
LPG-TD: a Fully Automated Planner for PDDL2.2 Domains

Alfonso Gerevini Alessandro Saetti Ivan Serina Paolo Toninelli
Dipartimento di Elettronica per l’Automazione

Universit̀a degli Studi di Brescia
Via Branze 38, 25123 Brescia, Italy
{gerevini,saetti,serina}@ing.unibs.it

Introduction
LPG-TD is an extension of theLPGplanner (Gerevini, Saetti,
& Serina 2003; 2004) that can handle most of the features of
PDDL2.2 (Edelkamp & Hoffmann 2003), the standard plan-
ning language of the 4th International Planning Competi-
tion (IPC-4).1 In particular,LPG-TD is an incremental fully-
automated planner generating plans for problems in domains
involving:

• STRIPSactions;

• durative actions;

• actions and goals involving numerical expressions;

• operators with universally quantified effects;

• operators with existentially quantified preconditions;

• operators with disjunctive preconditions;

• operators with implicative preconditions;

• timed initial literals (deterministic unconditional exoge-
nous events);

• predicates derived by domain axioms;

• maximization or minimization of complex plan metrics.

Like the previous version ofLPG, the new version is based
on a stochastic local search in the space of particular “action
graphs” derived from the planning problem specification. In
LPG-TD, this graph representation has been extended to deal
with the new features ofPDDL2.2, as well to improve the
management of durative actions and of numerical expres-
sions (already supported byPDDL2.1(Fox & Long 2003)).

In the following, we briefly describe the main novelties of
LPG-TD, which include some new techniques for planning
problems involvingtimed initial literals andderived predi-
cates, and some general improvements of all phases of the
planner (pre-processing, search and post-processing).

Handling Timed Initial Literals
Timed initial literals represent facts (predicates instantiated
with constants) that become true or false at certain time

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The “TD” extension in the name of the planner is an abbrevia-
tion of “Timed initial literals and Derived predicates”, the two main
new features of PDDL2.2. The planner is written in C language and
runs on both Linux and Windows machines.

points, independently of the actions in the plan. They cor-
respond to particular exogenous events known by the plan-
ner (Edelkamp & Hoffmann 2003). A fact can become true
or false several times through different timed initial literals,
defining a set of disjointtemporal windowswhere the fact
holds. For example, the first problem of theSatellite do-
main in IPC-4 has two timed initial literals

(at 139.00 (visible antenna0 satellite0)) ,
(at 219.04 (not (visible antenna0 satellite0)))

defining a single temporal window for the fact

(visible antenna0 satellite0) .

According toPDDL2.2, the fact involved by a timed initial
literal can appear in the preconditions of an action, while
it can never appear in its effects. We call such precondi-
tions timed preconditions, and we represent them as partic-
ular nodes of the action graph. If a plan actiona has a timed
preconditionp of type “overall” involving a factf , p is sat-
isfied when the interval identified by the start time and the
end time ofa is contained into at least one temporal window
associated withf . Similar conditions can be defined for the
other possible types of preconditions in a durative action.

Essentially, an unsatisfied timed precondition involving a
fact f in a is treated by either (i) removinga from the plan
under construction, or making some changes to the plan that
make the execution ofa compatible with a temporal window
associated withf , i.e., by (ii) appropriately postponing the
start time ofa, or (iii) removing one or more actions that
permit to decrease the start time ofa.

In the new version ofLPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the “mutex relations”), and the search tech-
niques have been extended to perform such plan modifica-
tions when dealing with unsatisfied timed preconditions.

Handling Derived Predicates
Derived predicates are predicates that can not be achieved
directly by the domain actions. A derived predicateP (x) is
true at a certain timet during the execution of a plan iff it
can be derived from the facts that are true at timet through
a set of rules specified in the domain formalization. Each of
these rules is of the form

if φ(x) thenP (x),

wherex is a tuple of variables, andφ(x) a logical formula
(a precise syntactic and semantic definition of domain rule



is given in (Edelkamp & Hoffmann 2003)).
A typical example of derived predicate in the

Blocksworld domain is above, which can be derived
by using the following rule:

if
(
on(x, y) ∨ ∃z above(x, z) ∧ above(z, y)

)
then(above(x, y).

In PDDL2.2, a derived predicate can be a precondition of
an action or a goal of the planning problem, which we call
derived precondition(we treat problem goals as precondi-
tions of a special final action). A derived precondition of an
actiona is satisfied if it is implied by the domain rules and
the facts that are true whena is executed.

Essentially, an unsatisfied derived preconditiond in a is
treated by either (i) removinga from the current plan, or (ii)
adding one or more actions that modify the set of the facts
that are true when the action can be executed in the plan,
so thatd becomes true by applying of one or more domain
rules. For example, consider a simpleBlocksworld prob-
lem where the initial state is

(on-table a) , (on-table b) , (on c b)

and the goal is(above a b) . When the domain rule of the
previous example is available, it is easy to see that the goal
can be achieved by just adding to the (initially empty) plan
the actionstack(a,c) making(on a c) true.

In the new version ofLPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the mutex relations), and the search tech-
niques have been extended to take possible domain rules into
account.

Further Extensions
In addition to the treatment of timed initial literals and de-
rived predicated, the new version of our planner includes
several revisions and extensions with respect to the version
that took part in the previous competition. Such changes
concern the pre-processing phase, the search phase, post-
processing phase of the planner, and the user interface. In
the following, we give a list of them.

Pre-processing
• The algorithm for computing mutex relations has been

revised to make it faster than the original algorithm de-
scribed in (Gerevini, Saetti, & Serina 2003).

• Some actions are automatically identified as “useless ac-
tions”, and they can be pruned away at parsing time or
they can be neglected during search.

• The computation of the reachability information for nu-
merical domains has been improved to derive more accu-
rate information that are exploited by the heuristic func-
tion evaluating the search neighborhood.

Search
• We have developed new heuristics for evaluating the

search neighborhood specialized for the different variants
of a planning domain supported byPDDL2.2.

• The basic local search strategy (Walkplan) has been ex-
tended with a “tabu list” helping to escape from local min-
ima.

Figure 1: Example of the Windows front end ofLPG: Gantt’s
chart of a plan found byLPG for a simple problem of the
“Satellite Complex” domain.

Post-processing
• We have developed a technique for increasing the degree

of parallelism in the plans generated byLPG for domains
with durative actions and numerical expressions. This is
done by an algorithm that, starting from the set of the ac-
tions forming the plan and their ordering constraints iden-
tified by the planner, tries to reduce the plan makespan.

Windows Front End
• Very recently, we have developed a Windows version of

our planner. This version allows the user to easily set sev-
eral options of the planner, as well as to visualize output
information in a user-friendly way. Figure 1 gives an ex-
ample of the user interface.

Acknowledgments
We would like to thank all previous members of theLPG
team and particularly Alberto Bettini, Marco Lazzaroni, Ser-
gio Spinoni, as well as Fabio Bresciani and Fabio Mostarda
who developed the Windows front end ofLPG.

References
Edelkamp, S, Hoffmann, J. 2003. PDDL2.2: The Language for
the Classical Part of the 4th International Planning Competition
Technical Report N. 194, Albert Ludwigs Universität Instiẗut für
Informatik, Freiburg, Germany.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. JAIR 20:61–124.
Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through
Stochastic Local Search and Temporal Action Graphs in LPG.
JAIR 20:239–290.
Gerevini, A., Saetti, A., and Serina, I. 2004. An Empirical Anal-
ysis of Some Heuristic Features for Local Search in LPG . In
Proceedings of ICAPS-04.


