
PKS: Knowledge-Based Planning with Incomplete Information and Sensing

Ronald P. A. Petrick
Department of Computer Science

University of Toronto
Toronto, Ontario

Canada M5S 1A4
rpetrick@cs.utoronto.ca

Fahiem Bacchus
Department of Computer Science

University of Toronto
Toronto, Ontario

Canada M5S 1A4
fbacchus@cs.utoronto.ca

PKS (Planning with Knowledge andSensing) is a
“knowledge-level” planner that is able to construct condi-
tional plans in the presence of incomplete knowledge and
sensing (Bacchus and Petrick 1998; Petrick and Bacchus
2002; 2004). The key idea of this approach is to represent
the agent’s knowledge state with afirst-order language, and
to represent actions by their effects on the agent’sknowl-
edge, rather than by their effects on the environment. Since
general reasoning in such a rich language is impractical,PKS
employs a restricted subset of the language and a limited
amount of inference in that subset. As a result,PKS includes
non-propositional features, such as functions and variables.

The knowledge-based approach contrasts some of the al-
ternate trends that have concentrated on propositional repre-
sentations over which complete reasoning is feasible. Such
works often represent the set of all possible worlds (i.e.,
the set of all states compatible with the agent’s incom-
plete knowledge) using various techniques (e.g., BDDs,
Graphplan-like structures, or clausal representations). These
techniques yield planning systems that are able to generate
plans requiring complex combinatorial reasoning.

By representing problems at the knowledge level,PKScan
generate plans that are often quite “natural” and have a sim-
ple structure. Furthermore,PKS can often “abstract” away
from some of the irrelevant distinctions that occur at the
world level. Compared to the possible-worlds approaches,
this higher-level representation is richer, but the inferences
it supports are weaker. Nevertheless,PKS is able to solve
problems that cannot be solved by alternate approaches.

We briefly describe some of the important components we
have implemented in thePKS system.

Knowledge representation: PKS’s knowledge (rather
than the state of the world) is represented by a set of four
databases. Any configuration of the databases corresponds
to a collection of modal logic formulae that precisely char-
acterizesPKS’s knowledge state. To ensure an efficient in-
ference mechanism, we restrict the types of knowledge (es-
pecially disjunctive knowledge) that can be modelled:
Kf : The first database stores both positive and negative
facts, but does not employ a closed world assumption.Kf

can include any ground literal,̀; ` ∈ Kf means that̀ is
known.Kf can also contain knowledge of function values.
Kw: The second database models the plan-time effects of
sensing actions.φ ∈ Kw means that at plan time the planner

Action Pre Effects
pour-on-lawn ¬K(¬poisonous) ⇒

del(Kf ,¬lawn-dead)
K(poisonous) ⇒

add(Kf , lawn-dead)
sense-lawn add(Kw, lawn-dead)

Table 1: SamplePKS actions

either knowsφ or knows¬φ, and that at execution time this
disjunction will be resolved.PKSuses such “know-whether”
facts to construct conditional branches in a plan.
Kv: The third database stores information about function
values that will become known toPKSat execution time.Kv

can contain any unnested function term; such terms model
the plan-time effects of sensing actions that return numeric
values.PKS can useKv knowledge of finite-range functions
to insert multi-way branches into a plan.
Kx: The fourth database contains “exclusive-or” knowledge
of literals. Entries inKx have the form(`1|`2| . . . |`n),
where each̀i is a ground literal. Such a formula represents
knowledge of the fact that “exactly one of the`i is true.”
Such knowledge is common in many planning scenarios.

Actions: Actions in PKS are modelled as updates to the
databases (i.e., knowledge state), rather than as updates to
the world state. Actions may be parameterized and can have
conditional effects. An efficient, but incomplete, inference
algorithm determines if an action’s preconditions hold, by
examining the database contents to draw conclusions about
what PKS does and does not know or “know whether.” Ap-
plying an action’s effects simply involves adding or deleting
the appropriate formulae from the collection of databases.

Table 1 shows twoPKSactions.pour-on-lawnpours a liq-
uid onto a lawn, with the effect that if the liquid is poisonous,
the lawn becomes dead.pour-on-lawnhas two conditional
effects: if ¬poisonousis not known, delete¬lawn-dead
from Kf ; if poisonousis known, then addlawn-deadto Kf .
sense-lawnsenses whether or not the lawn is dead. It is rep-
resented as an update that addslawn-deadto Kw.

Conditional plans: A PKSconditional plan is a tree whose
nodes are labelled by a knowledge state, and whose edges
are labelled by an action or a sensed fluent. An existing plan
is extended in a forward-chaining manner by adding a new

pour−on−lawn sense−lawn

Kf: lawn−dead lawn−deadKf:Kf:
Kf: Kf: Kf:

(a)

poisonous poisonous
lawn−dead

poisonous

pour−on−lawn sense−lawn

Kf: lawn−dead Kf:Kf: lawn−dead
Kf: Kf: Kf:

(b)

poisonouspoisonous
lawn−dead

poisonous

Linearization of conditional branches:

Conditional plan:

Kf: lawn−dead

pour−on−lawn sense−lawn

Kw: lawn−dead (b)

(a)

lawn−deadKf:

lawn−deadKf:

branch: lawn−dead

Figure 1: A conditional plan and its linearizations

action or a new branch to a leaf node. To add an action, its
preconditions must be satisfied in a leaf node’s knowledge
state; its effects are applied to the knowledge state to pro-
duce a new leaf node. A new (2-way) branch can be added
if PKS hasKw knowledge of a sensed fluentF . Two new
nodes are added to the plan with copies of the leaf node’s
databases. In one node,F is added toKf ; in the other node
¬F is added toKf . A multi-way branch is added ifPKS
hasKv knowledge of a function with a known and finite
range. PKS constructs a plan branch, and a new node, for
each mapping of the function; the mapping is added toKf in
the new node. No leaf is extended it if already achieves the
goal and planning succeeds when all the leaves achieve the
goal. Currently, only undirected depth-first, breadth-first,
and iterative-deepening search versions of the planning al-
gorithm have been implemented (i.e., no search control).

Postdiction: Although PKS is able to efficiently generate
plans, there are situations where the resulting knowledge
states fail to contain some “intuitive” conclusions. As a re-
sult,PKSalso uses apostdiction(Sandewall 1994) procedure
to extend the standard inference algorithm, by examining the
effects—and non-effects—of actions in a conditional plan.
PKSconsiderslinearizationsof a conditional plan: each path
to a leaf becomes a linear sequence of states and actions (the
states and actions visited during that particular execution of
the plan). Linearizations differ in how theKw or Kv knowl-
edge resolves itself during execution, and how this resolu-
tion affects the actionsPKSsubsequently executes. For each
linearization, we apply a simple set of (sound) backward and
forward inferences to draw additional conclusions along that
sequence. These inferences potentially augment any of the
knowledge states in the linearization. A goal is satisfied if it
is satisfied in every linearization of the plan.

The postdiction inferences are often essential forPKS to
successfully generate plans. E.g., Figure 1 illustrates a con-
ditional plan, and its two linearizations, generated byPKS
using the actions from Table 1. The additional inferences
produced by postdiction are shown in bold. Using postdic-
tion, PKScan prove that in every outcome of the plan it either
knowspoisonousor knows¬poisonous. Without postdic-
tion the conditional plan does not satisfy these conclusions.

Temporally extended goals: Goals inPKSare constructed
from a set of primitive queries that can be evaluated by the
inference algorithm at a given knowledge state. A primitive

queryQ is specified as having one of the following forms:
(i) K(`): is a ground literal̀ known to be true? (ii)Kv(t): is
termt’s value known? (iii)Kw(`): do we “know whether” a
literal `? Additionally, a queryQ has one of three temporal
conditions: (1)QN : Q must hold in the final state, (2)Q0: Q
must hold in the initial state, or (3)Q∗: Q must hold in every
state that could be visited by the plan. Conditions of type (1)
express classical goals of achievement. Type (2) conditions
allow restore goals to be expressed. Conditions of type (3)
model “hands-off” or safety goals (Weld and Etzioni 1994).

Queries can also be combined into arbitrary goal formulae
that include disjunction, conjunction, negation, and a lim-
ited form of existential and universal quantification. E.g.,
the plan in Figure 1 satisfies the goal(K0(poisonous) ∧
KN(poisonous))∨ (K0(¬poisonous)∧KN (¬poisonous)).
Numerical evaluation: PKS includes extensive support
for numeric expressions and can construct plans to manage
limited resources or satisfy certain numeric constraints. Cur-
rently,PKS can only deal with numeric expressions contain-
ing terms that can be evaluated down to a number at plan
time. Even with this restriction, numeric expressions can be
quite complex:PKSpermits a subset of the set of C language
expressions. Specifically, numeric expressions can contain
all of the standard arithmetic operations, logical connective
operators, and limited control structures (e.g., conditional
evaluations and simple iterative loops). Temporary variables
may also be introduced into calculations. Numeric expres-
sions can be used in database updates, queries, and goals.

Planning problems: We have testedPKS on a variety of
planning problems (see (Petrick and Bacchus 2002; 2004)
for details and empirical results). Many of the “classical”
conditional planning problems (e.g., bomb in the toilet, med-
icate) become trivial when modelled at the knowledge level.
Other domains (e.g., opening a safe, painted door) illustrate
the advantage of being able to manipulate functions, and re-
sult in “natural” plans. We have also experimented with a
series of problems taken from theUNIX domain. In par-
ticular, these domains have motivated the development of
some ofPKS’s components (e.g., temporally extended goals,
numerical expressions). Moreover, these examples illustrate
the utility of the knowledge-based approach to planning with
incomplete knowledge. We believe that this approach con-
tinues to have great potential for building powerful planners.

References
Bacchus, F., and Petrick, R. 1998. Modeling an agent’s incom-
plete knowledge during planning and execution. InProc. of KR-
98, 432–443.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. InProc. of
AIPS-02, 212–222.
Petrick, R., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and
sensing. InProc. of ICAPS-04, to appear.
Sandewall, E. 1994.Features and Fluents, volume 1. Oxford
University Press.
Weld, D., and Etzioni, O. 1994. The first law of robotics (a call
to arms). InProc. of the AAAI National Conference, 1042–1047.

