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Abstract

In (Petrick and Bacchus 2002), a “knowledge-level” approach
to planning under incomplete knowledge and sensing was
presented. In comparison with alternate approaches based on
representing sets of possible worlds, this higher-level repre-
sentation is richer, but the inferences it supports are weaker.
Nevertheless, because of its richer representation, it is able to
solve problems that cannot be solved by alternate approaches.
In this paper we examine a collection of new techniques for
increasing both the representational and inferential power of
the knowledge-level approach. These techniques have been
fully implemented in thePKS (Planning with Knowledge and
Sensing) planning system. Taken together they allow us to
solve a range of new types of planning problems under in-
complete knowledge and sensing.

Introduction
Constructing conditional plans that employ sensing and
must operate under conditions of incomplete knowledge is
a challenging problem, but a problem that humans deal with
on a daily basis. Although planning in this context is gen-
erally hard—both theoretically and practically—there are
many situations where “common-sense” plans with fairly
simple structure can solve the problem.

In (Petrick and Bacchus 2002), a “knowledge-level” ap-
proach to planning with sensing and incomplete knowledge
was presented. The key idea of this approach is to represent
the agent’s knowledge state using afirst-order language, and
to represent actions by their effects on the agent’sknowl-
edge, rather than by their effects on the environment.

General reasoning in such a rich language is impracti-
cal, however. Instead, we have been exploring the approach
of using a restricted subset of the language and a limited
amount of inference in that subset. The motivation for this
approach is twofold. First, we want to accommodate non-
propositional features in our representation, e.g., functions
and variables. Second, we are motivated more by the abil-
ity to automatically generate “natural” plans, i.e., plans that
humans are able to find and that an intelligent agent should
be able to generate, rather than by the ability to generate
all possible plans—humans cope quite well with incomplete

∗This research was supported by the Canadian Government
through their NSERC program.

knowledge of their environment even with limited ability to
generate plans. In this paper we present a collection of new
techniques for increasing the representational and inferential
power of the knowledge-based approach.

An alternate trend in work on planning under incomplete
knowledge, e.g., (Bertoliet al. 2001; Anderson, Weld,
and Smith 1998; Brafman and Hoffmann 2003), has con-
centrated on propositional representations over which com-
plete reasoning is feasible. The common element in these
works has been to represent the set of all possible worlds
(i.e., the set of all states compatible with the agent’s in-
complete knowledge) using various techniques, e.g., BDDs
(Bryant 1992), Graphplan-like structures (Blum and Furst
1997), or clausal representations (Brafman and Hoffmann
2003). These techniques yield planning systems that are able
to generate plans requiring complex combinatorial reason-
ing. Because the representations are propositional, however,
many natural situations and plans cannot be represented.

The difference in these approaches is well illustrated by
Moore’s classic open safe example (Moore 1985). In this
example there is a closed safe and a piece of paper on
which the safe’s combination is written. The goal is to
open the safe. Our planning system,PKS, based on the
knowledge-level approach, is able to generate the obvious
plan 〈readCombo; dial(combo())〉: first read the combina-
tion, then dial it. What is critical here is that the value of
combo() (a 0-ary function) is unspecified by the plan. In
fact, it is only at execution time that this value will become
known.1 At plan time, all that is known is that the value
will becomeknown at this point in the plan’s execution. The
ability to generate parameterized plans containing run-time
variables is useful in many planning contexts. Propositional
representations are not capable of representing such plans,
and thus, approaches based on propositional representations
cannot generate such plans (at least not without additional
techniques that go beyond propositional reasoning).

There are also a number of examples of plans that can be
generated by “propositional possible worlds” planners that
cannot be found byPKS because of its more limited inferen-
tial power. As mentioned above, we would not be so con-
cerned if complex combinatorial reasoning was required to

1The functioncombo() acts as a run-time variable in the sense
of (Etzioni, Golden, and Weld 1997).



discover these plans. However, some of these plans are quite
natural. In this paper we present a collection of techniques
for extending the inferential and representational power of
PKSso that it can find more of these types of plans. The fea-
tures we have added include extensive support for numbers,
so thatPKS can generate plans that deal with resources; a
postdiction procedure so thatPKS can extract more knowl-
edge from its plans (Sandewall 1994); and a temporal goal
language, so thatPKS can plan for “hands-off,” “restore,”
and other temporal goals (Weld and Etzioni 1994). With
these techniques, all fully implemented in the new version
of PKS, our planner can solve a wider and more interesting
range of planning problems. More importantly, these tech-
niques help us understand more fully the potential of the
“knowledge-level” approach to planning under incomplete
knowledge and sensing.

The rest of the paper is organized as follows. First, we
present a short recap of the knowledge-based approach to
planning embodied in thePKS system. Then, we discuss the
new techniques we have developed to enhancePKS. A series
of planning examples are then presented to help demonstrate
the effectiveness of thePKS system and these techniques in
general.

PKS
PKS (Planning with Knowledge and Sensing) is a
knowledge-based planner that is able to construct condi-
tional plans in the presence of incomplete knowledge (Pet-
rick and Bacchus 2002). ThePKS framework is based on a
generalization of STRIPS. In STRIPS, the state of the world
is represented by a database and actions are represented as
updates to that database. InPKS, the agent’s knowledge
(rather than the state of the world) is represented by a set
of databases and actions are represented as updates to these
databases. Thus, actions are modelled as knowledge-level
modifications to the agent’s knowledge state, rather than as
physical-level updates to the world state.

Modelling actions as database updates leads naturally to
a simple forward-chaining approach to finding plans that is
both efficient and effective (see (Petrick and Bacchus 2002)
for empirical evidence). The computational efficiency of
this approach is the result of restricting the types of knowl-
edge that can be expressed, and by limiting the power of
the inferential mechanism. In particular, only certain fixed
types of disjunctive knowledge can be represented and the
inferential mechanism is incomplete.

PKS uses four databases to represent an agent’s knowl-
edge, the semantics of which is provided by a translation to
formulas of a first-order modal logic of knowledge (Bacchus
and Petrick 1998). Thus, any configuration of the databases
corresponds to a collection of logical formulas that pre-
cisely characterizes the agent’s knowledge state. The four
databases used are as follows.
Kf : The first database is like a standard STRIPS database,
except that both positive and negative facts are allowed and
the closed world assumption is not applied.Kf can include
any ground literal,̀ ; ` ∈ Kf means that we knoẁ. Kf can
also contain knowledge of function values.

Kw: The second database is designed to address plan-time
reasoning about sensing actions. If the plan contains an ac-
tion to sense a fluentf , at plan time all that the agent will
know is thatafter it has executed the action it will either
know f or know¬f . At plan time the actual value off
remains unknown. Hence,φ ∈ Kw means that the agent ei-
ther knowsφ or knows¬φ, and that at execution time this
disjunction will be resolved.
Kw plays a particularly important role when generating

conditional plans. In a conditional plan one can only branch
on “know-whether” facts. That way we are guaranteed that
at execution time the agent will have sufficient information,
at that point in the plan’s execution, to determine which plan
branch to follow. This guarantee satisfies one of the impor-
tant conditions for plan correctness in the context of incom-
plete knowledge put forward in (Levesque 1996).
Kv: The third database stores information about function
values that the agent will come to know at execution time.
Kv can contain any unnested function term whose value is
guaranteed to be known to the agent at execution time.Kv

is used for the plan time modelling of sensing actions that
return numeric values. For example,size(paper.tex) ∈ Kv

means the agent knows at plan time that the size ofpaper.tex
will become known at execution time.
Kx: The fourth database contains a particular type of dis-
junctive knowledge, namely “exclusive-or” knowledge of
literals. Entries inKx are of the form(`1|`2| . . . |`n), where
each̀ i is a ground literal. Such a formula represents knowl-
edge of the fact that “exactly one of the`i is true.” Hence, if
one of these literals becomes known, we immediately come
to know that the other literals are false. Similarly, ifn−1 of
the literals become false we can conclude that the remaining
literal is true. This form of incomplete knowledge is com-
mon in many planning scenarios.

Actions inPKSare represented as updates to the databases
(i.e., updates to the agent’s knowledge state). Applying an
action’s effects simply involves adding or deleting the ap-
propriate formulas from the collection of databases. An in-
ference algorithm examines the database contents and draws
conclusions about what the agent does and does not know or
“know whether” (Bacchus and Petrick 1998). The inference
algorithm is efficient, but incomplete, and is used to deter-
mine if an action’s preconditions hold, what conditional ef-
fects of an action should be activated, and whether or not a
plan achieves the stated goal.

For instance, consider a scenario where we have a bottle
of liquid, a healthy lawn, and three actions:pour-on-lawn,
drink, and sense-lawn,2 specified in Table 1. Intuitively,
pour-on-lawnpours some of the liquid on the lawn with
the effect that if the liquid is poisonous, the lawn becomes
dead. In our action specification,pour-on-lawnhas two con-
ditional effects: if it is not known that¬poisonousholds,
then¬lawn-deadwill be removed fromKf (i.e., the agent
will no longer know that the lawn is not dead); if it is known
that poisonousholds, thenlawn-deadwill be added toKf

(i.e., the agent will come to know that the lawn is dead).
Drinking the liquid (drink) affects the agent’s knowledge of

2This example was communicated to us by David Smith.



Action Pre Effects
pour-on-lawn ¬K(¬poisonous) ⇒

del(Kf ,¬lawn-dead)
K(poisonous) ⇒

add(Kf , lawn-dead)
drink ¬K(¬poisonous) ⇒

del(Kf ,¬poisoned)
K(poisonous) ⇒

add(Kf , poisoned)
sense-lawn add(Kw, lawn-dead)

pour-on-lawn-2 ¬K(¬poisonous2) ⇒
del(Kf ,¬lawn-dead)

K(poisonous2) ⇒
add(Kf , lawn-dead)

Table 1: Actions in the poisonous liquid domain

being poisoned in a similar way. Finally,sense-lawnsenses
whether or not the lawn is dead and is represented as the
update of addinglawn-deadtoKw.

If Kf initially contains¬lawn-dead, and all of the other
databases are empty, executingpour-on-lawnyields a state
where¬lawn-deadhas been removed fromKf —the agent
no longer knows that the lawn is not dead. If we then execute
sense-lawnwe will arrive at a state whereKw now contains
lawn-dead—the agent knows whether the lawn is dead. This
forward application of an action’s effects provides a simple
means of evolving a knowledge state, and it is the approach
thatPKS uses to search over the space of conditional plans.

In PKS, a conditional plan is a tree whose nodes are la-
belled by a knowledge state (a set of databases), and whose
edges are labelled by an action or a sensed fluent. If a node
n has a single childc, the edge to that child is labelled by an
actionawhose preconditions must be entailed byn’s knowl-
edge state. The label for the childc (c’s knowledge state) is
computed by applyinga ton’s label. A noden can also have
two children, in which case each edge is labelled by a flu-
entF , such thatKw(F ) is entailed byn’s knowledge state
(i.e., the agent must know-whether the fluent that the plan
branches on). In this case, the label for one child is com-
puted by addingF to n’s Kf database, and the label for the
other child by adding¬F to n’s Kf database.

An existing plan may be extended by adding a new ac-
tion (i.e., a new child) or a new branch (i.e., a new pair of
children) to a leaf node. The inference algorithm computes
whether or not an extension can be applied, generates the
effects of the action or branch, and tests if the new nodes
satisfy the goal; no leaf is extended it if already achieves the
goal. The search terminates when a conditional plan is found
in which all the leaf nodes achieve the goal. Currently,PKS
performs only undirected search (i.e., no search control), but
it is still able to solve a wide range of interesting problems
(Petrick and Bacchus 2002).

Extensions to the PKS framework
Postdiction: Although PKS’s forward-chaining approach
is able to efficiently generate plans, there are situations
where the resulting knowledge states fail to contain some

“intuitive” conclusions. For instance, say we execute the se-
quence of actions〈pour-on-lawn; sense-lawn〉 (Table 1) in
an initial state where the lawn is alive, and then come to
know that the lawn is dead. An obvious additional conclu-
sion is that the liquid is poisonous. Similarly, if the lawn
remained alive, we can conclude that the liquid is not poi-
sonous. By reasoning about these two possible outcomes
at plan time, prior to executing the plan, we should be able
to conclude that the plan not only achievesKw knowledge
of lawn-dead, but that it also achievesKw knowledge of
poisonous.

It should be noted that a conclusion such aspoisonous
requires a non-trivial inference. Inspecting the states that
result from the action sequence〈pour-on-lawn; sense-lawn〉
reveals that neitherpoisonousnor¬poisonousfollows from
the individual actions executed:pour-on-lawnprovides no
information about whether or not it changed the state of the
lawn, so we cannot know if poisonous holds after the action
is executed. Similarly,sense-lawnsimply returns the status
of the lawn; by itself it says nothing about how the lawn
became dead. Further evidence that a non-trivial inference
process is at work is provided when we consider our knowl-
edge that in the initial state¬lawn-deadholds. It is not hard
to see that without this knowledge the conclusionpoisonous
is not justified.

We can capture these kinds of additional inferences at
plan time by examining action effects and non-effects. Con-
sider the two possible outcomes ofsense-lawnin the ac-
tion sequence〈pour-on-lawn; sense-lawn〉: either it senses
lawn-deador it senses¬lawn-dead. If we treat each out-
come separately we can consider two sequences of actions,
one for each outcome oflawn-dead. Each action sequence
produces three world states:W0 the initial world,W1 the
world after executingpour-on-lawn, andW2 the world after
executingsense-lawn.

In the first sequence, we know that¬lawn-deadholds
in W0 and thatlawn-deadholds inW2. Reasoning back-
wards we see thatsense-lawndoes not change the status of
lawn-dead. Hence,lawn-deadmust have held inW1. But
since¬lawn-deadheld inW0 and lawn-deadheld inW1,
pour-on-lawnmust have produced a change inlawn-dead.
Since lawn-deadis only altered by a conditional effect of
pour-on-lawn, it must be the case that the antecedent of the
condition,poisonous, was true inW0 when pour-on-lawn
was executed. Furthermore,poisonousis not affected by
pour-on-lawn, nor by sense-lawn. Hence,poisonousmust
be true inW1 as well as inW2.

Similarly, in the second sequence¬lawn-deadholds in
both W0 andW2. At the critical step we conclude that
since¬lawn-deadholds inW0 as well asW1, pour-on-lawn
did not alter lawn-dead, and hence the antecedent of its
conditional effect must have been false inW0. That is,
¬poisonousmust have been true inW0. Since¬poisonous
is not changed by the two actions, it must also be true in the
final state of the plan.

Hence, irrespective of the actual outcome of executing the
plan, the agent will arrive in a state where it either knows
poisonousor knows¬poisonous, and so, we can conclude
that the plan allows us to know-whetherpoisonous. It should



also be noted that all of the inferences described above pro-
vide updates to the agent’scurrentknowledge state, that is,
the agent’s knowledge state arising from applying a given
action sequence. For instance, the addition ofpoisonousor
¬poisonousto W0 can only be made after the sequence of
actions〈pour-on-lawn; sense-lawn〉 is performed. Thus, we
make a distinction between the agent’s knowledge ofW0

after applying〈pour-on-lawn; sense-lawn〉 (i.e., where the
agent knows whetherpoisonousis true or not), compared
with the agent’s knowledge of the initialW0 that we began
with (i.e., where no actions have been performed and the
agent did not know whetherpoisonousis true or not). In
other words, the agent’s knowledge maintains the most re-
cent information about each state in the plan.

The inferences employed above are examples ofpostdic-
tion (Sandewall 1994). Although the individual inferences
are fairly simple, taken together they can add significantly to
the agent’s ability to deal with incompletely known environ-
ments. A critical element in these inferences is the Markov
assumption as described in (Golden and Weld 1996): first,
we must assume that we have complete knowledge of action
effects and non-effects (our incomplete knowledge comes
from a lack of information about precisely what state we
are in when we apply the action); second, we must as-
sume that the agent’s actions are the only source of change
in the world. The first assumption is not restrictive, since
action non-determinism can always be converted into non-
determinism about the state in which it is being executed
(Bacchus, Halpern, and Levesque 1999). The second as-
sumption is more restrictive, however, and needs to be ex-
amined carefully when dealing with other agents (or nature)
that could be altering the world concurrently.

In PKS, reasoning about these kinds of inferences is
implemented by manipulatinglinearizations of the tree-
structured conditional plan. Each path to a leaf becomes
a linear sequence of states and actions: the states and ac-
tions visited during that particular execution of the plan. The
number of linearizations is equal to the number of leaves in
the conditional plan, so only a linear amount of extra space
is required to convert the condition plan (tree) into a set of
linear plans (the branches of the tree). Each path differs from
other paths in the manner in which the agent’s know-whether
knowledge resolves itself during execution and in the man-
ner in which that resolution affects the actions the agent sub-
sequently executes. For each linear sequence, we apply a set
of backward and forward inferences to draw additional con-
clusions along that sequence. When new branches are added
to the conditional plan, new linearizations are incrementally
constructed and the process is repeated.

LetW be a knowledge state in a linear sequence,W+ be
its successor state, anda be the label of the edge fromW to
W+. The inference rules we apply are:
1) If a cannot makeφ false (e.g.,φ is unrelated to any of
the factsa makes true), then ifφ becomes newly known in
W makeφ known inW+. Similarly, if a cannot makeφ
true, then ifφ becomes newly known inW+ makeφ known
in W . In both casesa cannot have changed the status ofφ
between the two worldsW andW+.
2) If φ becomes newly known inW anda has the conditional

effectφ→ ψ, makeψ known inW+. ψ must be true inW+

as either it was already true ora made it true.
3) If a has the conditional effectφ → ψ and it becomes
newly known thatψ holds inW+ and¬ψ holds inW , make
φ known inW . It has become known thata’s conditional
effect was activated, so the antecedent of this effect must
have been true.
4) If a has the conditional effectφ → ψ and it becomes
newly known that¬ψ holds inW+, make¬φ known inW .
It has become known thata’s conditional effect was not ac-
tivated, so the antecedent of this effect must have been false.

Although these rules are easily shown to be sound under
the assumption that we have complete information abouta’s
effects, they are too general to implement efficiently. In par-
ticular,PKSachieves its efficiency by restricting disjunctions
and, hence, we cannot use these rules to infer arbitrary new
disjunctions.

To avoid this problem, we restrictφ andψ to be liter-
als, and further require that our actions cannot add or delete
a fluentF with more than one conditional effect. For ex-
ample, an action cannot contain the two conditional effects
a→ F andb→ F .3 These restrictions do not prohibitφ and
ψ from being parameterized, provided such parameters are
among the parameters of the action. In certain cases, we can
apply these rules to more complex formulas, without pro-
ducing general disjunctions; implementing these extensions
remains as future work.

A conditional plan is updated by applying these inference
rules to each linearization of the plan. To test whether or not
one of the inference rules should be applied, the standard
PKS inference algorithm is used to test the rule conditions
against a given state in the plan. Thus, testing the inference
rules has the same complexity as evaluating whether or not
an action’s preconditions hold. A successful application of
one of the inference rules might allow other rules to fire.
Nevertheless, even in the worst case we can still run the rules
to closure (i.e., to a state where no rule can be applied) fairly
efficiently.

Proposition 1 On a conditional plan withn leaves and
maximum heightd, at mostO(nd2) tests of rule applica-
bility need be performed to reach closure.

In practice, we have found that the number of effects applied
at each state is often quite small.

We illustrate the operation of our postdiction algorithm on
the conditional plan〈pour-on-lawn; sense-lawn〉, followed
by a branch on knowing whetherlawn-dead. This plan is
shown at the top of Figure 1, along with the contents of
the databases. The two linearizations of the plan are shown
in (a) and (b). Applying the new inference rules produces
the additional conclusions shown in bold; the number fol-
lowing the conclusion indicates the rule that was applied in
each case. The net result is that we have proved that in ev-
ery outcome of the plan the agent either knowspoisonous

3If this was allowed, rule 3 above would be invalid. The correct
inference from knowing¬F in W andF in W + would bea ∨ b,
which is a disjunction. This observation was pointed out to us by
Tal Shaked.



or knows¬poisonous, i.e., the plan achieves know-whether
knowledge ofpoisonous.

Situation calculus encoding: We have also shown our
new inference rules to be sound, with respect to an encod-
ing in the language of the situation calculus. The situa-
tion calculus ((McCarthy 1963), and as presented in (Reiter
2001)) is a first-order language, with some second-order fea-
tures, specifically designed to model dynamically changing
worlds. A first-order term called asituation is used to rep-
resent a sequence of actions, also known as apossible world
history. Predicates and functions are extended so that their
values may be referenced with respect to a particular situa-
tion; the values of suchfluentsare permitted to change from
situation to situation. Actions provide the means of change
in a domain, and when applied to a given situation, generate
a successor situation. A knowledge operator added to the
basic language (Scherl and Levesque 2003) allows a formal
distinction to be made between fluents that are true of a sit-
uation and fluents that areknownto be true of a situation.
Since a situation term denotes a history of action, it provides
a temporal component that indexes all assertions made about
the agent’s knowledge.

Any planning problem represented byPKS can be recast
formally in the language of the situation calculus. By doing
so, we have been able to verify that the conclusions made by
our inference rules are always entailed by an encoded the-
ory, thus establishing the soundness of our inference rules.
Furthermore, we have confirmed the soundness for a gener-
alized version of our rules, rather than the restricted set of
rules we implemented inPKS. For instance, since the situa-
tion calculus is a general first-order language, the inferences
that generated disjunctions in rule 3 (and could not be repre-
sented inPKS) can be shown to be correct.

Our situation calculus encoding also allows us to cor-
rectly make the necessary formal distinction between what
an agent knows about the previous state when it is in its
current state, and what the agent knew about its previ-
ous state when it was in its previous state. In partic-
ular, in the situation calculusKnows(F (prev(s)), s) and
Knows(F (prev(s)), prev(s)) are distinct pieces of knowl-
edge. Knows(F (prev(s)), s) indicates that in situations
(now) it is known thatF was true in the previous situation
(prev(s)). Knows(F (prev(s)), prev(s)) on the other hand
indicates that in the previous situationF is known to be true
in that situation.

In conditional plans, when we reach a particular state as
a result of having our sensing turn out a particular way, it is
possible for us to know more now about the previous state
than we did when we were in the previous state. Our infer-
ence rules are used to update our knowledge of the previ-
ous states so that knowledge is described with respect to the
states labelling the leaf nodes in the conditional plan. Thus,
the knowledge states represented in the conditional plans are
always referenced with respect tos rather than with respect
to prev(s). Since the previous actions and outcomes lead-
ing up to a leaf node are fixed, we can never lose knowl-
edge about the past. That is, we can never have the case
thatKnows(F (prev(s)), prev(s)) holds when we don’t have

Linearization of conditional branches:

Kf: lawn−dead

pour−on−lawn sense−lawn
lawn−dead
branch on

Kf: lawn−dead

(a)

(b)
Kw: lawn−dead

Kf: lawn−dead

Conditional plan:

pour−on−lawn sense−lawn

Kf: lawn−dead lawn−deadKf:Kf:
Kf: Kf: Kf:

(a)

pour−on−lawn sense−lawn

Kf: lawn−dead Kf:Kf: lawn−dead
Kf: Kf: Kf:

(b)

lawn−dead (1)
poisonous (1)poisonous (3) poisonous (1)

poisonous (4) poisonous (1) poisonous (1)
lawn−dead (1)

Figure 1: Postdiction in the poisonous liquid domain

thatKnows(F (prev(s)), s) also holds. Instead, the agent’s
knowledge about its past states is always non-decreasing,
and the agent cannot lose knowledge about the past when
the new inference rules are applied.

Temporally extended goals: Consider again the plan il-
lustrated in Figure 1. If we apply the postdiction algorithm
as in branch (a), we can not only infer thatpoisonousheld
in the final state of the execution, but also that it held in
the initial state. As we discussed above, postdiction can po-
tentially update the agent’s knowledge of any of the states
visited by the plan. In other words, along this execution
branch we can conclude that the liquid must haveinitially
been poisonous. Similarly, along branch (b), we conclude
that¬poisonousheld in the initial state. Thus, at plan time
we could also infer that the conditional plan achieves know-
whether knowledge of whetherpoisonousinitially held.

Often, these kinds of temporally-indexed conclusions are
needed to achieve certain goals. For instance, restore goals
require that the final state returns a condition to the status it
had in the initial state (Weld and Etzioni 1994). We might
not know the initial status of a condition and, hence, it may
be difficult for the planner to infer that a plan does in fact
restore this status. However, with additional reasoning (as
in the above example), we may be able to infer the initial
status of the condition, and thus be in a position to ensure a
plan properly restores it.

Since our postdiction algorithm requires the ability to in-
spect and augment any knowledge state in a conditional
plan’s tree structure, the infrastructure is already in place
to let us solve more complex types of temporal goals that
reference states other than the final state.

In PKS, goals are constructed from a set of primitive
queries (Bacchus and Petrick 1998) that can be evaluated
by the inference algorithm at a given knowledge state. A
primitive queryQ is specified as having one of the follow-
ing forms: (i)K(`): is a ground literal̀ known to be true?
(ii) Kval(t): is termt’s value known? (iii)Kwhe(`): do we
“know whether” a literal̀ ? Our enhancements to the goal
language additionally allow a queryQ to specify one of the
following temporal conditions:

1. QN : the query must hold in the final state of the plan,



2. Q0: the query must hold in the initial state of the plan, or

3. Q∗: the query must hold in every state that could be vis-
ited by the plan.

Conditions of type (1) can be used to express classical goals
of achievement. Type (2) conditions allow, for instance, re-
store goals to be expressed. Conditions of type (3) can be
used to express “hands-off” or safety goals (Weld and Et-
zioni 1994).

Finally, we can combine queries into arbitrary goal for-
mulas that include disjunction,4 conjunction, negation, and
a limited form of existential and universal5 quantification.
When combined with the postdiction algorithm of the previ-
ous section, a goal is satisfied in a conditional plan provided
it is satisfied in every linearization of the plan.

For instance, the plan in Figure 1 satisfies the goal
Kwhe0(poisonous) ∧ KwheN (poisonous), i.e., we know
whetherpoisonousis true or not in both the initial state
and the final state of each linearization of the plan. The
same plan also satisfies the stronger, disjunctive goal
(K0(poisonous) ∧KN(poisonous)) ∨ (K0(¬poisonous) ∧
KN(¬poisonous)). In this case, linearization (a) satisfies
K0(poisonous)∧KN(poisonous), linearization (b) satisfies
K0(¬poisonous)∧KN (¬poisonous), and so the conditional
plan satisfies the disjunctive goal. Finally, the plan also sat-
isfies the goalKwhe∗(poisonous) since we know whether
poisonousis true or not at every knowledge state of the plan.

Numerical evaluation: Many planning scenarios require
the ability to reason about numbers. For instance, construct-
ing plans to manage limited resources or satisfy certain nu-
meric constraints requires the ability to reason about arith-
metic expressions. To increase our flexibility to generate
plans in such situations, we have introduced numeric expres-
sions intoPKS. Currently,PKS can only deal with numeric
expressions containing terms that can be evaluated down to
a number at plan time; expressions that can only be eval-
uated at execution time are not permitted. For example,
a plan might involve filling the fuel tank of a truckt1. If
the numeric value of the amount of fuel subsequently in the
tank, fuel(t1), is known at plan time,PKS can usefuel(t1)
in further numeric expressions. However, if the amount of
fuel added is known only at run time, so thatPKS onlyKv’s
fuel(t1) but does not know how to evaluate it at plan time,
then it cannot usefuel(t1) in other numeric expressions.

Even thoughPKS can only deal with numeric expressions
containing known terms, these expressions can be very com-
plex: they are a subset of the set of expressions of the C lan-
guage. Specifically, numeric expressions can contain all of
the standard arithmetic operations, logical connective oper-
ators, and limited control structures (e.g., conditional evalu-
ations and simple iterative loops). Temporary variables may
also be introduced into calculations of an expression.

4As in the approach of (Petrick and Levesque 2002), disjunc-
tionsoutsidethe scope of knowledge operators are not problematic.

5Queries containing universal quantifiers are currently re-
stricted to quantify over the set ofknownobjects, rather than the
set of all objects in the domain.

Numeric expressions can also be used in queries, and we
can update our databases with a formula containing numeric
terms. For instance, a numeric term resulting from a queried
expression can be utilized in additional calculations and then
added to a database as an argument of a new fact. The only
restriction, as noted above, is thatPKS must be able to eval-
uate these expressions down to a specific numeric value be-
fore they are used to query or update the databases. Nev-
ertheless, as we will demonstrate in the planning problems
presented below, even with this restriction, the numeric ex-
pressions we allow are still very useful in modelling a vari-
ety of planning problems.

Exclusive-or knowledge of function values: PKS has a
Kx database for expressing “exclusive-or” knowledge. A
particularly useful case of exclusive-or knowledge arises
when a function has a finite and known range. For exam-
ple, the functionf(x) might only be able to take on one of
the valueshi, med, or lo. In this case, we know that for ev-
ery value ofx we have(f(x) = hi|f(x) = med|f(x) = lo).
Previously,PKScould not represent such a formula in itsKx

database, as the formula contains literals that are not ground.
Because finite valued functions are so common in planning
domains, we have extendedPKS’s ability to represent and
reason with this kind of knowledge.

We can take advantage of this additional knowledge in
two ways. First, we can utilize this information to reason
about sets of function values and their inter-relationship.
For example, say thatg(x) has range{d1|d2| . . . |dm} while
f(x) has range{d1|a1| . . . |am}. Then, fromf(c) = g(b)
we can conclude thatf(c) = g(b) = d1.6 Second, we
have added the ability to insert multi-way branches into a
plan when we haveKv knowledge of a finite-range function.
In such situations, the planner will try to construct a plan
branch for each of the possible mappings of the function.

For instance, in the open safe example it might be the case
that we know the set of possible combinations. Such knowl-
edge could be specified by including the formulacombo() =
(c1|c2| . . . |cn) in our extendedKx database. In any plan
state wherecombo() ∈ Kv (we know the value of the com-
bination) we could immediately complete the plan with an
n-way branch on the possible values ofcombo, followed by
the actiondial(ci) to achieve an open safe along thei-th
branch.

Planning problems
We now illustrate the extensions made toPKS with a series
of planning problems. Our enhancements have allowed us
to experiment with a wide range of problemsPKSwas previ-
ously unable to solve. We also note again that even though
our planner employs blind search to find plans it is still able
to solve many of the examples given below in times that are
less than the resolution of our timers (1 or 2 milliseconds).

Poisonous liquid: When given the actions specified in Ta-
ble 1, PKS can immediately find the plan〈pour-on-lawn,
sense-lawn〉 to achieve the goalKwhe0(poisonous) ∧

6Constants that are syntactically distinct denote different ob-
jects in the domain.
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Figure 2: Poisonous liquid domain with two liquids

KwheN (poisonous) (knowing whetherpoisonousheld in
both the initial and final states). It is also able to find
the same plan when given the goal(K0(poisonous) ∧
KN(poisonous))∨ (K0(¬poisonous)∧KN (¬poisonous)),
as well as the goalKwhe∗(poisonous).

An interesting variation of the poisonous liquid domain
includes the addition of the actionpour-on-lawn-2(see Ta-
ble 1). pour-on-lawn-2has the effect of pouring a second
unknown liquid onto the lawn; its effects are similar to those
of pour-on-lawn: the second liquid may be poisonous (rep-
resented bypoisonous2) and, thus, kill the lawn. When pre-
sented with the conditional plan shown at the top of Figure 2,
PKS is able to construct the linearizations (a) and (b), and
augment the databases with the conclusions shown in bold
in the figure. This plan is useful for illustrating our postdic-
tion rules. In (a), sincepour-on-lawn-2andpour-on-lawn
both have conditional effects involvinglawn-dead, we can-
not make any additional conclusions aboutlawn-deadacross
these actions. As a result, no further reasoning rules are ap-
plied. This reasoning is intuitively sensible: the agent is
unable to determine which liquid killed the lawn and, thus,
cannot conclude which of the liquids is poisonous. (The
disjunctive conclusion that one of the liquids is poisonous
cannot be represented byPKS). In (b), after applying the
inference rules we are able to establish that¬lawn-dead,
¬poisonous, and¬poisonous2must hold in each state of the
plan. Again these conclusions are intuitive: after sensing
the lawn and determining that it is not dead, the agent can
conclude that neither liquid is poisonous.

It should be noted that planners that represent sets of pos-
sible worlds (and thus deal with disjunction) are also able
to obtain the conclusions obtained from our postdiction al-
gorithm in the above examples (and some further disjunc-
tions as well). In particular, these examples are all propo-
sitional, and do not utilizePKS’s ability to deal with non-
propositional features. What does pose a problem for many
of these planners, however, is their inability to infer the
temporally-indexed conclusions necessary to verify the tem-
poral goal conditions; planners that only maintain and test
the final states of a plan will be unable to establish the re-
quired conclusions.

Action Pre Effects
paint(x) K(colour(x)) add(Kf , door-colour() = x)
sense-colour add(Kv , door-colour())

Table 2: Painted door action specification

Action Pre Effects
dial(x) add(Kw , open)

del(Kf ,¬open)
K(combo() = x) ⇒

add(Kf , open)

Table 3: Open safe action specification

Painted door: In the painted door domain we have the
two actions given in Table 2.paint(x) changes the colour
of the doordoor-colour() to an available colourx, while
sense-coloursenses the value ofdoor-colour(). Our goal is
a “hands-off” goal of coming to know the colour of the door
while ensuring that the colour is never changed by the plan.
This can be expressed by the temporally-extended formula
(∃x)K∗(door-colour() = x).

Initially, the agent knows that the door is one of two
possible colours,c1 or c2, represented by the formula
door-colour() = {c1|c2} in the Kx database.7 During
its search,PKS finds the single-step plan〈sense-colour〉.
This action has the effect of addingdoor-colour() to the
Kv database, indicating that the value ofdoor-colour() is
known. Using this information, combined with itsKx

knowledge of the possible values fordoor-colour(), PKS
can construct a two-way branch that allows it to consider
the possible mappings ofdoor-colour(). Along one branch
the planner asserts thatdoor-colour() = c1; along the other
branch it asserts thatdoor-colour() = c2. Sincesense-
colour does not changedoor-colour(), after applying the
postdiction algorithm we are able to conclude along each
linearization that the value ofdoor-colour() is the same in
every state. In each linearizationdoor-colour() has a dif-
ferent value in the initial state, but its value agrees with its
value in the final state. Thus, we can conclude that the plan
achieves the goal.

Note that if PKS examines a plan like〈paint(c1)〉 it will
not know the value ofdoor-colour() in the initial state. Since
paint changes the value ofdoor-colour(), our postdiction
algorithm will not allow facts aboutdoor-colour() to be
passed back through thepaintaction. Thus,PKScannot con-
clude thatdoor-colour() remains the same throughout the
plan, and so plans involvingpaintare rejected as not achiev-
ing the goal.

Opening a safe: Another interesting problem forPKS is
the open safe problem. In this problem we consider a safe
with a fixed number of known, possible combinations. In
the initial state we know that the safe is closed and that one
of the combinations will open the safe (represented asKx

knowledge). The actual combination is denoted by the 0-ary

7Any finite set of known colours will also work.



Action Pre Effects
dial(x) add(Kw, open)

del(Kf ,¬open)
add(Kf , justDialled() = x)
K(combo() = x) ⇒

add(Kf , open)
Domain specific update rules
K(open) ∧ K(justDialled() = x) ⇒

add(Kf , combo() = x)
K(¬open) ∧ K(justDialled() = x) ⇒

add(Kf , combo() 6= x)

Table 4: Open safe domain (Petrick and Bacchus 2002)

function,combo(). There is one action,dial(x), which dials
a combinationx on the safe.dial has the effect of sensing
whether or not the safe becomes open. If the combination
dialled is known to be the combination of the safe, then it
will become known that the safe is open. The action specifi-
cation fordial is given in Table 3.

After a dial(ci) action is performed (whereci is some
combination), the planner is able to form a conditional
branch on knowing-whetheropen. Along one branch the
planner asserts thatopen is known to be true. Sincedial
changes the value ofopen, postdiction can conclude that
dial’s conditional effect must have been applied, and so,
combo() = ci must hold in the initial state. Sincecombo
is not changed bydial, thencombo() = ci must also be true
in the state following thedial action. In this state, the goal
is satisfied: the safe is known to be open andci is known to
be the combination of the safe. Along the other branch the
planner asserts that¬openholds. Since¬openis unchanged
by dial, it must be the case thatdial’s conditional effect was
not applied, and socombo() 6= ci must hold in the initial
state. Again, sincecombois unchanged bydial, it must be
the case thatcombo() 6= ci also holds in the state following
dial. The planner’sKx knowledge of possible combinations
is then updated, and the planner can try anotherdial action
with a different combination.

An earlier PKS encoding of the open safe problem ap-
peared in (Petrick and Bacchus 2002), and is shown in Ta-
ble 4. The new inference rules, however, allow us to sim-
plify this action specification. In our previous encoding,
we required a special function,justDialled(), to explicitly
track each combinationci that was dialled. A pair of do-
main specific update rules8 was then used to assert whether
combo() = ci was true or not, depending on whether or not
the safe was known to be open. Since postdiction automat-
ically generates such conclusions from our action specifica-
tion, we no longer require the extra function and update rules
in our encoding.

UNIX domain: Our final examples are taken from the
UNIX domain. The actions for the first example are given

8Update rules are simply a convenient way of specifying ad-
ditional action effects that might apply to many different actions
(Petrick and Bacchus 2002). Update rules are checked and condi-
tionally fired after an action is applied or a plan branch is added.

Action Pre Effects
cd(d) K(dir(d)) add(Kf , pwd() = d)

K(indir(d, pwd())
cd-up(d) K(dir(d)) add(Kf , pwd() = d)

K(indir(pwd(), d)
ls(f, d) K(pwd() = d) add(Kw, indir(f, d))

K(file(f))
¬Kw(indir(f, d))

Domain specific update rules
¬K(processed(f, d)) ∧ K(indir(f, d)) ∧ Kval(size(f, d)) ⇒

t = [(size-max() > size(f, d))? size-max() : size(f, d)],
add(Kf , size-max() = t),
add(Kf , count() = count() + 1),
add(Kf , processed(f, d))

¬K(processed(f, d)) ∧ K(indir(f, d)) ∧ ¬Kval(size(f, d)) ⇒
add(Kf , size-unk() = size-unk() + 1),
add(Kf , processed(f, d))

¬K(processed(f, d)) ∧ K(¬indir(f, d)) ⇒
add(Kf , processed(f, d))

Table 5:UNIX domain action specification (1)

in Table 5. A directory hierarchy is defined by the rela-
tion indir(x, y) (x is in directoryy), the current working di-
rectory is specified by the 0-ary functionpwd(), and there
are two actions for moving around in the directory tree:
cd(x) moves down to a sub-directory ofpwd() andcd-up(x)
moves to the parent directory ofpwd(). Finally, the third ac-
tion, ls, can sense the presence of a file inpwd().

Initially, the planner has knowledge of the cur-
rent directory, pwd() = root, and of the directory
tree’s structure: indir(icaps, root), indir(kr, root), and
indir(planning, icaps). The planner also has the initial
knowledgefile(paper.tex) (a precondition ofls).

In this example we consider the situation where multiple
copies of the filepaper.texmay exist, located in different
directories with possibly different sizes. We would like to
determine the number of instances ofpaper.texthat are in
the directory tree, as well as the size of the largest copy
(whose size is known). To do this, we introduce some ad-
ditional functions. size(f, d) specifies the size of filef in
directoryd, size-max() keeps track of the largest file size
that has been found,count() simply counts the number of
instances ofpaper.texwhose size is known, whilesize-unk()
counts the number of copies whose size is not known. Ini-
tially, we have thatcount(), size-max(), andsize-unk() are
all known to be equal to zero.

Our domain encoding includes three domain specific up-
date rules, rules that are conditionally fired in the initial
state, or after actions or branches have been added to the
plan. These rules handle the different cases when we have
not yet “processed” a directoryd, i.e., checked it for the
presence ofpaper.tex. The first rule fires whenpaper.texis in
a directoryd and its size is known. In this case, we can com-
pare the size,size(paper.tex, d) against the current maximum
size,size-max(), and updatesize-max() if necessary.count()
is also incremented. The second rule fires whenpaper.texis
in a directoryd but we don’t know its size. In this case
we simple incrementsize-unk(). Finally, the third rule fires



when paper.texis not in a directoryd. In this case, none
of the functions are changed. After any of the update rules
is fired, we mark directoryd as being checked forpaper.tex
(i.e.,processed(paper.tex, d) becomes known).

Our goal is to know that we haveprocessedeach direc-
tory in the directory tree. In the first example, we consider
the case when we know the location and size of some copies
of paper.tex: indir(paper.tex, kr), indir(paper.tex, icaps),
size(paper.tex, kr) = 1024, and size(paper.tex, icaps) =
4096. Running PKS on this problem immediately pro-
duces the plan:〈ls(paper.tex, root);cd(icaps);cd(planning);
ls(paper.tex, planning〉, following by a branch on knowing-
whether indir(paper.tex, planning): in each branch we
branch again on knowing-whetherindir(paper.tex, root).
The final plan has four leaf nodes. In each of these
terminal states,size-max() = 4096 and count() = 2.
The four branches of the plan track the planner’s in-
complete knowledge ofpaper.texbeing in the directories
root and planning: each final state represents one possi-
ble combination of knowing-whetherindir(paper.tex, root)
and knowing-whetherindir(paper.tex, planning). Moreover,
the value of the functionsize-unk() is appropriately up-
dated in each of these states (by the second update rule).
For instance, along the branch whereindir(paper.tex, root)
and indir(paper.tex, planning) holds, we would also know
size-unk() = 2. When ¬indir(paper.tex, planning) and
¬indir(paper.tex, root) is known,size-unk() = 0. The re-
maining two branches would each havesize-unk() = 1.

PKS is also able to generate a plan if we don’t haveany
information about the sizes or locations ofpaper.tex. In
this case, the plan performs anls action in each directory
and produces a plan branch for each possibility of knowing-
whetherpaper.texis in that directory. With 4 directories to
check,PKS produces a plan with24 = 16 branches. Our
blind depth-first version of the planner is able to find this
plan in 0.01 seconds; our breath-first version ofPKS which
ensures the smallest plan is generated, is able to do so in
30.1 seconds.

One final extension to this example is the addition of a
goal that requires us to not only determine the size of the
largest instance ofpaper.tex, but also to move to the di-
rectory containing this file (provided we have found a file
whose size is known). To do this, we need simply add the ad-
ditional “guarded” goal formula(∃d).KN (count() > 0) ⇒
KN(pwd() = d)∧ KN(size(paper.tex, d) = size-max())
to our goal list. IfPKS has processed a file whose size is
known (i.e.,count() > 0) then it also needs to ensurepwd()
matches the directory containing a file size ofsize-max() for
paper.tex. Otherwise, the goal is trivially satisfied.

Our secondUNIX domain example uses the actions given
in Table 6. Initially, we know about the existence of certain
files and directories, specified by thefile(f) anddir(d) pred-
icates; some of their locations, specified by theindir(f, d)
predicate; and that some directories are executable, speci-
fied by theexec(d) predicate. The actionls(d) senses the
executability of a directoryd; chmod+x(d) andchmod-x(d)
respectively set and delete the executability of a directory;
andcp(f, d) copies a filef into directoryd, provided the
directory is executable. The goal in this domain is to copy

Action Pre Effects
ls(d) K(dir(d)) add(Kw, exec(d))
chmod+x(d) K(dir(d)) add(Kf , exec(d))
chmod-x(d) K(dir(d)) add(Kf ,¬exec(d))
cp(f, d) K(file(f)) add(Kf , indir(f, d))

K(dir(d))
K(exec(d))

cp+(f, d) K(file(f)) K(exec(d)) ⇒
K(dir(d)) add(Kf , indir(f, d))

add(Kw, indir(f, d))

Table 6:UNIX domain action specification (2)

files into certain directories, while restoring the executability
conditions of these directories.

The planner is given the initial knowledgedir(icaps),
file(paper.tex), and ¬indir(paper.tex, icaps); the planner
has no initial knowledge of the executability of the di-
rectory icaps. Our goal is that we come to know
indir(paper.tex, icaps) and that we restore the executabil-
ity status oficaps(i.e., thatexec(icaps) has the same value
at the end and the beginning of the plan). The value of
exec(icaps) may change during the plan, provided it is re-
stored to its original value by the end of the plan.

PKS finds the conditional plan:ls(icaps); branch on
exec(icaps): if K(exec(icaps)) then cp(paper.tex, icaps),
otherwise chmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps).

Since the executability oficaps is not known initially,
the ls action is necessary to sense the value ofexec(icaps).
Postdiction establishes that this sensed value must also hold
in the initial state, sincels does not change the value of
exec. The second goal can then be established by testing
the initial value ofexec(icaps) against its value in the final
state(s) of the plan. By reasoning about the possible val-
ues ofexec(icaps), appropriate plan branches can be built to
ensure the first goal is achieved (the file is copied) and the
executability permissions of the directory are restored along
the branch where we had to modify these permissions.

We also consider a related example with a new ver-
sion of the cp action, cp+ (also given in Table 6).
Unlike cp, cp+ does not require that the directory be
known to be executable, but returns whether or not
the copy was successful. In this casePKS finds
the conditional plan: cp+(paper.tex, icaps); branch on
indir(paper.tex, icaps): if K(indir(paper.tex, icaps)) do
nothing, otherwisechmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps). In other words,PKS is able to reason from
cp+ failing to achieveindir(paper.tex, icaps) that icapswas
not initially executable.

Conclusions
Our extensions to thePKS planner have served to increase
both its representational and inferential power, enhancing
our ability to plan in a variety of new situations. These ex-
tensions have also served to demonstrate the utility of the
knowledge-based approach to planning under incomplete



knowledge. We are currently working on several further ex-
tensions; we briefly mention two of these extensions here.
The first enhancement is an improvement in our ability to
deal with unknown numeric quantities (e.g., we were un-
able to evaluate expressions that could not be reduced to a
number at plan time). Provided we haveKv knowledge of
all the numeric terms involved in an expression, we should
be able to track these (unevaluated) expressions and under
certain conditions introduce plan branches that allow us to
reason further using these expressions (e.g., when reason-
ing about the truth of an inequality such asf(a) < c we
could introduce conditional branches and reason about the
cases whenf(a) < c and f(a) ≥ c). The second en-
hancement is a natural generalization to the type of reason-
ing performed in the painted door domain. Instead of con-
structing a plan with a multi-way branch for each possible
colour of the door, the planner could add a new assertion
door-colour() = c toKf , wherec is a new constant (essen-
tially a Skolem constant). Our postdiction rules would then
conclude thatdoor-colour() would be preserved no matter
what colourc represented, thus ensuring that the goal is
achieved even if the range of door colours is unknown or
infinite. We are making progress solving these problems,
and believe that the knowledge-based approach continues to
have great potential for building powerful planners that can
work under incomplete knowledge.
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