ICAPS’04 Demo: Planning and Monitoring Web Service Composition

M. Pistore
University of Trento - ITALY
pistore@dit.unitn.it

Abstract

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. This demo shows how ad-
vanced automated planning techniques, implemented in
the MBP system, can be exploited to automatically com-
pose web services, and to synthesize monitoring com-
ponents that control their execution.

Introduction

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. The ability to automati-
cally plan the composition of web services, and to mon-
itor their execution is therefore an essential step toward
the real usage of web services.

In this demo, we show how automated planning tech-
niques based on the “Planning via Model Checking”
paradigm can effectively support these features, tak-
ing as input realistic modelings of web services, inspired
by the BPEL4WS standard language for specifying web
services interfaces and execution.

Automated web service composition starts from the
description of a number of protocols defining available
external services (e.g., expressed as BPEL4AWS specifi-
cations), and a “business requirement” for a new com-
posed process (i.e., the goal this new service should sat-
isfy, expressed in a proper goal language). Given this,
the planner must synthesize automatically the code that
implements the internal process that achieves the busi-
ness goal, exploiting the services of the external part-
ners. This code can be expressed in some process exe-
cution language like the executable part of BPELAWS.

Notice that this kind of planning problem requires
dealing with non-determinism (since the behavior of
external services cannot be foreseen a priori), partial
observability (since their status is opaque to the com-
posed service), and extended goals (since realistic busi-
ness requirements specify complex expected behaviors
rather than just final states). By tackling this problem,
we show the capabilities of the MBP system (Bertoli,
Cimatti, Dal Lago, Pistore, Traverso 2003) in realizing
such a complex planning task.

Moreover, MBP is also used to generate process mon-
itors, i.e., pieces of code that detect and signal whether
the external partners behave consistently with the spec-
ified protocols. This is vital to detect unpredictable
run-time misbehaviors, i.e. such as those that may orig-
inate by dynamic modifications of the partners’ proto-
cols. Thanks to these features, the MBP system will
be the engine providing web services composition capa-
bilities within the context of the ASTRO project, which

F. Barbon, P. Bertoli, D. Shaparau, P. Traverso

ITC-Irst - Trento - ITALY

[barbonfab,bertoli,shaparau,traverso]@irst.itc.it

aims at supporting the design process and execution of
distributed web services.

This demo, whose concrete nature is defined in the fol-
lowing section, targets researchers interested in realistic
advanced applications of planning, and will especially
suit people interested in the rapidly emerging area of
web and grid services.

The example

Our reference example is taken from (Pistore, Bertoli,
Traverso 2004), and consists in providing a furniture
purchase & delivery service. We do so by combining
two separate, independent existing services: a furniture
producer, and a delivery service.

The furniture producer becomes active upon a request
for a given article. In case the article is not available,
this is signaled to the request applicant, and the pro-
tocol terminates with failure. Otherwise, the applicant
is notified with information about the product (e.g., its
size), and the protocol stops waiting for either a posi-
tive or negative acknowledgment, upon which it either
continues, or stops failing. Should the applicant decide
that the product is acceptable, the service provides him
with the cost and production time; once more, the pro-
tocol waits for a positive or negative acknowledgment,
then terminating (with success or failure respectively).

The protocol provided by the delivery service starts
upon a request for transporting an object of a given size
to a given location. This might not be possible, in which
case the applicant is notified, and the protocol termi-
nates failing. Otherwise, a cost and delivery time are
computed and signaled to the applicant; the protocol
suspends for either a positive or negative acknowledg-
ment, terminating (with success or failure resp.) upon
its reception.

The expected protocol the user will execute when in-
teracting with our composed service goes as follows.
The user sends a request to get a given article at a given
location, and expects either a signal that this is not pos-
sible (in which case the protocol terminates, failing), or
an offer indicating the price and cost of the service. At
this time, the user may either accept or refuse the offer,
terminating its interaction in both cases.

Of course several interaction sequences are possible
with these services; e.g., in a nominal scenario, none
of the services answers negatively to a request; in non-
nominal scenarios, unavailability of the article, user re-
fusals or shipping service unavailability may make it im-
possible to reach an agreement for the purchase and
delivery. Taking this into account, the business require-
ment for the composed service is composed of two sub-
goals. The “nominal” subgoal consists in reaching the



agreement to purchase and delivery the article. This
includes enforcing that the data communicated to the
various processes is consistent with their mutual avail-
abilities; e.g., the total service time communicated to
the user cannot be less than the sum of production and
delivery times. The “recovery” subgoal consists in in-
suring that every partner has rolled back from previous
pending requests, and is only pursued when the nominal
subgoal cannot be pursued anymore. The specification
and combination of these subgoals is expressed in the
EaGLe language (Dal Lago, Pistore, & Traverso 2002).

Producer channel Adions User channel

Random

Goal

7)

Shipper Channel

start

requestis)
Shipper s

0o costime)

Fail

04 (compiled 2303-04-10 setotter

CRST,
2002 by ITC-RST. Al Righ: offettcd)

Figure 1: The web service composition phase.

Demo

The demo first shows the way MBP automatically ob-
tains a composed service that interacts with the user,
shipper and producer to achieve the above business re-
quirement, and also produces monitors to control that
protocols behave in a way compliant with their specifi-
cation. Figure 1 shows this composition phase. The ex-
ternal protocols are depicted, in the form of finite state
machines, in the left and right parts of the figure.

After the composition is completed, a high-level rep-
resentation of the synthesized service is shown in the
central part; its states are associated to the current in-
tention of the service (i.e., to which subgoal is currently
pursued). Monitors are simply represented by “proto-
col violation flags” that may raised at run-time (central
part, low); below monitor flags, a log window describes
the current and past interaction steps.

Several scenarios can be selected and run, each de-
scribing a protocol interaction; at each step of a run,

Adions User channel

Goal

Cran

Shipper Channel
start

requestis)

Figure 2: Inside a nominal scenario.

the current states of the external protocols and of the
synthesized protocols are highlighted, and monitor flags
are updated. Different interaction modes are possible to
determine the evolution of a scenario during the demo.
Figure 2 shows an intermediate step of a nominal sce-
nario, where the three component protocols answer pos-
itively to the requests, thus allowing the composed ser-
vice to eventually achieve the preferred subgoal.

In Figure 3, a different (non-nominal) scenario shows
how the unavailability of one of the services in providing
its service causes the main subgoal to fail. In this case
the composed service will perform "unrolling’ to achieve
the recovery subgoal.

stant Nextstep | start

request | it
sereq
reauest
il Done in

rsovars o vl ot

Shipper Channel

Monitors

o

Figure 3: Inside a non-nominal scenario.

Finally, Figure 4 shows a different scenario, where one
of the services (namely, the producer, on the left) has
changed its protocol. Monitoring is able to detect this,
since messages appear out of the expected order, and is
thus able to prevent runtime misbehaviours.

S s e
o — o
request@ | Lo
il TryReach success.

. s
iiiag <=
nmla;m
T Gy ogme
o offercd
e

D)

Figure 4: A protocol violation scenario.

References

Pistore, M.; Bertoli, P.; and Traverso, P. 2004. Planning
and Monitoring Web Service Composition. In ICAPS’0/
Workshop on Planning and Scheduling for Web and Grid
Services.

Bertoli, P.; Cimatti, C.; Dal Lago, U.; Pistore, M.; and
Traverso, P. 2003. MBP: Model Based Planner. In
ICAPS’08 System Demos.

Dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning
with a Language for Extended Goals. In Proc. AAAI’02.



