
Trading Places: How to Schedule More
in a Multi-Resource Oversubscribed Scheduling Problem∗

Laura Barbulescu and Adele E. Howe and L. Darrell Whitley and Mark Roberts
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

email:{laura,howe,whitley,mroberts}@cs.colostate.edu

Abstract

Oversubscribed scheduling problems require removing
tasks when enough resources are not available. Prior
AI approaches have mostly been constructive or repair-
based heuristic search. In contrast, we have found a
genetic algorithm (GA) to be the best approach to the
overconstrained problem of Air Force Satellite Control
Network scheduling. We present empirical results that
elucidate sources of difficulty in the application and par-
tially explain why the GA is well suited to this problem.
We show that the task interaction compels changes in-
volving many tasks simultaneously and the GA appears
to be learning domain specific patterns in the data.

Introduction
Most scheduling research has studied applications in which
all tasks will get scheduled . . . eventually. These appli-
cations, e.g., job shop scheduling, exploit evaluation met-
rics such as makespan where the value degrades as the fin-
ish time increases. In contrast, typical problems in over-
subscribed scheduling applications make more demands on
some of the resources than can be accommodated; conse-
quently, some tasks must be discarded. The most critical
evaluation metric to minimize is number of tasks bumped:
a metric with a smaller range and correspondingly less dis-
criminatory power between solutions.

In AI, constraint-directed search procedures are com-
monly applied to scheduling. Constructive approaches in-
crementally and heuristically add tasks until no more can be
accommodated, backtracking or re-starting search to explore
alternative choices (e.g., (Bresina 1996)). Repair-based ap-
proaches start with a schedule and iteratively modify it to
accommodate more tasks (e.g., (Kramer & Smith 2003)).

Constraint-directed methods have not proven effective for
our oversubscribed application: Air Force Satellite Con-
trol Network access scheduling (AFSCN). In fact, we have

∗This research was sponsored the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under grant
number F49620-03-1-0233. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

found that a Genetic Algorithm (GA) has the best perfor-
mance relative to several constraint directed techniques, lo-
cal search and tailored heuristic techniques. The GA is simi-
lar to the repair-based techniques in that it manipulates pop-
ulations of full solutions to iteratively improve the solution,
but differs in how it goes about the improvement.

In this paper, we present those results and describe a set of
experiments designed to identify the complexities in this ap-
plication and partially explain why a GA might excel on it.
We show that the improvement technique (the crossover op-
erator) may be superior because it makes more than pairwise
changes. We describe a domain specific pattern that the GA
appears to be learning and present results of a heuristic based
on it. We investigate whether the search space might be re-
duced by considering only limited movement of tasks within
a schedule. Finally, we examine whether the GA might be
learning the general placement of critical tasks.

Experiments show that the GA is learning some simple
patterns which exploit domain knowledge; however, that do-
main knowledge is not enough to account for the perfor-
mance. The GA appears to be discovering fairly complex
relationships in the data that are not easily found through
simple repair operations. We hypothesize that several char-
acteristics of our application and other oversubscribed appli-
cations make them well suited to an adaptive, less local solu-
tion: 1) tasks may be placed on alternative resources within
certain constraints, 2) domain knowledge, especially relat-
ing to prioritization, may be learned, and 3) the placement
of tasks may cause cascade effects in the schedule.

AFSCN Scheduling
The U.S. AFSCN is responsible for coordinating communi-
cations between users on the ground and satellites in space.
Communications to more than 100 satellites are performed
through 16 antennas at nine ground stations located around
the globe. To reserve a particular anntena for a period of
time, users submit a task request which includes a required
duration, a time window within which the duration must oc-
cur and a desired resource. Alternate time windows and an-
tennas may also be specified. Over 500 requests are typically
received for one day. Separate schedules are produced for
each day. The generic problem of scheduling task requests
for communication antennas is referred to as the Satellite
Range Scheduling Problem (SRSP) (Schalck 1993).

Naturally, some communication antennas are typically
oversubscribed. After human schedulers attempt to fit all
tasks into the schedule, often about 120 conflicts, or requests
that could not be accommodated, remain. Because satellites
are extremely expensive resources and the tasks may be mis-
sion critical for organizations in the Defense Department,
absolute rejection of requests is not an option. Rather, hu-
man schedulers must engage in a complex, time-consuming
arbitration process to create a conflict-free schedule.

Human schedulers use and balance many (hard to quan-
tify) criteria to develop a conflict-free schedule. We fo-
cus on a single, although crucial, aspect of the problem:
minimizing the number of conflicts before the arbitration
process. Human schedulers do not consider any conflict
worse than any other conflict (Gooley 1993; Schalck 1993;
Parish 1994), and the human schedulers state that reducing
the number of conflicts up-front reduces 1) the work-load of
human schedulers, 2) communication with outside agencies,
and 3) the time required to produce a feasible schedule.

Approaches to Oversubscribed Scheduling
The AFSCN application is a multiple resource, multi-
capacity oversubscribed problem. Examples of other such
applications are USAF Air Mobility Command (AMC) air-
lift scheduling (Kramer & Smith 2003), NASA’s shuttle
ground processing (Deale et al. 1994), scheduling tele-
scope observations (Bresina 1996) and satellite observation
scheduling (Frank et al. 2001; Globus et al. 2003).

AMC scheduling assigns delivery missions to air wings
(Kramer & Smith 2003). Their system adopts an iterative re-
pair approach by greedily creating an initial schedule by pri-
ority order and then attempting to insert unscheduled tasks
by retracting and re-arranging conflicting tasks. AMC dif-
fers from the AFSCN problem in one critical way: each de-
livery must occur within a particular time window and does
not include alternative time/resource combinations.

The Gerry scheduler was designed to manage the large set
of tasks needed to prepare a space shuttle for its next mis-
sion (Zweben, Daun, & Deale 1994). Tasks are described
in terms of resource requirements, temporal constraints and
required time windows. The original version used construc-
tive search with dependency-directed backtracking, which
was not adequate to the task; a subsequent version employed
constraint-directed iterative repair.

Satellite observation scheduling requires matching cus-
tomer requests (e.g., instrument required, locations and
times for the sensing event) for data collection to appro-
priate satellite resources. Frank et al.(2001) proposed a
constraint-based planner with a stochastic greedy search al-
gorithm based on Bresina’s HBSS algorithm (Bresina 1996).
Globus et al.(2003) compared a genetic algorithm, simulated
annealing, squeaky wheel optimization and hill climbing on
a simplified, synthetic form of the satellite scheduling prob-
lem (two satellites with a single instrument) and found that
simulated annealing excelled and that the genetic algorithm
performed relatively poorly.

The AFSCN application was previously studied by re-
searchers from the Air Force Institute of Technology

(AFIT). Gooley (1993) and Schalck (1993) developed algo-
rithms based on mixed-integer programming (MIP) and in-
sertion heuristics. Parish (1994) applied the Genitor genetic
algorithm (Davis 1991), which scheduled roughly 96% of all
task requests, out-performing the MIP approaches. In pre-
vious studies (Barbulescu et al. 2004), we have also found
Genitor to perform best for this problem.

What Does Work: Comparison of Approaches
We considered a variety of algorithms: constructive heuris-
tics, genetic algorithm, repair-based and local search. Con-
structive heuristics begin with an empty schedule and iter-
atively add jobs to the schedule using local decision rules.
We implemented a greedy constructive heuristic GreedyDP,
which is an extension of a one-machine greedy heuristic de-
fined by Dauz̀ere-Pérès (1995) . The one-machine heuristic
schedules the jobs with the earliest due date immediately,
while simultaneously minimizing the length of the partial
schedule at each step. For each of the resources, we use the
one-machine heuristic to schedule the requests that specify
that resource as an alternative and are not scheduled yet; the
result is an initial schedule. Then we consider the unsched-
uled requests and attempt to insert them in the schedule. The
unscheduled requests are considered in an arbitrary order;
the request is scheduled at the earliest time on the first alter-
native resource available and bumped if none of the alterna-
tive resources are available.

As the repair-based algorithm, we implemented Gooley’s
(1993) algorithm, which uses domain specific heuristics to
construct an initial schedule and then repair it to fit in more
requests. Complex rules are used to compute flexibility mea-
sures for the requests, which indicate which requests can
be moved in order to accommodate unscheduled requests.
These measures are based on the ratio between the duration
of a request and its time window, the number of alternative
resources, and the blocks of free time on resources.

The remaining algorithms encode solutions using a per-
mutation π of the n task request IDs (i.e., [1..n]); a schedule
builder is used to generate solutions from a permutation of
request IDs. The schedule builder considers task requests in
the order that they appear in π. Each task request is assigned
to the first available resource from its list of alternatives and
at the earliest possible starting time. If the request cannot be
scheduled on any of the alternative resources, it is dropped
from the schedule (i.e., bumped).

Genetic algorithms were found to perform well in the
AFIT studies and for an abstraction of NASA’s Earth Ob-
serving Satellite (EOS) scheduling problem, denoted the
Window Constrained Packing Problem (WCPP) (Wolfe &
Sorensen 2000), which considers a single resource. For our
studies, we used the version of Genitor originally developed
for a warehouse scheduling application (Starkweather et al.
1991). Like all genetic algorithms, Genitor maintains a pop-
ulation of solutions. In each step of the algorithm, a pair of
parent solutions is selected, and a crossover operator is used
to generate a single child solution, which then replaces the
worst solution in the population. Selection of parent solu-
tions is based on the rank of their fitness, relative to other so-
lutions in the population. A linear bias is used such that indi-

Genitor Hill Climbing Random Sampling GreedyDP Gooley
Day Size Min Mean Stdev Min Mean Stdev Min Mean Stdev

10/12/92 322 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 21 11
10/13/92 302 4 4 0 6 10.96 2.04 11 13.83 1.08 22 7
10/14/92 311 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 25 5
10/15/92 318 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 23 4
10/16/92 305 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 18 5
10/17/92 299 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 28 7
10/18/92 297 6 6 0 10 14.1 2.53 16 16.96 0.66 22 6
03/07/02 483 42 43.7 0.98 68 75.3 4.9 73 78.16 1.53 97 45
03/20/02 457 29 29.3 0.46 49 56.06 3.83 52 57.6 1.67 72 36
03/26/03 426 17 17.63 0.49 34 38.63 3.74 38 41.1 1.15 55 20
04/02/03 431 28 28.03 0.18 41 48.5 3.59 48 50.8 0.96 66 29
05/02/03 419 12 12.03 0.18 15 17.56 1.3 25 27.63 0.96 45 13

Table 1: Performance of Genitor, hill climbing, and random sampling in terms of the best and mean number of bumped requests.
All statistics are taken over 30 independent runs, with 8000 evaluations per run. The results of running the greedy heuristic
GreedyDP and Gooley’s algorithm are also included.

viduals that are above the median fitness have a rank-fitness
greater than one and those below the median fitness have a
rank-fitness of less than one. Following Parish (1994), we
use Syswerda’s (1991) position-based crossover operator.

As the local search algorithm, we implemented a hill-
climber. Because it has been successfully applied to a
number of well-known scheduling problems, we selected a
domain-independent move operator, the shift operator. From
a current solution π, a neighborhood is defined by consider-
ing all (N − 1)2 pairs (x, y) of task request ID positions in
π, subject to the restriction that y 6= x − 1. The neighbor
π

′

corresponding to the position pair (x, y) is produced by
shifting the job at position x into the position y, while leav-
ing all other relative job orders unchanged. If x < y, then
π′ = (π(1), ..., π(x − 1), π(x + 1), ..., π(y), π(x), π(y +
1), ..., π(n)). If x > y, then π′ = (π(1), ..., π(y −
1), π(x), π(y), ..., π(x − 1), π(x + 1), ..., π(n)).

Given the large neighborhood size, we use the shift op-
erator in conjunction with next-descent hill-climbing: the
neighbors of the current solution are examined in a ran-
dom order, and the first neighbor with either a lower or
equal number of discarded tasks is accepted. Search is initi-
ated from a random permutation and terminates when a pre-
specified number of solution evaluations is exceeded.

We compared the four algorithms on 12 days of actual
data from the AFSCN: seven consecutive days from 1992
and five days from 2002-20031. We also built a generator to
support experiments but have found that the real data encom-
pass complexities and subtle interactions that are not easily
synthesized. The results of the comparison are summarized
in Table 1. Genitor yields the best performance. GreedyDP
results in the worst performance; it is often outperformed by
random sampling. Note also that the problems have become

1We thank Dr. James T. Moore, Associate Professor, Dept. of
Operational Sciences, Air Force Institute of Technology and Brian
Bayless and William Szary from Schriever Air Force Base for pro-
viding the data.

significantly larger, leading to more bumped requests.

How Much Do Tasks Interact
Our results on AFSCN scheduling with Genitor run counter
to most others’ experiences. As shown in a previous section,
research on oversubscribed scheduling favors iterative repair
strategies embedded in search algorithms. Thus, what is it
about AFSCN that makes it most amenable to solution with
a genetic algorithm? In this section, we consider whether
the GA may be learning and exploiting task interactions.

How Much Contention Is There?
The most distinctive characteristic of AFSCN scheduling is
the availablity of time/resource alternatives. When placing
a task, one must consider not only where it might fit in a
window, but also whether it could fit into an alternative.
This can lead to a cascade effect of considering mutual con-
straints between requests. First, we examine the nature of
the contention in AFSCN. An oversubscribed problem is not
oversubscribed on all resources at all times. Many heuris-
tics focus attention on time periods or task combinations of
maximal contention (e.g., CBAslack (Smith & Cheng 1993),
SumHeight (Beck et al. 1997)). As with SumHeight, we
build contention graphs by adding all tasks into all of their
possible slots. For our problems, we found that demand is
consistent (i.e., only a few time slots that have zero requests)
and can get pretty high. Table 2 summarizes contention for
the AFSCN data. Figure 1 shows the contention profile for
the resource with the most requests vying for the same re-
source on the day with the highest demand. Because a large
number of requests may be vying for the same slots, any
constructive algorithm that orders by contention will have a
high branching factor.

Second, we examine the overlap in alternatives at the
points of highest contention. We found that many requests
do share alternatives. This may help reduce somewhat the
branching factor as constructive search progresses; unfor-

Date SH Req. Mean #Alts Overlap
10/12/92 7.72 6 2.98 5.34 .47
10/13/92 8.78 8 3.63 6.34 .82
10/14/92 8.99 7 3.34 6.12 .67
10/15/92 7.37 4 3.44 6.25 1.0
10/16/92 8.17 6 3.32 6.15 .73
10/17/92 8.50 7 3.34 6.16 .76
10/28/92 8.53 8 2.85 6.18 .43
03/07/02 10.74 8 3.66 4.46 .5
03/20/02 10.48 7 3.22 4.84 .52
03/26/03 8.83 7 2.55 4.42 .33
04/02/03 9.21 9 2.87 4.54 .43
05/02/03 7.59 5 2.32 4.50 .80

Table 2: Statistics on contention in AFSCN data. Second
column is the maximum SumHeight value. Third is number
of requests that contribute the maximum value to the slot.
Fourth is the average contention over all resources. Fifth is
the mean number of alternatives per request. Last column
is the mean percentage of overlap in alternatives shared by
pairs of requests in contention.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400

C
on

te
nt

io
n

N
um

be
r

of
 R

eq
ue

st
s

Time

Contention
Requests

Mean Contention

Figure 1: Example of resource contention graph for
3/7/2002. This resource had the highest number of tasks
(18) contending for a single slot.

tunately, we also found that most of them prioritize the al-
ternatives similarly, making it somewhat more difficult to
trade-off placement. The last columns in Table 2 show that
many alternatives are possible and many (or all) tasks share
the same set of alternatives.

Are Pairwise Interactions Enough?
A key issue when modifying solutions is how much change
is required to improve the evaluation. Some algorithms (e.g.,
hill climbing with the shift operator or ordering using min-
slack), modify schedules by forcing a task’s position relative
to others. Such operations directly address pairwise inter-
actions and possibly indirectly address n-way interactions.
A problem characteristic that clearly affects the success of
these operations is the degree of interactions between tasks.

We investigate two aspects of task interaction in AFSCN.
First, we test how sensitive solutions are to task shifts; in
particular, does the schedule produced by the permutation
change if one job is shifted in it? Second, we test whether
some tasks do not interact with any others.

The permutation space is clearly highly redundant. Mul-
tiple permutations can be converted by the schedule builder
into identical schedules. To test schedule sensitivity to per-

mutation perturbations, we define two schedules to be iden-
tical if each request is scheduled on the same resource, start-
ing at the same time in both schedules. We explore pairwise
interactions between requests in random permutations. For
each problem, we create 30 random permutations of the re-
quests. For each such permutation and each pair of requests
(A,B), we build the schedules corresponding to two shift-
ing moves: A in the position of B and B in the position of A
(all shifting moves start from the same initial permutation).
We count for how many pairs (A,B) in a permutation the
corresponding schedule does not change when shifting ei-
ther A in the position of B or B in the position of A; we
call such pairs of requests “non-interacting requests”. We
compute the average number of pairs of non-interacting re-
quests over the 30 random permutations. We also compute
the average number of pairs of non-interacting requests over
30 permutations evaluated as best known values by Genitor.

The results of the pairwise sensitivity test are summarized
in Table 3. The second column Total Pairs represents the
total number of request pairs in the permutation (if there
are n requests, the number in this column is n(n − 1)/2).
The mean and standard deviation of the number of non-
interacting pairs of requests (from 30 random or optimal per-
mutations) appear in the columns denoted Mean and Stdev.
To normalize the results across the various problem sizes, we
also report the average percentage of non-interacting request
pairs in a permutation (Average Percentage). The numbers
in the table emphasize three main points: 1) During each
step of the search, the number of moves under the shifting
operator is huge (if there are n requests, there are (n − 1)2

possible moves). 2) Almost 40% of all the pairs of requests
result in shifting moves which do not change the schedule
corresponding to the current permutation. 3) The percent-
age of non-interacting pairs of requests does not seem to be
sensitive to the quality of the solution corresponding to the
permutation (it is still approximately 40% for best known
solutions obtained by Genitor).

As a second aspect of task interaction, we observed that
for certain requests, no matter where they are shifted in the
permutation, the corresponding schedule does not change.
If there exist such requests that “do not matter”, we hypoth-
esized that we could eliminate them from the permutation
and reduce the size of the search space. However, we con-
structed some heuristic methods to exploit this and found
they had rather poor performance.

Further examination of examples shows that a request
seems not to interact (when shifted) with any of the other
requests because of the particular order of the rest of the
requests in the permutation; we need to consider more than
pairwise interactions. Consider a simple example where two
requests A and B are both scheduled on the same resource,
such that when any one of the two requests are scheduled,
a third request C (which also specifies the same resource)
cannot be scheduled on that resource. A and B may not
themselves overlap in time, but C may be long enough to
overlap with both of them. If the requests appear in the per-
mutation in the order A,B,C or B,A,C (not necessarily in
consecutive positions), it might appear that both A and B
“do not matter” (each can be shifted anywhere in the permu-

Non-interacting Pairs
Day Total Random Permutations Optimal Permutations

Pairs Mean Stdev Average % Mean Stdev Average %
10/12/92 51681 21999.7 724.959 42.5 22911.3 636.95 44.3
10/13/92 45451 20659.7 697.661 45.4 21194.6 814.349 46.6
10/14/92 48205 20652.3 680.159 42.8 20655.6 663.784 42.8
10/15/92 50403 20632.3 650.973 40.9 21240.4 697.542 42.1
10/16/92 46360 18850.7 676.609 40.6 19019.8 639.223 41.0
10/17/92 44551 17882.3 642.91 40.1 17804.4 574.492 39.9
10/18/92 43956 19278.3 836.376 43.8 20001.6 755.789 45.5
03/07/02 116403 44001.2 1356.4 37.8 45068.8 1208.93 38.7
03/20/02 104196 38246.5 977.8 36.7 38775 1149.02 37.2
03/26/03 90525 35779.9 854.12 39.5 36464.3 930.87 40.2
04/02/03 92665 36399.7 1115.37 39.2 38032 988.082 41.0
05/02/03 87571 35590.5 1308.93 40.6 36368.3 839.215 41.5

Table 3: Statistics for the number of pairs of non-interacting requests over 30 random and optimal permutations.

tation without a change in the schedule). When A is shifted,
B still appears before C to prevent it from being scheduled,
and similarly, when B is shifted, A still prevents C from be-
ing scheduled. However, if, for example, C appears in the
initial permutation after A and before B, shifting A after C
will result in a different schedule (C can be scheduled since
both A and B now appear after C in the permutation). While
it seemed that A “did not matter” in the initial permutation,
shifting A obviously can change the schedule given a dif-
ferent ordering of the requests in the permutation. This fact
combined with the knowledge about the contention present
in the problems suggests that we cannot reduce the search
space size by simply eliminating certain requests or splitting
the problem into smaller size separate problems.

These examinations show that simple shifts may not ef-
fectively change a schedule and that pairwise interactions
do not capture well the complexities of the AFSCN prob-
lems. Given a permutation, almost half of all possible shift-
ing moves result in identical schedules, making local search
based on a shift operator highly inefficient. Moreover, oper-
ators based on pairwise movements may also fail to account
for the higher level interactions that we have observed.

Is it Learning a Simple Domain Heuristic?

One of our early hypotheses about why Genitor did well was
that it was learning a simple domain specific heuristic. Re-
quests to access low altitude satellites tend to be of short
duration with no slack. High altitude requests are more vari-
able, but in general, have larger time windows in which they
fit. We hypothesized that Genitor may be learning to sched-
ule the low-altitude, more tightly constrained requests be-
fore the high-altitude requests with which they interact.

To test the hypothesis we designed a simple greedy “split
heuristic” for the schedule builder that first schedules all the
low-altitude requests in the order given by the permutation,
followed by the high-altitude requests. (See (Barbulescu et
al. 2004) for details and a description of the 1992 and re-
cent data.) We compared the schedules from the original
schedule builder and the heuristic version for permutations
derived from Genitor. We found that: (1) for > 90% of the

Best Random Sampling-S
Day Known Min Mean Stdev

10/12/92 8 8 8.2 0.41
10/13/92 4 4 4 0
10/14/92 3 3 3.3 0.46
10/15/92 2 2 2.43 0.51
10/16/92 4 4 4.66 0.48
10/17/92 6 6 6.5 0.51
10/18/92 6 6 6 0

Table 4: Results of running random sampling with the split
heuristic in 30 experiments, by generating 100 random per-
mutations per experiment.

Best Genitor-S
Day Known Min Mean Stdev

03/07/02 42 42 42 0
03/20/02 29 30 30 0
03/26/03 17 18 18 0
04/02/03 28 28 28 0
05/02/03 12 12 12 0

Table 5: Results of running Genitor with the split heuristic
in 30 experiments, with 8000 evaluations per experiment.

best known schedules found by Genitor for the 1992 data,
the split heuristic does not increase the number of conflicts
in the schedule (showing that either the low altitude requests
were first in the permutation or they did not conflict with
earlier requests), (2) the split heuristic typically produces the
best-known schedules for the 1992 data, even under random
sampling, and (3) for the recent data, the split heuristic fails
to find the best schedules. Tables 4 and 5 show the results of
using the split heuristic with random sampling on the 1992
data and with Genitor on the recent data.

Is Learning Temporal Constraints Enough?

Clearly, a request for a time slot near the beginning of the
day will always appear in the schedule before a request with

Best LocalSearch ModifiedLocalSearch CombinedLocalSearch
Day Known Min Mean Stdev Min Mean Stdev Min Mean Stdev

10/12/92 8 12 15.46 2.55 10 10.93 0.79 9 10.133 0.74
10/13/92 4 7 8.26 1.03 5 5.26 0.45 4 4.86 0.74
10/14/92 3 10 12.26 10 5 6.4 0.63 5 6.33 0.97
10/15/92 2 11 13.2 1.56 9 10.4 0.73 7 9.46 1.45
10/16/92 4 7 11.53 2.16 6 7.4 0.73 6 7.2 0.67
10/17/92 6 12 14.4 1.45 8 8.46 0.63 7 8.53 0.83
10/18/92 6 8 11.46 2.55 7 7.6 0.5 6 7.46 0.63
03/07/02 42 61 68.73 4.39 46 49.8 2.04 48 50.4 1.4
03/20/02 29 46 50.86 2.94 35 36.26 1.16 35 37.13 1.45
03/26/03 17 29 32.73 2.43 21 22.13 1.06 21 23.13 0.99
04/02/03 28 38 44.06 3.59 32 34.2 1.2 33 35.2 1.2
05/02/03 12 17 21.73 2.4 15 16.66 1.04 15 16.46 1.12

Table 6: Results of running local search in 15 experiments, by evaluating 16000 permutations per experiment.

a time window near the end of the day, no matter in which
order the requests appear in the permutation (assuming both
requests are scheduled). Thus, another data pattern is the set
of relative orders between tasks, based on when they can ap-
pear in the final schedule. If we know that a request must
appear within a particular time window, then moving it in
the permutation past another request that must appear later
should have no effect on the final schedule. To test this,
we define a reduced-size search neighborhood by restrict-
ing the movement of each request based on its time win-
dow. This implicitly results in a reduction of the size of the
search space for local search and, if successful, should indi-
cate whether relative orders might be learned.

The modified shift operator starts with a permutation of
the requests in increasing order of their earliest starting
times. Iteratively, we randomly select a position pos in this
permutation and shift the corresponding request to the right,
in positions pos+1, pos+2,..., pos+ k, where pos+ k +1
is the first position after pos corresponding to a request with
a non-intersecting, later time window. For each such shift,
we evaluate the new permutation. If the best schedule cor-
responding to these shifts is better than or as good as the
current one, we accept its permutation. This modified shift
operator ensures that for any pairs of requests A and B such
that their time windows do not intersect and the time window
for A is earlier than the time window for B, A will always
appear before B.

We summarize the results obtained by running local
search in Table 6. For each version of local search, we per-
formed 15 trials, allocating 16000 evaluations for each trial.
The total number of evaluations performed for each version
of local search is therefore identical to the total number of
evaluations allocated when Genitor finds the best known so-
lutions (30 trials of 8000 evaluations each). Experiments
performed using 30 trials for each version of local search
and 8000 evaluations per trial resulted in worse values. For
each algorithm, we report the best value obtained (Min), the
average value (Mean), and the standard deviation (Stdev) in
15 trials. The second column Best Known contains the best
known solutions. The results observed for the modified shift
operator appear in the columns ModifiedLocalSearch. The

modified shift operator clearly results in better performance
than shift, for each of the test problems.

Given enough evaluations, is local search using modified
shift capable of producing best known solutions? To inves-
tigate this, we performed 30 trials of running both versions
of local search with a large number of evaluations (500,000
evaluations). The results are presented in Table 7. Local
search using shift resulted in best known values for each of
the test problems. However, local search using the modi-
fied shift operator did not find best known values for any of
the problems. To exploit this result, we also ran a version
of local search combining the two operators: we allocated a
percentage of the total number of evaluations (75%) to local
search using the modified shift operator and used the best
solution obtained as the starting point for local search with
shift. The results obtained for this version of local search
are reported in the last columns of Table 6 (CombinedLo-
calSearch). For most of the 1992 problems, further improve-
ment of the best solutions obtained can be observed. How-
ever, it seems that for the new problems, the number of eval-
uations allocated is too small. Running the modified shift
operator for 75% of the total number of evaluations does not
yield the values reported when all the evaluations were al-
located. Also, the 25% of the total number of evaluations
allocated to the shift operator are insufficient to significantly
improve over the starting values (obtained by running the
modified shift operator).

Not all possible schedules can be reached given the re-
duced permutation search space. This suggests that pairwise
relative orders are not enough to capture the interactions.

Is the Placement of Critical Tasks the Key?
We have shown that pairwise changes are not effective in
finding good solutions. The position-based crossover op-
erator used by Genitor produces more than just pairwise
changes in the permutation. Syswerda’s position-based
crossover operator starts by selecting a number of random
positions in the second parent. The corresponding selected
elements will appear in exactly the same positions in the off-
spring. The remaining positions in the offspring are filled
with elements from the first parent in the order in which they

Best LocalSearch ModifiedLocalSearch
Day Known Min Mean Stdev Min Mean Stdev

10/12/92 8 8 8.4 0.49 10 10.53 0.5
10/13/92 4 4 4.0 0.0 5 5.03 0.18
10/14/92 3 3 3.03 0.18 5 5.8 0.4
10/15/92 2 2 2.03 0.18 9 9.76 0.43
10/16/92 4 4 4.4 0.49 6 6.0 0.0
10/17/92 6 6 6.0 0.0 7 8.4 0.62
10/18/92 6 6 6.0 0.0 7 7.0 0.0
03/07/02 42 42 43.93 1.08 43 44.13 0.68
03/20/02 29 29 29.53 0.73 32 33.5 0.73
03/26/03 17 17 18.0 0.74 21 21 0.0
04/02/03 28 28 28.16 0.37 30 32.23 0.77
05/02/03 12 12 12.46 0.5 15 15.43 0.56

Table 7: Results of running local search in 30 experiments,
by evaluating 500K permutations per experiment.

appear in this parent:

Parent 1: A B C D E F G H I J
Parent 2: C F A J H D I G B E

Selected Elements: * * * *
Offspring: C F A E G D H I B J

We hypothesize that complex interactions exist between
the requests and that Genitor discovers such interactions.
We focus on answering two questions: 1) Is Genitor learn-
ing patterns of request ordering? and 2) Is Genitor learning
where to place requests in the permutation?

To answer the first question, we identified common re-
quest orderings present in solutions obtained from multiple
runs of Genitor. We ran 1000 trials of Genitor, and selected
the solutions corresponding to best known values. First, we
checked for request orderings of the form “requestA before
requestB” which appear in all the permutations correspond-
ing to best known value solutions for each problem. We
found that almost all the common request orderings specify a
low altitude request appearing before a high altitude request.
For some of the problems, a few request ordering pairs be-
tween high altitude request are also present. We could not
identify longer chains of requests, of the type “RequestA
before RequestB before RequestC...”. Second, we grouped
the selected permutations based on the requests bumped in
their corresponding solutions. Given that the objective func-
tion used by Genitor to obtain these solutions is the number
of bumps, the relative order of the requests preceding the re-
quests that got bumped is important. We found longer chains
of ordered requests when the number of permutations result-
ing in the same bumps was small (smaller than 5). However,
for large size groups of permutations (resulting in the same
bumps), we only found chains of requests of length 2. Ex-
amination of these chains shows that sometimes the requests
which caused a certain bump are missing from the common
chains of requests appearing before the bump. This hap-
pens because given a group of requests, multiple orderings
of the requests result in exactly the same bumps. Consider
the example in figure 2, and suppose that all requests can be

A

B

C

D

E

Figure 2: A, B, C, D, and E compete for two antennas at the
same ground station.

scheduled on one of the two antennas present at a ground sta-
tion. Then the sequences (A,B,C,D,E), (D,B,C,A,E),
(E,A,C,B,D) result in C being bumped, however there
are no common orderings of requests preceding C, nor any
common ordering of the requests in the three sequences.

When we examined the permutations in final populations
produced by Genitor, we found hundreds of chains of re-
quests of varying lengths (from 2 to 15-20). While Genitor
does seem to learn patterns of request ordering, multiple dif-
ferent patterns of request orderings can result in the same
bumps (or even the same schedule). We could think of these
patterns as building blocks. Genitor learns to identify good
building blocks (orderings of requests resulting in good par-
tial solutions) and propagates them into the final population
(and the final solution). Such patterns are essential in build-
ing a good solution. However, the patterns are not ubiquitous
(not all of them are necessary) and, therefore, attempts to
identify them in solutions across different populations pro-
duced by Genitor might fail.

To answer the second question, we compared multiple
permutations obtained by Genitor over multiple runs. We
observed that for certain requests we can identify a portion
of the permutation where those requests will be placed in
each of the permutations. Also, examining the permutations
in a final population produced by Genitor showed that some
requests are localized in a certain region of the permutation.
This is not true for all the requests; in fact, for most requests,
their positions vary widely. The requests can appear any-
where from the first to the last position.

To test if indeed Genitor is learning positions of requests
in the permutations, we build a “representative” permuta-
tion starting from a group of permutations as follows. We
define the range of positions for a request as the difference
between the rightmost position and the leftmost position in
which the request appears in the considered group of per-
mutations. Then, for each request with a range of posi-
tions smaller than a certain limit, we compute the average
position (from its positions in the permutation group). We
insert the request in the “representative” permutation in its
computed average position (truncated to integer) if nothing
is yet placed in that position; else it appears in the nearest
next available position. Once all requests with a range of
positions smaller than the imposed limit have been consid-
ered, we start inserting the rest of the requests. For each of
the remaining requests, we compute the position in which
the request appears most often (the mode) and insert the re-
quest in the closest available position to the computed one.
The requests which seem localized in the group of permuta-

Day Best Final Genitor LocalSearch
Known Population Optima Optima

10/12/92 8 10 9 11
10/13/92 4 4 5 6
10/14/92 3 3 3 5
10/15/92 2 3 2 5
10/16/92 4 4 4 7
10/17/92 6 6 6 8
10/18/92 6 6 6 7
03/07/02 42 42 45 51
03/20/02 29 29 29 36
03/26/03 17 17 19 22
04/02/03 28 28 28 36
05/02/03 12 13 12 17

Table 8: Values of “representative” permutations for permu-
tations in: a final population, a group of 1000 Genitor solu-
tions and a group of 30 local search solutions.

tions appear in the “representative” permutation in a position
close to their average position in the group (and localized in
the same portion of the permutation). The rest of the re-
quests appear in a position close to their preferred position
in the group. If Genitor is learning positions of requests
in the permutations, the “representative” permutation corre-
sponding to multiple permutations (from multiple runs) or
to a final population produced by Genitor should be similar
to the represented permutations (bumps approximately the
same number of requests).

To test this, we considered the following groups of per-
mutations for each test problem: a final population (size
200) and 1000 solutions obtained from 1000 runs of Genitor.
Also, for each problem, we built “representative” permuta-
tions for 30 solutions obtained by running 30 trials of lo-
cal search for 500K evaluations. We define the limit for
the range of positions as one third of the permutation size.
The results are summarized in Table 8. The “representative”
permutations for permutations produced by Genitor evalu-
ate close to best known values. However, for the permu-
tations corresponding to local search optima, the values of
the “representative” permutations are always worse than the
best known values.

Conclusion

The AFSCN problem poses some unusual challenges to well
established AI scheduling methods. For constructive algo-
rithms, we have found that the branching factor can be large,
due to the availability of many alternatives for each request.
For local search algorithms, we have found barriers to defin-
ing operators with manageable sized neighborhoods; appar-
ently, non-overlapping requests still appear interleaved in
best known permutation solutions. However, a genetic al-
gorithm appears to be able to identify and exploit patterns
in the data, specifically prioritizing low-altitude requests be-
fore high-altitude requests (most of the time) and identifying
approximate positions for critical tasks.

References
Barbulescu, L.; Watson, J.; Whitley, D.; and Howe, A.
2004. Scheduling space-ground communications for the
Air Force satellite control network. Journal of Scheduling.
to appear.
Beck, J. C.; Davenport, A. J.; Sitarski, E. M.; and Fox,
M. S. 1997. Texture-based Heuristic for Scheduling Revis-
ited. In AAAI-97, 241–248.
Bresina, J. 1996. Heuristic-Biased Stochastic Sampling. In
AAAI-96, 271–278.
Dauzère-Pérès, S. 1995. Minimizing Late Jobs in the Gen-
eral One Machine Scheduling Problem. European Journal
of Operational Research 81:131–142.
Davis, L. 1991. Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold.
Deale, M.; Yvanovich, M.; Schnitzuius, D.; Kautz, D.;
Carpenter, M.; Zweben, M.; Davis, G.; and Daun, B. 1994.
The Space Shuttle ground processing scheduling system.
In Zweben, M., and Fox, M., eds., Intelligent Scheduling.
Morgan Kaufmann. 423–449.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001.
Planning and scheduling for fleets of earth observing satel-
lites. In Proceedings of the Sixth International Symposium
on Artificial Intelligence, Robotics, Automation and Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2003.
Scheduling earth observing satellites with evolutionary
agorithms. In International Conference on Space Mission
Challenges for Information Technology.
Gooley, T. 1993. Automating the Satellite Range Schedul-
ing Process. In Masters Thesis. Air Force Institute of Tech-
nology.
Kramer, L., and Smith, S. 2003. Maximizing flexibility:
A retraction heuristic for oversubscribed scheduling prob-
lems. In IJCAI-03.
Parish, D. 1994. A Genetic Algorithm Approach to Au-
tomating Satellite Range Sched uling. In Masters Thesis.
Air Force Institute of Technology.
Schalck, S. 1993. Automating Satellite Range Scheduling.
In Masters Thesis. Air Force Institute of Technology.
Smith, S., and Cheng, C. 1993. Slack-based Heuristics for
Constraint Satisfaction Problems. In AAAI-93, 139–144.
Washington, DC: AAAI Press.
Starkweather, T.; McDaniel, S.; Mathias, K.; Whitley, D.;
and Whitley, C. 1991. A Comparison of Genetic Sequenc-
ing Operators. In Booker, L., and Belew, R., eds., Proc. of
the 4th Int’l. Conf. on GAs, 69–76. Morgan Kaufmann.
Syswerda, G. 1991. Schedule Optimization Using Genetic
Algorithms. In Davis, L., ed., Handbook of Genetic Algo-
rithms. NY: Van Nostrand Reinhold. chapter 21.
Wolfe, W. J., and Sorensen, S. E. 2000. Three Scheduling
Algorithms Applied to the Earth Observing Systems Do-
main. In Management Science, volume 46(1), 148–168.
Zweben, M.; Daun, B.; and Deale, M. 1994. Scheduling
and rescheduling with iterative repair. In Zweben, M., and
Fox, M., eds., Intelligent Scheduling. Morgan Kaufmann.

