deter-
ministic (we do not consider nondeterministic plans), and
can be partial, since a plan may be undefined on context-
observation pairs that are never reached during execution.

Example 2 We consider a plan for the domain of Figure 1.
This plan causes the robot to move cyclically through the
rooms, turning off the lights whenever they are on. The plan
is cyclic, that is, it never ends. The plan has two contexts E
and L, corresponding, respectively, to the robot having just
entered a room, and the robot being about to leave the room
after switching the light. The initial context is E. Functions
act and evolve are defined by the following table:

c o act(c, o) evolve(c, o)
E light = > switch-light L
E light = ⊥ go-right E
L any go-right E

Plan execution
Now we discuss plan execution, that is, the effects of run-
ning a plan on the corresponding planning domain. Since
both the plan and the domain are finite state machines, we
can use the standard techniques for synchronous composi-
tions defined in model checking. That is, we can describe
the execution of a plan over a domain in terms of transitions
between configurations that describe the state of the domain
and of the plan. This idea is formalized in the following
definition.

Definition 3 (configuration) A configuration for domain D
and plan P is a tuple (s, o, c, a) such that:

• s ∈ S,

• o ∈ X (s),

• c ∈ C, and

• a = act(c, o).

Configuration (s, o, c, a) may evolve into configuration
(s′, o′, c′, a′), written (s, o, c, a) → (s′, o′, c′, a′), if s′ ∈
T (s, a), o′ ∈ X (s′), c′ = evolve(c, o), and a′ = act(c′, o′).
Configuration (s, o, c, a) is initial if s ∈ I and c = c0. The
reachable configurations for domain D and plan P are de-
fined by the following inductive rules:

• if (s, o, c, a) is initial, then it is reachable;

• if (s, o, c, a) is reachable and (s, o, c, a) → (s′, o′, c′, a′),
then (s′, o′, c′, a′) is also reachable.

Notice that we include the observations and the actions in
the configurations. In this way, not only the current states
of the two finite states machines, but also the information
exchanged by these machines are explicitly represented. In
the case of the observations, this explicit representation is
necessary since more than one observation may correspond
to the same state.

We are interested in plans that define an action to be ex-
ecuted for each reachable configuration. These plans are
called executable.

Definition 4 (executable plan) Plan P is executable on do-
main D if:

1. if s ∈ I and o ∈ X (s) then act(c0, o) is defined;

and if for all the reachable configurations (s, o, c, a):

2. evolve(c, o) is defined;

3. if s′ ∈ T (s, a), o′ ∈ X (s′), and c′ = evolve(c, o), then
act(c′, o′) is defined.

Condition 1 guarantees that the plan defines an action for all
the initial states (and observations) of the domain. The other
conditions guarantee that, during plan execution, a configu-
ration is never reached where the execution cannot proceed.
More precisely, condition 2 guarantees that the plan defines
a next context for each reachable configuration. Condition 3
is similar to condition 1 and guarantees that the plan defines
an action for all the states and observations of the domain
that can be reached from the current configuration.

An execution path of the plan is basically a sequence
of configurations (s0, o0, c0, a0) → (s1, o1, c1, a1) →
(s2, o2, c2, a2) → · · · . Due to the nondeterminism in the
domain, we may have an infinite number of different exe-
cutions of a plan. We provide a finite presentation of these
executions with an execution structure, i.e, a Kripke Struc-
ture (Emerson 1990) whose set of states is the set of reach-
able configurations of the plan, and whose transition relation
corresponds to the transitions between configurations.

Definition 5 (execution structure) The execution structure
corresponding to domain D and plan P is the Kripke struc-
ture K = 〈Q,Q0, R〉, where:

• Q is the set of reachable configurations;

• Q0 = {(s, o, c0, a) ∈ Q : s ∈ I ∧ o ∈ X (s) ∧ a =
act(c0, o)} are the initial configurations;

• R =
{(

(s, o, c, a), (s′, o′, c′, a′)
)

∈ Q×Q : (s, o, c, a) →

(s′, o′, c′, a′)
}

.

Temporally extended goals: CTL
Extended goals are expressed with temporal logic formulas.
In most of the works on planning with extended goals (see,
e.g., (Kabanza, Barbeau, & St-Denis 1997; de Giacomo &
Vardi 1999; Bacchus & Kabanza 2000)), Linear Time Logic
(LTL) is used as goal language. LTL provides temporal op-
erators that allow one to define complex conditions on the
sequences of states that are possible outcomes of plan execu-
tion. Following (Pistore & Traverso 2001), we use Compu-
tational Tree Logic (CTL) instead. CTL provides the same
temporal operators of LTL, but extends them with univer-
sal and existential path quantifiers that provide the ability to
take into account the non-determinism of the domain.

We assume that a set B of basic propositions is defined
on domain D. Moreover, we assume that for each b ∈ B
and s ∈ S, predicate s |=0 b holds if and only if basic
proposition b is true on state s. In the case of the domain
of Figure 1, possible basic propositions are on[i], that is true
in those states where the light is on in room i, or room=i,
that is true if the robot is in room i.

Definition 6 (CTL) The goal language CTL is defined by
the following grammar, where b is a basic proposition:

g ::= A(g U g) | E(g U g) | A(g W g) | E(g W g) |

g ∧ g | g ∨ g | b | ¬b

We denote with cl(g) the set of the sub-formulas of g (in-
cluding g itself). We denote with clU (g) the subset of cl(g)
consisting of the strong until sub-formulas A(U) and
E(U).

CTL combines temporal operators and path quantifiers. “U”
and “W” are the “(strong) until” and “weak until” temporal
operators, respectively. “A” and “E” are the universal and
existential path quantifiers, where a path is an infinite se-
quence of states. They allow us to specify requirements that
take into account nondeterminism. Intuitively, the formula
A(g1 U g2) means that for every path there exists an initial
prefix of the path such that g2 holds at the last state of the
prefix and g1 holds at all the other states along the prefix.
The formula E(g1 U g2) expresses the same condition, but
only on some of the paths. The formulas A(g1 W g2) and
E(g1 W g2) are similar to A(g1 U g2) and E(g1 U g2), but
allow for paths where g1 holds in all the states and g2 never
holds. Formula AF g (EF g) is an abbreviation of A(>U g)
(resp. E(>U g)). It means that goal g holds in some fu-
ture state of every path (resp. some paths). Formula AG g
(EG g) is an abbreviation of A(g W⊥) (resp. E(g W⊥)).
It means that goal g holds in all states of every path (resp.
some path).2

A remark is in order. Even if negation ¬ is allowed only
in front of basic propositions, it is easy to define ¬g for a
generic CTL formula g, by “pushing down” the negations:
for instance ¬A(g1 W g2) ≡ E(¬g2 U(¬g1 ∧ ¬g2)).

Goals expressed as CTL formulas allow specifying differ-
ent classes of requirements on plans, e.g., reachability goals,
safety or maintainability goals, and arbitrary combinations
of them. Examples of CTL goals can be found in (Pistore &
Traverso 2001; Bertoli et al. 2003).

We now define when CTL formula g is true in con-
figuration (s, o, c, a) of execution structure K, written
K, (s, o, c, a) |= g. We use the standard semantics for CTL
formulas over Kripke Structures (Emerson 1990).
Definition 7 (semantics of CTL) Let K be an execution
structure. We define K, q |= g as follows:
• K, q |= A(g U g′) if for all q = q0 → q1 → q2 → · · ·

there is some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= E(g U g′) if there is some q = q0 → q1 → q2 →
· · · and some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= A(g W g′) if for all q = q0 → q1 → q2 → · · · ,
either K, qj |= g for all j ≥ 0, or there is some i ≥ 0
such that K, qi |= g′ and K, qj |= g for all 0 ≤ j < i.

2CTL also includes temporal operators AX and EX that allow
to express conditions on the next states. These operators are not
very useful for defining planning goals. Moreover, the planning
algorithm requires some extensions in order to work with AX and
EX operators. For these reasons, we leave the management of
these operators for an extended version of this paper.

• K, q |= E(g W g′) if there is some q = q0 → q1 → q2 →
· · · such that either K, qj |= g for all j ≥ 0, or there is
some i ≥ 0 such that K, qi |= g′ and K, qj |= g for all
0 ≤ j < i.

• K, q |= g ∧ g′ if K, q |= g and K, q |= g′.

• K, q |= g ∨ g′ if K, q |= g or K, q |= g′.

• K, q |= b if q = (s, o, c, a) and s |=0 b.

• K, q |= ¬b if q = (s, o, c, a) and s 6|=0 b.

We define K |= g if K, q0 |= g for all the initial configura-
tions q0 ∈ Q0 of K.

Plan validation

The definition of when a plan satisfies a goal follows.

Definition 8 (plan validation for CTL goals) Plan P sat-
isfies CTL goal g on domain D, written P |=D g, if K |= g,
where K is the execution structure for D and P .

In the case of CTL goals, the plan validation task amounts
to CTL model checking. Given a domain D and a plan P ,
the corresponding execution structure K is built as described
in Definition 5 and standard model checking algorithms are
run on K in order to check whether it satisfies goal g.

We describe now some goals for the domain of Figure 1.
We recall that the initial room of the robot is uncertain, and
that light can be turned on (but not off) without the interven-
tion of the robot.

Example 3 The first goal we consider is

AF (¬on[3]),

which requires that the light of room 3 is eventually off. The
plan of Example 2 satisfies this goal: eventually, the robot
will be in room 3 and will turn off the light if it is on.
There is no plan that satisfies to following goal:

AFAG (¬on[3]),

which requires that the light in room 3 is turned off and stays
then off forever. This can be only guaranteed if the robot
stays in room 3 forever, and it is impossible to guarantee this
condition in this domain: due to the partial observability of
the domain, the robot does never know it is in room 3.
The plan of Example 2 satisfies the following goal

AG
∧

i∈1,...,N
AF (¬on[i]),

which requires that the light in every room is turned off in-
finitely often. On the other hand, it does not satisfy the fol-
lowing goal

AG AF
∧

i∈1,...,N
(¬on[i]),

which requires that the lights in all the rooms are off at the
same time infinitely often. Indeed, the nondeterminism in the
domain may cause lights to turn on at any time.

The planning algorithm
This section describes a planning algorithm for domains
with partial observability and CTL goals. The algorithm is
based on a forward-chaining approach, that incrementally
adds new possible contexts to the plan. Intuitively, contexts
are associated to belief-desire structures; a belief-desire re-
lates sets of states compatible with past actions and obser-
vations to subgoals that have to be achieved in such states.
The plan search is based on progressing a belief and the as-
sociated goals; for explanatory purposes, we introduce goal
progression by considering single states first, and introduce
belief-desires later on.

Progressing goals
Let us assume that we want to satisfy goal g in a state q.
Goal g defines conditions on the current state and on the
next states to be reached. Intuitively, if g must hold in q,
then some conditions must be projected to the next states.
The algorithm extracts the information on the conditions on
the next states by “progressing” the goal g. For instance, if
g is EF g′, then g holds in q if either g′ holds in q or EF g′

hold in some next state. If g is A(g′ U g′′), then either g′′

holds in q, or g′ holds in q and A(g′ U g′′) hold in every next
state. In the next example, the progression of goals is shown
on a more complex case.

Example 4 Consider the goal

g = AG (on[1] ∧ EF¬on[2] ∧ EF on[3]) :

• if in room 1 the light is off, then there is no way of pro-
gressing the goal, since the goal is unsatisfiable;

• if in rooms 1 and 2 the light is on, and in room 3 it is
off, g must hold in all next states and both EF¬on[2] and
EF on[3] must hold in some next state;

• if in room 1 the light is on and in rooms 2 and 3 it is off,
then g must hold in all next states and EF on[3] must hold
in some next state;

• if in rooms 1, 2, and 3 the light is on, then g must hold
in all next states and EF¬on[2] must hold in some next
state;

• if in rooms 1, 3 the light is on and in room 2 it is off, then
g must hold in all next states.

The progression of goals is described by function progr,
that takes as arguments a state and a goal and rewrites the
goal in terms of conditions to be satisfied on the next states.
In general, progr(q, g) describes a disjunction of possible al-
ternative ways for projecting a given goal into the next states.
Each disjunct describes a goal assignment for the next states,
as a conjunction of conditions. In each disjunct, we distin-
guish the conditions that must hold in all the next states (Ai)
from those that must hold in some of the next states (Ei).
Thus we represent progr(q, g) as a set of pairs, each pair
containing the Ai and the Ei parts of a disjunct:

progr(q, g) = {(Ai, Ei) | i ∈ I}.

We remark that progr(q, g) = ∅ means that goal g is unsat-
isfiable in q, since there is no possibility to progress it suc-
cessfully, while progr(q, g) = ({(∅, ∅)}) means that goal g

is always true in q, i.e., no conditions need to be progressed
to the next states.

Definition 9 (goal progress) Let q be a state and g be a
goal. Then progr(q, g) is defined by induction on the struc-
ture of g, as follows:

• progr(q, b) = if b ∈ q then {(∅, ∅)} else ∅;
• progr(q,¬b) = if b ∈ q then ∅ else {(∅, ∅)};
• progr(q, g1 ∧ g2) = {(A1∪A2, E1∪E2) : (A1, E1) ∈

progr(q, g1) and (A2, E2) ∈ progr(q, g2)};
• progr(q, g1 ∨ g2) = progr(q, g1) ∪ progr(q, g2);
• progr(q,A(g1 U g2)) = {(A ∪ {A(g1 U g2)}, E) :

(A,E) ∈ progr(q, g1)} ∪ progr(q, g2);
• progr(q,E(g1 U g2)) = {(A,E ∪ {E(g1 U g2)}) :

(A,E) ∈ progr(q, g1)} ∪ progr(q, g2);
• progr(q,A(g1 W g2)) = {(A ∪ {A(g1 W g2)}, E) :

(A,E) ∈ progr(q, g1)} ∪ progr(q, g2);
• progr(q,E(g1 W g2)) = {(A,E ∪ {E(g1 W g2)}) :

(A,E) ∈ progr(q, g1)} ∪ progr(q, g2).

Let G be a set of goals. Then progr(q,G) =
progr(q,

∧

g∈G g).

We remark that untils and weak untils progress in the same
way. In fact, the difference between these two operators can
only been defined considering infinite behaviors.

Given a disjunct (A,E) ∈ progr(q, g), we can define a
function that assigns goals to be satisfied to the next states.
We denote with assign((A,E), Q) the set of all the possi-
ble assignments a : Q → 2A∪E such that each universally
quantified goal is assigned to all the next states (i.e., if f ∈ A
then f ∈ a(q) for all q ∈ Q) and each existentially quanti-
fied goal is assigned to one of the next states (i.e., if h ∈ E
and h 6∈ A then f ∈ a(q) for one particular q ∈ Q).

Definition 10 (goal assignment) Let (A,E) ∈ progr(q, g)
and Q be a set of states. Then assign((A,E), Q) is the set
of all possible assignments a : Q → 2A∪E such that:

• if h ∈ A then h ∈ a(q) for all q ∈ Q; and
• if h ∈ E − A, then h ∈ a(q) for a unique q ∈ Q.

With slight abuse of notation, we define:

assign(progr(q, g), Q) =
⋃

(A,E)∈progr(q,g)

assign((A,E), Q).

Example 5 Consider again the goal g = AG (on[1] ∧
EF¬on[2] ∧ EF on[3]), and let the current state be
room=1, on[1], on[2],¬on[3]. In this case we have
progr(g, q) = ({g}, {EF¬on[2],EF on[3]}).
If we execute action go-right, then the next states
are s1 = (room=2, on[1], on[2],¬on[3]) and s2 =
(room=2, on[1], on[2], on[3]). Then g must hold in s1 and
in s2, while EF¬on[2] and EF on[3] must hold either in s1

or in s2. We have therefore four possible state-formulas as-
signments a1, . . . , a4 to be considered:

a1(s1) = {g,EF¬on[2],EF on[3]}, a1(s2) = {g}
a2(s1) = {g,EF¬on[2]}, a2(s2) = {g,EF on[3]}
a3(s1) = {g,EF on[3]}, a3(s2) = {g,EF¬on[2]}
a4(s1) = {g}, a4(s2) = {g,EF¬on[2],EF on[3]}

Belief-desires
In this section we extend goal progression taking into ac-
count that in planning with partial observability we have
only a partial knowledge of the current state, described in
terms of a belief-state.

Let us assume that initially we have goal g0. This goal
is associated to all states of the initial belief. The progress
of a goal depends on the current state, therefore, from now
on the goal progresses independently for each of the possi-
ble states. This leads to an association of different goals to
the different states of the beliefs. A belief-desire describes
this association between states and goals, as in the following
definition.

Definition 11 (belief-desire) A belief-desire for domain D
and goal g0 is a set bd ⊆ S × cl(g0). We represent with
states(bd) = {q : (q, g) ∈ bd} the states of belief-desire bd.

The belief-desire can be used in the planning algorithm to
define the context of the plan that is being built, by associ-
ating a belief-desire to each context of the plan. Functions
progr and assign are used to describe the valid evolutions of
the belief-desire along plan execution.

Indeed, let us assume that the bd is the current belief-
desire. If we perform action a then the belief-desire evolves
in order to reflect the progress of the goals associated to the
states. More precisely, the new belief-desires have to respect
the following condition. Let bd′

(q,g) be a belief-desire repre-
senting a goal progression for (q, g) ∈ bd, namely

bd′(q,g) ∈ assign(progr(q, g), T (q, a)).

Then every belief-desire bd′ that collects such elementary
goal progressions, namely bd′ =

⋃

(q,g)∈bd bd′(q,g), is a valid
new belief-desire.

Intentions
The belief-desire carries most of the information that is
needed to describe the contexts in the planning algorithm.
However, the next example shows that there are cases where
the belief-desire does not carry enough information to de-
cide the next action to execute.

Example 6 Consider a ring of 8 rooms and the goal
g0 = AG (¬(room=6) ∧ AF¬on[1] ∧ AF¬on[5]). For
simplicity, let us assume that the robot knows its current
room (e.g., since the initial room is 1). It is easy to check that
the execution of any plan that satisfies the goal should tra-
verse infinitely often room 3, going back and forth between
room 1 and room 5. Whenever the execution is in room
3, the active belief-desire is the following, independently
on whether we are coming from room 1 or from room 5:

room=3, ¬on[1], ¬on[5] 7→ g0

room=3, on[1], ¬on[5] 7→ g0, AF¬on[1]
room=3, ¬on[1], on[5] 7→ g0, AF¬on[5]
room=3, on[1], on[5] 7→ g0, AF¬on[1], AF¬on[5]

However, the action to be executed in room 3 depends on
whether we are moving towards room 1 or towards room 5.
In order to allow for these different moves, it is necessary to
have different contexts associated to the same belief-desire.

The previous example shows that an ingredient is still
missing, namely we need to distinguish contexts not only
according to the belief-desire that they represent, but also ac-
cording to a specific goal that we intend to fulfill first. This
goal can be seen as the current intention of the plan. For in-
stance, in the scenario described in the previous example we
could have two possible intentions, namely turning off the
light in room 1 (i.e., AF¬on[1]), or turning off the light in
room 5 (i.e., AF¬on[5]). In the first case, we would move
towards room 1, in the second towards room 5.

Intentions correspond to the strong until formulas in
clU (g0). Indeed, these are the goals describing properties
that need to be eventually achieved. An extra intention ? is
used to describe those cases where no strong until goal is
active.

In the planning algorithm, the active intention is associ-
ated with a set of states that describes what are the states
from which the active intention has to be achieved. We call
belief-intention an intention together with its associated set
of states.

Definition 12 (belief-intention) A belief-intention for
planning domain D and goal g0 is a pair bi = (i, bi) ∈
(clU (g0)∪{?}) × 2Q. We require that, if i = ? then bi = ∅
(i.e., ? is associated to an empty set of states).

The belief-intention evolves along with the belief-desire
during the execution of the plan. More precisely, let us as-
sume that the current belief-desire is bd and that the current
belief-intention is bi = (i, bi). Assume also that the belief-
desire evolves according to the family bd′

(q,g) of elementary
goal progressions (hence bd′ =

⋃

(c,g)∈bd bd′(q,g)). Then the
new set of states associated to intention i is defines as fol-
lows: b′ = {q′ : (q′, i) ∈ bd′

(q,i) for some q ∈ bi}.

If b′ = ∅, then intention i has been fulfilled, and a new
strong until can become active. In the following we as-
sume that the next strong until is chosen according to a fixed
arbitary ordering g1, g2, . . . , gk of the formulas in clU (g0).
More precisely, in order to find the new intention, we ex-
ploit function next, defined as next(gh) = g(h mod k)+1 and
next(?) = g1. The function is repeatedely applied starting
from i, until we find an intention i′ that is associated to some
state in bd′. If there is no such intention, then ? is used as
the new intention.

Definition 13 (intention update) Let bi = (i, bi) be a be-
lief intention, {bd′

(q,g)}(q,g)∈bd a family of elementary pro-
gressions for bd, and bd′ =

⋃

(c,g)∈bd bd′(q,g). The updated
belief intention bi′ = update(bi, {bd′

(q,g)}(q,g)∈bd) is defined
as bi′ = (i′, b′i) where:

• if b′ 6= ∅ then i′ = i and b′i = b′;

• else if there is some i′′ ∈ clU (g0), i′′ 6= i such that
(q′, i) ∈ bd′ for some state q′, then:

– i′ = nextn(i), where n = min{m>0 | ∃q′ ∈
S.(q′, nextm(i)) ∈ bd′}

– b′i = {q′ ∈ S | (q′, i) ∈ bd′}

• else i′ = ? and b′i = ∅.

Belief-desires and belief-intentions play complementary
roles in the planning algorithm. Belief-desires make it sure
that the plan respects all “maintainability” requirements (ex-
pressed by the weak-untils) and that it does not prevent
the fulfillment of the “reachability” requirements (expressed
by strong untils). Belief-intentions add the guarantee that
the “reachability” requirements are eventually achieved. In-
deed, strong and weak untils are managed in the same way
in goal progression (see Definition 9), and the additional re-
quirement of strong untils A(g U g′) and E(g U g′) of even-
tually achieving g′ is captured by the intentions.

The role of intentions is also reflected in the management
of loops in plans. A loop corresponds to reaching a belief-
desire and a belief-intention that have been already encoun-
tered. This loop is acceptable only if all strong until require-
ments are fulfilled along the loop. More precisely, if the
same intention i is active along the loop, and i 6= ?, then the
loop is invalid.

The algorithm
Now we describe a planning algorithm build-plan that, given
a domain D and a goal g0, returns either a valid plan or a
failure. The algorithm is reported in Figure 2. We assume
that the domain and the goal are global variables.

The algorithm performs a depth-first forward-chaining
search. Starting from the initial belief-desire and belief-
intention, it considers every possible observation, and for
every observation, it picks up an action and progresses the
belief-desire and belief-intention to successor states. The
iteration goes on until a successful plan is found for every
possible observation, or the goal cannot be satisfied for some
observation. The contexts c = (bd, bi) of the plan are as-
sociated to the belief-desires bd and the belief-intentions bi
which are considered at each turn of the iteration.

The main function of the algorithm is the recursive func-
tion build-plan-aux(c, pl , open), which builds the plan for
context c. If a plan is found, then it is returned by the
function. Otherwise, ⊥ is returned. Argument pl is the
plan built so far by the algorithm. Argument open is the
list of contexts corresponding to the currently open prob-
lems: if c ∈ open then we are currently trying to build
a plan for context c either in the current instance of func-
tion build-plan-aux or in some of the invoking instances.
Whenever function build-plan-aux is called with a context
c already in open , then we have a loop in the plan. In this
case (lines 9-11), function is-good-loop(c, open) is called to
check whether the loop is valid or not. If the loop is good,
plan pl is returned, otherwise function build-plan-aux fails.

Function is-good-loop checks if the loop is acceptable,
namely, it checks whether the current intention is ? (line 30)
or the intention changes somewhere inside the loop (lines
31-34). In these cases, the loop is good, since all strong
until goals are eventually fulfilled. Otherwise (line 35) the
loop is bad and has to be discarded.

If context c is not in open , then we need to build a plan
from this context. We consider all possible observations
o ∈ O (line 12) and try to build a plan for each of them.
If pl is already defined on context c and observation o (i.e.,
(c, o) is in the range of function act and hence condition

1 function build-plan : Plan
2 bd0 = {(q0, g0) : q0 ∈ I}
3 if g0 ∈ clU (g0) then bi0 = (g0, I)
4 else bi0 = (?, ∅)
5 pl .c0 := (bd0, bi0); pl .C := {pl .c0}
6 pl .act := ∅; pl .evolve := ∅
7 return build-plan-aux(pl .c0, pl , [])

8 function build-plan-aux(c = (bd, (i, bi)), pl , open) : Plan
9 if c in open then

10 if is-good-loop(c, open) then return pl
11 else return ⊥
12 foreach o ∈ O do

13 if defined pl .act[c, o] then next o
14 bdo := {(q, g) ∈ bd : o ∈ X (q)}
15 bio := (i, {q ∈ bi : o ∈ X (q)})
16 foreach a in A do

17 foreach {bd′

(q,g)}(q,g)∈bdo
with

18 bd′

(q,g) in assign(progr(q, g), T (q, a)) do

19 bd′ :=
⋃

(q,g)∈bdo

bd′(q,g)

20 bi′ := update(bio, {bd′

(q,g)}(q,g)∈bdo
)

21 c′ := (bd′, bi′)
22 pl ′ := pl ; pl ′.C := pl ′.C ∪ {c′}
23 pl ′.act[c, o] := a; pl ′.evolve[c, o] := c′

24 open ′ := conc(c′, open)
25 pl ′ := build-plan-aux(c′, pl ′, open ′)
26 if (pl ′ 6= ⊥) then pl := pl ′; next o
27 return ⊥
28 return pl

29 function is-good-loop(c = (bd, (i, bi)), open) : boolean

30 if i = ? then return true

31 while c 6= head(open) do

32 (bd′, (i′, b′i)) := head(open)
33 if i 6= i′ then return true

34 open := tail(open)
35 return false

Figure 2: The planning algorithm.

“defined pl .act[c, o]” is true), then a plan for the pair has al-
ready been found in another branch of the search, and we
move on to the next observation (line 13).

If the pair (c, o) is not already in the plan, then the belief-
desire and the belief-intention associated to the context are
restricted to those states q that are compatible with observa-
tion o, namely, o ∈ X (q) (lines 14-15). Then the algorithm
considers in turn all actions a (line 16) and all new belief-
desires bd′ corresponding to valid goal progressions (lines
17-19); it updates the belief-intention bi′ according to the
goal chosen progression (line 20); and it takes c′ = (bd′, bi′)
as the new context. Function build-plan-aux is called recur-
sively on c′. In the recursive call, argument pl is updated to
take into account that action a has been selected for context
c and observation o, and that c′ is the evolved context asso-
ciated to c and o (lines 22-23). Moreover, the context c′ is
added in front of list open (line 24).

If the recursive call build-plan-aux is successful, then we
move on to the next observation (line 26). Once all observa-
tions have been handled, function build-plan-aux ends with
success and returns plan pl (line 28). The different goal pro-
gressions and the different actions are tried until, for an ob-
servation, a plan is found; if no plan is found, then no plan
can be built for the current context c and observation o and
⊥ is returned (line 27).

Function build-plan is defined on the top of function
build-plan-aux , which is invoked using as initial context
(bd0, bi0). Belief-desire bd0 associates goal g0 to all ini-
tial states of the domain. If goal g0 is a strong until formula,
then bi0 associates all initial states to intention g0, otherwise
the special intention ? is used as initial intention.

The following theorem expresses correctness results on
the algorithm.

Theorem 1 Let D be a domain and g0 a goal for D. Then
build-plan(g0) terminates. Moreover, if build-plan(g0) =
P 6= ⊥, then P |=D g0. If build-plan(g0) = ⊥, then there is
no plan P such that P |=D g0.

Implementation
In order to test the algorithm, we designed and realized
a prototype implementation. The implementation contains
some simple optimizations. First of all, some heuristics is
used to choose the most suitable action and goal progres-
sion, namely, those choices are preferred that lead to smaller
belief-desires or belief-intentions. Moreover, loop detection
is improved so that a loop is recognized also when the cur-
rent context is a subset of one of the contexts in list open ,
i.e., it has smaller belief-desires and belief-intentions.

Despite these optimizations, the implemented algorithm
has some severe limits. The first limit is the quality of plans.
The generated plan for the ring domain with 2 rooms and for
goal AG (AF¬on[1] ∧ AF¬on[2]) is the following:

c o act(c, o) evolve(c, o)
c0 light = ⊥ go-left c1

c0 light = > go-left c10

c1 light = ⊥ go-left c0

c1 light = > go-left c2

c2 light = ⊥ go-left c3

c2 light = > switch c9

c3 any switch c4

c4 any wait c5

c5 any switch c6

c6 any go-left c7

c7 any switch c8

c8 any go-left c1

c9 any go-left c3

c10 light = ⊥ switch c9

c10 light = > switch c11

c11 any left c1

The comparison between the generated plan and the hand-
written plan of Example 2 is dramatic. The generated plan
is correct, but it is much larger and contains several unnec-
essary moves. A second limit is the efficiency of the search.
Indeed, if we consider goal AG

∧

i=1,...,N AF¬on[i] and

we increase the number N of rooms, we get the following
results (on a PC Pentium 4, 1.8Mhz):

N #states search time #contexts
1 2 0.01 sec 3
2 8 0.22 sec 12
3 24 2.10 sec 50
4 64 35.11 sec 215
5 160 1128.07 sec 1011
6 384 >> 3600.00 sec ??????

We see that already with N = 5 the construction of the plan
requires a considerable time and generates a huge plan.

These limits in the quality of plans and in the perfor-
mance of the search are not surprising. Indeed, the plan-
ning algorithm described in this paper has been designed
with the aim of showing how the search space for plans is
structured, and the search strategy that it implements is very
naive. In order to be able to tackle complex requirements
and large-scale domains, we are working to the definition
of more advanced search strategies. In particular, we intend
to integrate the planning algorithm with heuristic techniques
such as those proposed in (Bertoli, Cimatti, & Roveri 2001;
Bertoli et al. 2001), and with symbolic techniques such as
those in (Pistore, Bettin, & Traverso 2001; Dal Lago, Pis-
tore, & Traverso 2002). Both techniques are based on (ex-
tensions of) symbolic model checking, and their successful
exploitation would allow for a practical implementation of
the planning algorithm.

Concluding remarks
This paper presents a novel planning algorithm that allows
generating plans for temporally extended goals under the hy-
pothesis of partial observability. To the best of our knowl-
edge, no other approach has tackled so far this complex com-
bination of requirements.

The simpler problem of planning for temporally extended
goals, within the simplified assumption of full observabil-
ity, has been dealt with in previous works. However,
most of the works in this direction restrict to determinis-
tic domains, see for instance (de Giacomo & Vardi 1999;
Bacchus & Kabanza 2000). A work that considers extended
goals in nondeterministic domains is described in (Kabanza,
Barbeau, & St-Denis 1997). Extended goals make the plan-
ning problem close to that of automatic synthesis of con-
trollers (see, e.g., (Kupferman, Vardi, & Wolper 1997)).
However, most of the work in this area focuses on the the-
oretical foundations, without providing practical implemen-
tations. Moreover, it is based on rather different technical
assumptions on actions and on the interaction with the envi-
ronment.

On the other side, partially observable domains has been
tackled either using a probabilistic Markov-based approach
(see (Bonet & Geffner 2000)), or within a framework of
possible-world semantics (see, e.g., (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Rintanen 1999)). These
works are limited to expressing only simple reachability
goals. An exception is (Karlsson 2001), where a linear-
time temporal logics with a knowledge operator is used to

define search control strategies in a progressive probabilis-
tic planner. The usage of a linear-time temporal logics and
of a progressive planning algorithm makes the approach of
(Karlsson 2001) quite different in aims and techniques from
the one discussed in this paper.

In this paper we have followed the approach of addressing
directly the problem of planning with extended goals under
partial observability. Another approach would be to reduce
this problem to an easier one. For instance the extended
goals could be encoded directly in the domain description,
thus removing the need to deal explicitly with them (see,
e.g., (Gretton, Price, & Thiébaux 2003) for an example of
this approach in the field of Markov-based planing). Alter-
natively, knowledge-based planning techniques like the ones
described in (Petrick & Bacchus 2002) can be used to man-
age partial observability, thus removing the necessity to deal
explicitly with beliefs and incomplete knowledge. However,
these approaches are partial, in the sense that they can deal
only with part of the complexity of planning with extended
goals under partial observability. Indeed, in this paper we
have shown that a general algorithm for this class of plan-
ning problems requires a rather sophisticated combination
of goals and beliefs.

In (Bertoli et al. 2003) an extension of CTL with knowl-
edge goals K b has been defined. In brief, K b means the
executor knows that all the possible current states of the do-
main satisfy condition b. The extension of the algorithm
described in this paper to the case of K-CTL goals is sim-
ple and does not require the addition of further complexity
to the algorithm. Indeed, the evaluation of knowledge goals
can be performed on the existing belief-desire structures.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal Logic
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence 116(1-2):123–191.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in Nondeterministic Domains under Partial Ob-
servability via Symbolic Model Checking. In Proc. IJ-
CAI’01.
Bertoli, P.; Cimatti, A.; Pistore, M.; and Traverso, P. 2003.
A Framework for Planning with Extended Goals under Par-
tial Observability. In Proc. ICAPS’03, 215–224.
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
Search + Symbolic Model Checking = Efficient Confor-
mant Planning. In Proc. IJCAI’01.
Bonet, B., and Geffner, H. 2000. Planning with Incomplete
Information as Heuristic Search in Belief Space. In Proc.
AIPS 2000.
Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning
with a Language for Extended Goals. In Proc. AAAI’02.
de Giacomo, G., and Vardi, M. 1999. Automata-Theoretic
Approach to Planning with Temporally Extended Goals. In
Proc. ECP’99.
Emerson, E. A. 1990. Temporal and Modal Logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics. Elsevier.

Gretton, C.; Price, D.; and Thiébaux, S. 2003. NM-
RDPP: A System for Decision-Theoretic Planning with
Non-Markovian Rewards. In Proc. of ICAPS’03 Workshop
on Planning under Uncertainty and Incomplete Informa-
tion.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Planning
Control Rules for Reactive Agents. Artificial Intelligence
95(1):67–113.
Karlsson, L. 2001. Conditional Progressive Planning under
Uncertainty. In Proc. IJCAI’01.
Kupferman, O.; Vardi, M.; and Wolper, P. 1997. Synthesis
with incomplete information. In Proc. ICTL’97.
Petrick, R., and Bacchus, F. 2002. A Knowledge-Based
Approach to Planning with Incomplete Information and
Sensing. In Proc. AIPS’02.
Pistore, M., and Traverso, P. 2001. Planning as Model
Checking for Extended Goals in Non-deterministic Do-
mains. In Proc. IJCAI’01.
Pistore, M.; Bettin, R.; and Traverso, P. 2001. Symbolic
Techniques for Planning with Extended Goals in Non-
deterministic Domains. In Proc. ECP’01.
Rintanen, J. 1999. Constructing Conditional Plans by
a Theorem-Prover. Journal of Artificial Intellegence Re-
search 10:323–352.
Weld, D.; Anderson, C.; and Smith, D. 1998. Extending
Graphplan to Handle Uncertainty and Sensing Actions. In
Proc. AAAI’98.

